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Helicity is a classically conserved quantity which can be used, in addition to and independently
of the (vector) charge and chirality, to characterize thermodynamic ensembles of massless Dirac
fermions. We identify a symmetry of the Dirac Lagrangian which is responsible, via the Noether
theorem, to the classical conservation of the helicity current. We demonstrate the existence of new
nondissipative transport phenomena, helical vortical effects, that emerge in a helically-imbalanced
rotating fermionic system. These phenomena lead to appearance of a new gapless hydrodynamic
excitation, the helical vortical wave. Our results also imply that the helical symmetry suffers from
a quantum anomaly. We conjecture the existence of a new type of triangle anomalies in QED which
involve the helicity currents in addition to the standard vector and axial currents.

Introduction. Massless or nearly-massless fermions
appear in many areas of physics, including theories of
fundamental interactions, cosmological models of early
Universe, ultra-hot relativistic plasmas, and superflu-
ids, to mention a few [I]. Many relativistic phenom-
ena are now available for experimental verification in re-
cently discovered crystals of Dirac and Weyl semimet-
als, where the massless fermions appear as quasiparti-
cle excitations [2]. The most important properties of
these excitations are usually associated with their vec-
tor (gauge) and axial (chiral) symmetries that affect, in
the case of semimetals, electromagnetic [3], thermal [4],
and elastic [5] responses of these materials. Many un-
usual features of these semimetals are associated with
the quantum anomaly that break the continuous axial
symmetry of an underlying classical theory [6]. Similar
anomalies lead to exotic transport phenomena of quarks,
mediated by the topology of evolving gluon fields in ex-
panding quark-gluon plasma of heavy-ion collisions [7].

In our paper, we remind that, in addition to the vec-
tor and axial charges, there is also a third, well-known,
and, simultaneously, often-forgotten quantity that char-
acterizes massless fermions: the helicity. The fermionic
helicity is sometimes confused with the chirality, even
though these quantities reflect different physical proper-
ties of fermions [8]. To highlight the importance of helic-
ity, we demonstrate the existence of a set of new trans-
port phenomena emerging in a gas of rotating massless
fermions, the Helical Vortical Effects (HVE), that differ
substantially from their chiral counterparts, the Chiral
Vortical Effects [OHI14].

The HVE may see its applications in noncentral ul-
trarelativistic heavy-ion collisions that create a nearly
perfect fluid of quark-gluon plasma, the most vorti-
cal fluid ever known [I5]. Hydrodynamics of relativis-
tic plasmas with nonzero vorticity has attracted signifi-
cant attention recently [I6H20]. We uncover a new gap-
less hydrodynamic excitation, the Helical Vortical Wave
(HVW) which is analogous to the Chiral Vortical Wave

(CVW) [16]. In the existing low-density quark-gluon
plasmas, the HVW propagates faster than CVW, being
able to proliferate even in a globally-neutral plasma.

Vector-azxial-helical triad for massless Dirac fermions.
We consider one species of free massless Dirac fermions in
a flat (3+1) dimensional Minkowski spacetime, described
by the Lagrangian

L= %(@’Y”a;ﬂﬁ - 6;@7“7#), (1)

where ¢ = 974 is the Dirac adjoint of the 4-component
spinor ¢ and the units A = ¢ = 1 are used. The 4 x 4
gamma matrices v* are taken, for definiteness, in the
Dirac representation, with 4 =0,...,3.

The classical Dirac Lagrangian is invariant under
the action of the (global) vector symmetry group:

Uy : =y, e ™y (2)

According to the Noether theorem, the symmetry (2)) im-
plies the existence of the classically conserved vector cur-
rent, Ji; = ¢y, with 9, J% = 0. If the fermions would
carry an electric charge e and were coupled to an electro-
magnetic field A, then the global symmetry would
become a local (gauge) symmetry, ey = ay (x). The cou-
pling to electromagnetism is achieved by adding a source
term with the electric current eJ{; to the Lagrangian :
L — L+ eJ{;A,. The symmetry is unbroken at the
quantum level, thus reflecting the fundamental property
of the electric charge conservation in quantum theory.
The Lagrangian (|1)) possesses also the axial symmetry:
UMa: o= ey e’ (3)
where v° = iy9y'4243 is the fifth gamma matrix. The
Noether theorem gives us the classically conserved axial
(sometimes called “chiral”) current J% = ¢y*y5¢. The
axial symmetry is broken at the quantum level, lead-
ing to nonconservation of the axial current in the presence



of the electric E and magnetic B background fields [6]:

2 2

e ~ €
FuF" =~ 5E-B, (4)
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where FH = %s“”aﬂFag, F,, =0,A,-0,A, and we use
the convention €123 = /=g for the Levi-Civita tensor.
The axial charge (chirality) x is identified with respect
to the eigenstates of the v° matrix, v°1) = y1. Due to the
property (7°)? = 1, one distinguishes the right-handed
(R) and left-handed (L) chiral eigenstates, respectively:

YPYr = +g, VP, = —py. (5)

The axial current J!y = J — J represents the difference
in the currents of the right-chiral, Ji; = ¥Ypy*¢g, and
left-chiral, JI = ¢ 1v*4, Dirac fermions.

The chirality x of a fermion state is intimately related
to the helicity X of the same state. Classically, the helicity
is given by the projection of the spin s on the direction of
motion of the fermion given by its momentum p. At the
quantum level, the helicity A is an eigenvalue, hy) = A\,
of the helicity operator:

s'p
p

9, J" =

h:

e (6)
p
where p = |p| is the absolute value of the momentum op-
erator p = —id, and s; = %EOijkzjk is the spin operator
which is a part of the covariant tensor Z#” = L[y# ~"].
Since the fermion is a spin 1/2 particle, the helic-
ity takes two values, A = £1/2. One distinguishes the
right-handed (1) and the left-handed ({) helicity eigen-
states [21]:

2hapy = +1py,  2hpy = —thy. (7)

The chirality and helicity are different quantities. The
chirality of a particle is equal to its helicity (for exam-
ple, a right-chiral particle has a right-handed helicity)
while the chirality of an antiparticle is opposite to its he-
licity (for instance, a right-chiral antiparticle has a left-
handed helicity). For a single fermion the vector (parti-
cle/antiparticle) and the axial (right-/left-chiral) charges
determine rigidly the helicity of this single fermion. We
will see later that for an ensemble of particles a similar re-
lation would not work: the total helicity of the ensemble
is not determined by its total vector and axial charges.

The chirality operator v° commutes with the helicity
operator h given in Eq. @, while both of them com-
mute with the Dirac Hamiltonian corresponding to the
Lagrangian of massless fermions (1f):

H=a-p, (8)
where a = 7% in the original Dirac notations.

These commutation relations,

[75v h] =0, [ﬁa’75] =0, [ﬁ’ h] =0, (9)

indicate that all three operators possess the same eigen-
system. The last relation implies that the helicity, simi-
larly to the chirality, is a classically conserved number.

What is the symmetry of the Dirac Lagrangian that
would lead — via the Noether theorem — to a classical con-
servation of the helical charge that, in turn, is suggested
by the last commutation relation of Eq. @? The La-
grangian is invariant under a “helical” symmetry:

U : o — ety g el (10)
where the helicity operator h is given in Eq. @ One
may readily check that the helical symmetry leads to
the classically conserved helicity current: Jj; = 20" ha.
We introduced here the normalization factor 2 for the
helicity current in order to enforce the integer eigenvalue
2X = =£1 for the helicity , similarly to the chirality .

Thus, the vector-axial-helical densities

Qv B 1
Qa :/d3xwvo 7| 4. (11)
Qn 2h

form a “triad” of the classically conserved — via the
Noether theorem — U(1) quantities of the massless Dirac
fermions described by the Lagrangian (T]).[22] The be-
havior of the charges @, and the associated currents Jy
of all three quantities £ = V, A, H under the C, P, and
T inversions are shown in Table [l

Qv|Qa|Qu||Jv|Ja|Ju |2
cl -+ -[-1+[-[+
Pl+ || -[[-|+[+]+
T+ [+ +1-1-1-1-

TABLE 1. Parities of the vector (V'), axial (A), and helical (H)
charges (@) and currents (J) of a massless Dirac fermion, as
well as the vorticity €, under the C-; P-, and T-inversions.
The signs +/— denote the even/odd parities.

A complete set of mode solutions of the Dirac equa-
tion, iy*0,¢ = 0, includes the particle modes U; and the
corresponding antiparticle modes V; = i'yQU;f, where j
is a cumulative label that indexes the eigenmodes. The
commutation relations @ imply that these modes are
eigenfunctions of the Hamiltonian, chirality and the he-
licity operators, simultaneously:

HU,; =E,U;, HV; = — E,V;, (12a)
YU =x,U;, YV == x; Vi, (12b)
hU; =A;Uj, hVi =A; Vi, (12c)

where A; = £1/2 and x; = %1, while E; is the mode
energy, satisfying |E;| = p; (for future convenience, we
allow E; to take negative values). Using Eq. @ and
the Dirac equation for massless particles, the relationship
between \; and x; can be readily established:

1 X E;
WU, =~°—HU;, = \;j=21-1, 13
J 7p J J 2|, (13)




The field operator is

d(@) =D [Uj(@)b; + V;(x)dl], (14)

J

where canonical anticommutation rules for particle b;

and antiparticle ch operators are assumed.
The operators of all three conserved charges are:

Qv = X, (blb; —dld;), (15a)
Qa > Xj(A;'Bj + A;Jj)ﬂ (15b)
Qu =Y, 2),(bib; — dld;), (15¢)

where the colons denote Wick (normal) ordering. The
particle and antiparticle states contribute differently to
the axial and helicity charges. Equations
and also imply that the helicities and chiralities are
indeed equal (opposite) to each other for particle (an-
tiparticle) modes.

Helical chemical potential. Similarly to the vec-
tor and axial charges, the existence of the
third classically conserved number, helicity , re-
quires the introduction of the appropriate thermodynam-
ically conjugated, “helical”, chemical potential pg. Let
us recall that a right-chirality particle (antiparticle) has
a right-handed (left-handed) helicity with spins paral-
lel (anti-parallel) to its direction of motion. An ensem-
ble of an equal number of right-helicity particles (that
all have a right-handed chirality) and right-helicity anti-
particles (characterized by a left-handed chirality) has a
zero global vector (electric) charge density, (Qv) = 0,
and a zero total axial (chiral) charge, (Q4) = 0, while
the global helicity charge of this ensemble is nonzero,
(Qp) # 0. To describe such helicity-imbalanced, but oth-
erwise neutral systems of Dirac fermions, we introduce
the helical chemical potential pg, as the use of vector,
py, and axial, pa, chemical potentials is not enough.

Formally, the helicity operator @ is an ambiguous,
Lorentz-frame-dependent quantity. However, we consider
the Dirac systems at finite temperature T # 0 and/or in
the presence of a finite helicity with pgy # 0 that explic-
itly break the Lorentz invariance. Therefore, our physical
environment sets a natural Lorentz frame to define the
helicity operator and removes the mentioned ambiguity.

It is customary to label the massless Dirac eigenmodes
by their chiralities. One usually distinguishes the right-
handed and left-handed “chiral Weyl cones” with the ap-
propriate chemical potentials ur and pr, respectively,
shown in Fig. [a). The difference in the occupation
numbers between the modes is controlled by the axial
(chiral) chemical potential, pa = (ur — pr)/2.

Since the helicity operator shares the same basis with
the chirality, we can also use the helicity to character-
ize the energy branches in an independent, and non-
equivalent, manner, Fig.[I{b). Now, the occupation num-
bers of the “helical Weyl cones” are labelled by the right-
helical (u4) and the left-helical (p;) chemical potentials.
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FIG. 1. The dispersion relations E, = =£|p| for Dirac fermions
in (a) chiral and (b) helical basis. The chemical potentials
pr/r determine the occupation numbers for the right-/left-
handed chiralities, while the chemical potentials 4, dictate
the densities of the right-/left-handed helicities. The spin
orientations s with respect to the fermion’s momentum p are
shown by the horizontal arrows for each energy branch.

The difference between these potentials gives the helical
chemical potential, pg = (4 — py)/2, which determines
the helical imbalance of the system.

Rigidly-rotating thermal states. To reveal a role of the
helical potential, we consider a gas of Dirac fermions at a
finite temperature, uniformly rotating about the axis z.

It is convenient to introduce a particular basis of kine-
matic vectors for the rigid motion with the four-velocity

W=T(@+09,), T=——2 (i)

where € is the angular velocity and I" is the Lorentz
factor. We use cylindrical coordinates (p, ¢, 2).
The acceleration and vorticity four-vectors are:
a=Vu=—pQT?9,, w=w-u=0T%,, (17)

where (V, u)* = vV, ut, ot = %E“’”\”V)\ug is the
vorticity tensor. The fourth vector, which is orthogonal
to u, a and w, is T* = e W, axty, OF

r=a-0-A = —pQSFS(pﬂat + pilagp)v (18)

where A*Y = g — utu”.



The expectation value of an operator Ais given by the
thermal average over the Fock space [23] [24]:

(A) = 27 Tx(04A), (19)

where Z = Tr(g) is the partition function,

6= exp —50(1?1— QM= —

Z Me;o@e) . (20)

=V,AH

is the density operator [25], H is the Hamiltonian ,
M? is the 2 component of the total angular momentum
operator, By = 1/, and p; o are, respectively, the values
of the inverse temperature Ty and the chemical poten-
tials s at the rotation axis p = 0. Using the fact that
[I;,MZ] = 0, the modes are, simultaneously, the
eigenvectors of M?. These mode solutions have been
previously derived in Ref. [26] and are reproduced, for
convenience, in Eq. of the Supplementary Material
(SM). The SM describes also the analytical approaches
used to compute the thermal expectation values below.
The rigidly rotating gas of Dirac fermions generates
the vector, axial, and helical 4-currents (¢ =V, A, H),

ST = Quit b L afrh, (D)

along the 4-velocity u*, the 4-vorticity w*, and the 4-
circumference 7#. The radial components along the 4-
acceleration vector a* are absent for all currents .
Henceforth, we work in the 8 (thermometer) frame, by
fixing the four-velocity u* to be equal to the one given
in Eq. [27-29].

At the rotation axis (p = 0), the 4-velocity u* = (1, 0)
points along the time coordinate, the 4-vorticity wt =
(0,Qe.) is directed along the axis of rotation (17)), while
the 4-acceleration obviously vanishes, a* = 0. In a close
vicinity of the axis, the vector 7# = (0, ) is aligned along
the circular angular coordinate (18)), 7 ~ pQ3 e,.

We calculate the 4-currents (21)) in a high-temperature
expansion. The charge densities @, are as follows:

Qv — pvT?  ApapT 1292 w3+ 3py (u3 + 1)
V= 2 nz+ 2
3 T 3
w? + a? HApH
_— 22
T (“V+ 2T >+ ’ (222)
T2 4 T 3 3 2 2
On= pal” NH/;V 24 Ha + NA(/;H + 4y)
3 T 3
w? + a? 10:900%
_— 22b
+ 472 ( + 2T ) T (22b)
T2 4 T 3 3 2 2
Qp = M, MV/;A oy Mot MH(gV + 1)
3 T 3
w? + a® BV A
?(MH‘F oT )+, (220)

where we ignore terms of order O(T~1,Q%/7T2,Q%). In
the limit of vanishing pg, our results for Qv and Q4
coincide with those found in Ref. [30].

The rotation generates the vector, axial, and helical
(¢ =V, A, H) spatial currents , both along the axis
of rotation e ||Q and along the circumference e,||€2 x p:

Je=0iQ+o7 P Qxp+...  (p—0), (23)

where the ellipsis denotes higher-order terms in the radial
distance p with respect to the leading terms in Eq. .
The vortical conductivities along the rotation axis are:

. 2uuT pvpa |+ 3pe (i + ph)
V=T 2+ 2 + 1272T
purr(w? + 3a®)
48m2T Y
po T2 MY R gy pvpans (24)
A7 o2 om2T
2puy T frpa | Py 3py (ug + ud)
i = 2 2+ 2 + 1272T
pv (W + 3a®)
487m2T Y

where we ignored terms of order O(T 3, Q%).
The circular conductivities in Eq. are given by:

v HAKH

o 1V 25
W =62 T 12m2r T (252)

e _HA | HHHV 25h
T4 =6n2 T igper T (25b)

©» :Ni Hv LA 25
o g2t g2y T (25¢)

where terms of order O(T~3,0?) were ignored. On the
rotation axis (p = 0), the circumferential currents vanish,
and the current points exactly along the vorticity €2.

The vortical transport effects are consistent with
the C-, P-, and T-symmetries of the vector, axial, and
helical currents and charges, as shown in Table [l All
vortical effects are dissipationless phenomena, because
the laws and are even under the T-inversion.

In addition to the usual chiral vortical effects (CVE’s),
the currents exhibit a plethora of new helical vor-
tical effects (HVE’s). For example, the rotating dense
(charged) Dirac matter generates the helical current Jy
that is linearly proportional to the vector chemical poten-
tial py and temperature T' . On the other hand, the
neutral Dirac matter with nonzero helicity (ug # 0) gen-
erates the vector (charged) current Jy,. Remarkably, the
mentioned helical terms, linearly proportional to a chem-
ical potential and temperature, are allowed for HVE’s
and, at the same time, are forbidden for the CVE’s by
virtue of the C-, P-, and T-symmetries.

Helical anomalies in QED. Tt is known that the vec-
tor of, and axial 0% vortical conductivities , at a van-
ishing helical chemical potential, py = 0, are determined
by the axial quantum anomalies (for a review, see [31]).

For example, the pypua term in the vector vortical
conductivity of is generated by the axial-vector-vector
(AVV) vertex of the axial anomaly (), which is also
responsible for the p?, term in the axial vortical conduc-
tivity 0% . Both these terms share similar prefactors with



the axial anomaly . The axial conductivity ¢% con-
tains also the p? term due to the axial-axial-axial (4AA)
triangular anomaly, as well as the 72 term which origi-
nates from the axial-graviton-graviton (ATT') vertex of
the mixed axial-gravitational anomaly [32].

The presence of the helical component in the vortical
conductivities strongly suggests the existence of new
types of triangle anomalies which involve the helicity ver-
tex (@ For example, the leading term pgT (uyT) in the
vector (helical) conductivity of, (%) could have its ori-
gin in the new triangle VHT anomaly involving vector
("), helical (v*h), and graviton (f’“’) vertices.

The new helical anomalies must reveal themselves in
the background of a “helical vector field” AH which cou-

ples with the Dirac fermions via the source term AH Jh
added to the Lagrangian (|1). For instance, the quadratlc
wr dependence of the axial vortical conductivity 0%
implies the existence of a particular form of the mixed
axial-helical anomaly responsible for the nonconservation
of the axial current in the background of the AH field.

The new AHH vertex, 0,J = 16”2 FHFH”“’, shares
similarity with the standard AVV vertex of the axial
anomaly . A detailed structure of triangular anoma-
lies with helical operators will be explored elsewhere [33].

Helical vortical waves. The emergence of the new de-
gree of freedom, the helicity, allows us to uncover new
hydrodynamic excitations in the helical sector, that are
similar to the chiral magnetic [34] and chiral vortical [16]
waves. To illustrate this fact, we take a globally neu-
tral plasma (ny = 0, £ = V, A, H) at finite temperature
(T # 0), and consider the simplest gapless excitation that
propagates along the vorticity vector at the rotational
axis, where the mean fluid velocity vanishes, © = 0. The
bar over a symbol means a local thermodynamic average.

We consider linear modes in hydrodynamic fluctua-
tions. We notice that in a neutral plasma, the local den-
sities, ng = fiy + dng = dny, and the local fluid velocity,
v = © + dv = dv, are linear in fluctuations. The “non-
anomalous” component of the currents, nysv = dnydv,
vanishes at the first order, and all the currents are thus
equal to their “anomalous” contributions .

The form of the densities implies that in a neutral
plasma, the temperature fluctuations 67" decouple from
hydrodynamics of charge density waves dny at the linear
order (we set T = T). Moreover, the axial current
becomes quadratic in the fluctuations, so that the chiral
vortical wave — that involves the vector and axial sectors —
does not propagate in the neutral plasma [35H38]. On the
contrary, the vector and helical densities and their
vortical conductivities are linearly cross-coupled and
therefore the vector-helical wave does propagate.

We consider the wave excitation along the vorticity
0),z efithrikzz

vector, Jj = Je( . We impose the conserva-
tion of the vector (¢ = V') and helical (¢ = H) charges,
0:Q¢ + 0.J;7 = 0, which is valid in the absence of back-
ground fields. Using Eqgs. , , and ., we ar-

’ ’ Q¢ = 0, which

rive to the wave equation (07 — v5O

describes the propagation of the helical vortical wave
(HVW). The HVW is a gapless (massless) hydrodynamic
excitation with the dispersion relation

61n2 |

= il 26
Vuvw a2 T ( )

WZUHVW‘kzL

where vyyvw is the HVW velocity. The spectrum of the
helical waves will be studied in more detail elsewhere [33].

To estimate the velocity of the HVW in ultra-
relativistic heavy-ion collisions, we take the temperature
T ~ 150MeV [39] matching the pseudocritical QCD
value [40], and the angular frequency  ~ 6.6 MeV ~
102 57! revealed in a RHIC experiment [15, 42]. We
find that at these parameters, the Helical Vortical Wave
propagates with the velocity vgyw =~ 2 x 1072

It is instructive to compare the velocity of the helical
vortical wave with its chiral analog, veyw = 3@‘%2 [16,
35]. To this end, we set for the chemical potential uy =
g ~ 30MeV [4I], and obtain veyw =~ 3 x 1073¢, which
falls into a range of the original estimation of Ref. [16].
The helical wave propagates much faster than the chiral
wave since gEVW = oMY~ 0.7py /T while py < T
in the quark-gluon plasma being created in the ongoing
heavy-ion collision experiments.

Conclusions. We stress that the fermionic helicity is
an independent characteristic of a massless Dirac fermion
similar to its vector and axial degrees of freedom. We
construct a classically conserved helicity current and find
a variety of new nondissipative helical vortical effects
(HVE) in rotating media of Dirac fermions. These effects
include, for example, the generation of the vector (heli-
cal) current in the presence of the helicity (vector charge)
density at finite temperature. The helical vortical effects
lead to the appearance of a new gapless hydrodynamic
excitation, the helical vortical wave (HVW), that involves
coherent oscillation of vector and helical densities. The
HVW propagates in a neutral plasma contrary to the
chiral vortical wave that requires the presence of matter.
In low-density quark-gluon plasmas created in ultrarela-
tivistic heavy-ion collisions, the helical wave propagates
much faster than its chiral cousin. We point out that the
helical vortical effects have an anomalous origin, and con-
jecture the existence of a set of new “helical” quantum
anomalies in QED that appear at the same footing as the
well-known axial and axial-gravitational anomalies.
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Appendix A: Supplementary material

The Supplementary Material presented herein supple-
ments the main text with various technical details. In
Subsec. [A1] we present an analysis of the properties of
the helicity charge operator : Qg : under the CPT trans-
formations, which are summarized in Table [} Then, the
details regarding the computation of thermal expectation
values are given in Subsec. [A2] The details regarding
the computation of the t.e.v.s of the vector and helic-
ity charge currents are given in Subsec. Finally,
the t.e.v.s. of the components of the axial charge cur-
rent (ACC) and stress-energy tensor (SET) are derived
in Subsections [A4] and [A5l

1. Discrete symmetries of the helicity charge
operator

Taking into accout that Py(x)P
be seen that:

= 7% (—z), it can

Qu f»/dgx[i(—m) (VOVSVO%)’YOM_“’)

:/d%r(_

:_QHa

v -V_g
w)(vov5voT)w(—w)
(A1)
where V, = —V_, was employed.
For charge conjugation, C¢C = iv*y)* and CyC =

—z@*'y?. However, the expression needs to be presented
in normal order, such that

: @H :g/d?’x —i’}/Z)(Vs’YO_iZ%V)WQJ*] :
—— [z G2y
:/d3x : tr[w%hzﬁ]* (A2)

where the minus sign on the last line is due to changing

the operator order of zz and .

Finally, for tlme reversal TY(HT = —y1y3(—t),
TY(t)T = p(—t)y'y® and TyHT = (y*)*, we have:
QHi/d%Tm Yy

:/d3 D= )7 7P (1°2h)* (—y ) (—8)]

=/d3 [)(— thovsvohlvﬂ 5 v(—vlvg)]w(—t)]

2. Modes and thermal expectation values

In this subsection, we discuss the construction of ther-
mal expectation values at finite vector, axial and helicity
chemical potentials for massless fermions under rigid ro-
tation. The basis of this construction is Eq. , which
requires the computation of the trace over Fock space.
This trace can be computed by first considering a full set
of mode solutions of the Dirac equation, comprised of the
simultaneous elgenfunctlons of the system formed by the
Hamiltonain H helicity h, and angular momentum M*
operators, Wthh appear in the expression of the density
operator g, introduced in Eq. (19| . Specifically, the partl—
cle and anti-particle mode solutions, U; and V; = 2U ¥
must satisfy Eq. (12), together with:

(—id, + 57)U;
(~id, + 57)V;

=+m;Uj,

=—m;Vj,

—i0.U; =+ k;Uj,
—i0,V; =—k;V;.  (A4)
In the above, the eigenvalue of the total angular momen-
tum operator, m; = :I:%,:I:%, ..., takes only half-odd-
integer values. The eigenvalue of the linear momentum
operator along the z axis is k;. The particle mode so-
lutions U; = U, g k.m Satisfying the eigenvalue equations

and (A4 can be written as [26]:

o~ iBttiks 1
47 2\E/|E|

1+ 2Eeim=2)e g1 (gp)
2iA /1 - %ei(m+§)me+%(qp)

where ¢ = \/p? — k2.

For the construction of rigidly-rotating thermal states,
Iyer [45] argued that the modes with positive co-rotating
energy Ej = F;—Qm; > 0should be interpreted as parti-
cle modes. Following this prescription, the field operator
can be expanded with respect to the particle modes U;
and the corresponding anti-particle modes V; = inU;‘
as follows:

Ug,hm(x) =

(A5)

Z Z/ dE |E|6( )/ dk

=+1/2m=—0o0
722 N0
X [UE,k,m< )bE skym + VE>'\,k,m( )dE k; In]

= (U} + V;dT, (A6)
J

where the integral over FE runs over the full real axis,
while the step function H(E) ensures that only positive
co-rotating energy Ej = E; —Qm; > 0 particle states are
taken into account. After second quantization, the mode
decomposition in Eq. naturally introduces the rotat-
ing vacuum, |0g), which is annihilated by the operators
b? and d? for which Ej > 0.



The decompositions of the charge operators in
Eq. { , together with equivalent ones for H and M*
given below

CH =Y (bl + dldy),

J

M# =" my(blb; + did;), (A7)
J
allow the following relations to be derived:
@lg;z;féfl :eBo@jt—mj:Xj;o)l;?;f7
@d?ﬂ‘@—l :eﬁo(Ejt+ij,—xj,o)d?;T7 (AS)
where
HXjix;;0 = HV50 + 2)‘j/f"H;0 + XjHA50, (Ag)

is the total chemical potential. The chirality x; and he-
licity A; are related through Eq. . Starting from

J

=5 5 e[ el

Eq. (Ag)), the following t.e.v.s can be derived [25]:

(BFTD) =ng, (B — 1ay0,,0080, 7,

(d5 5y =ns, (Ej + pia,,—x,.008(3, ), (A10)
where ng, is the Fermi-Dirac factor:

Lt All

g0 (a) T ghoa 1 ( )

An extensive discussion on how to compute the t.e.v.s
of various operators using the formalism employed in this
paper can be found in Refs. [43] [44]. Briefly, we consider

operators F for which the t.e.v.s can be put in the form:

() = [ FU Uing, (Bs = iy x0)

J
~F (Vi Vidnso (B + iay—x,0)] » - (A12)

where F (1, x) is a bilinear form with respect to v and .
The normal ordering is taken with respect to the rotating
vacuum |0g), i.e.

: Fig=F — (0] F|0q) . (A13)
In computing the t.e.v. in Eq. (A12)), the integration over
E in Eq. (A6) can be manipulated such that the range
of E spans only the positive real semiaxis, as follows:

Us) + F (V3. Vi) [0 (1Bl = ixixio) + =gy (1 B| + a0

+ sen(E)F(U;,Uy) = F(V;, Vi) [nﬁom—umm+nﬁ0<|E“|+m;-X;o>}}, (A1)

where x = 2 sgn(E E). As discussed in Ref. [44], the t.e.v.
of the operator F can be expressed with respect to the
Minkowski (non-rotating) vacuum |0as), in which case it
is given by:

(F )= (F:q)— (Oun]: Fiql0n),

where the subscript M indicates that the normal or-
dering is taken with respect to the Minkowski vacuum,
|0a7). The one-particle operators b3 and d that annihi-
late |0ps) can be introduced by considering the following
mode expansion:

= > Z/ dE|E|6(E /dk

A=+£1/2m=—00

X [UD o (D)0 e + Vi g (@)

(A15)

(A16)

(

In Eq. (A15), (Oar| : F :q |0ar) represents the expectation
value of the operator F expressed in normal order with re-
spect to the co-rotating vacuum, taken in the Minkowski
(stationary) vacuum state. It receives contributions only

from the modes for which EE < 0 [44]:

(Onr| = F g [0ar) =

ZZ/dpp/dk

A==£1 m=—o0

0(7@[ (Uijj) 7‘7:(‘/17%)} (A17)

Inserting the above into Eq. (A15) gives:



'y oy | [ dk{ (U3, U) + F (V3 Vi)l [0 (B — irano) — n (54 fixe—20)]

)\ ilmf o

+ [F(U;,U;) = F(V3, Vi)l Inge (B — pazx0) + 1o (D + pix—2x.0)] } (A18)

The form is more convenient for analytical manip-
ulations.

In what follows, the computation relies on the following
steps. First, the Fermi-Dirac factors are expanded with
respect to the rotation parameter §2, as follows:

= (=Qm)" d"
- Z(n!)dpnnﬁo(pq:ﬂ).

n=0

ng, (D F 1) (A19)

The sum over m appearing in Eq. (A18) is then per-
formed using the following formulas:

> "o (j + L ,
Z m* Jt(2) :Z (.|J\ﬁr2)s:;j22]7
m=—oo j=0 J:
2I(7 + )
S mrtpe =3 T
m=—00 7=0
LG L,
Z m* LI (2 —272 st 22T (A20)
m=—oo j=0 ('] + 1)'\/E "

where, for future convenience, the following notation was
introduced:

Tilap) =J3 1 (ap) £ T}, 1 (ap),
Im(ap) =2J,_1(qp) i1 (ap). (A21)
The coefficients st . can be obtained from:

n,j

1 e+l a2+
+ o . .
S5 = (2 1 D)l alb daz (2smh ) (a22)

It can be seen that sn j vanishes when j > n. For small
values of n — j > 0, the first few coefficients are given by
[26]:

+
855 =1

1 . .
Sjt1, = 24(2] +1)(25 +2)(25 + 3),

1 . .
shio =570 (25 +1)(25 +2)(25 + 3)
x (25 +4)(25 +5)(105 + 3).

For general values of n > j, the following recurrences can
be established:

2
1
Siity =Smgo1 T (9 + 2) S

2n+ +
e ()

=1

(A23)

S:,j+1 ( (A24)

(

The last step involves the integration with respect to k,
which can be performed using:

[ LT
0

A25
2I'[(n +3)/2] (A25)
3. Vector and helicity charge currents

The bilinear forms F (1), x) for the vector charge cur-
rent (VCC) and helicity charge current (HCC) are:

T, x) = 27" hy.

2U*7 it is not difficult to see that

TV (W, x) = 97X, (A26)

By noting that V; =

j\l/L/H(VJaVJ) = [j\l/L/H(Uj’Uj)]* = j\l/L/H(Uijj)'
(A27)

The above equality implies that

G i) = G T ) (A28)
since (Opf|: J" :q |0p) = 0 by virtue of Eq. (AL7).
Furthermore, it can be seen that J45(U;,U;) =
2X; T/ (U;,U;), such that it is convenient to discuss the
t.e.v.s of the VCC and HCC collectively using the nota-
tion:

Jh = Jl+ Tk (A29)
Using the explicit expressions for the modes, given in
Eq. (A5)), the following expressions can be obtained [44]:

(: ji :Q>
p( L) | = Z / dp
(: J% ) m=-—00

X [nﬁo (ﬁ_ Hv.o + HH0 F ,UfA;O)
—ng, (P + pvio £ a0 F f1as0)]

p pJ.4(ap)
X / dk
0

a7, (ap)
+pJ; (ap)
We illustrate the computational procedure for the tempo-
ral component. Expanding the Fermi-Dirac factors using

(A30)



Eq. (A19)), we obtain:

~ 1 o Q[
JL )= —= — d
(s wa) 272 nZ:o (211)!/0 pp

d2n
d ———[np, (P — v.0 F HE0 F 1ay0)

—ng,(p+ pvio £ 1E0 F tao)]

x/ dk Z m2"Jt(gp). (A31)

m=—0o0

The sum over m and integration over k can be carried

out using Eqgs. (A20]) and (A25):
2j / " kg
p q
0

2U(j + 3)
2n + 2 +
T IR Ve

m=-—00 7=0
n9p2%ip2itt |
ST (as)
= 27 +1

Upon substitution of the above result into Eq. , the
summation over n and j can be reversed, in which case
the range of j is from 0 to oo, while n runs from j to oco.
Shifting downwards the summation over n vian — n+j,
the following result is obtained:

N 1 = (p)% X Q2 (25 +2)!
.7t _ +

; N\ Ontgg
“2j+1 4~ (2n + 2j)!

— bvi0 F 0 F Hao)
(A33)

e <] 9 d2n
X dpp ng, (P
/(; dpgn [ Bo
—ng, (P + pvi0 £ 0 F pao)],

where integration by parts was performed 2j times in
the integral over p. In the above expression, the series
over n contributes corrections of order Q2" to the t.e.v.
Retaining only terms up to O(Q?), the series over n can
be truncated at n = 1. The sum over j can be performed
at each value of n using the following results:

Z pQ § =l

j=0

(A34)

where T' = (1 — p?Q2)~1/2 is the Lorentz factor cor-
responding to rigid rotation. Changing the integration
variable to x = Byp and using

o0 nd
/ = nlLipga(—e?),
0

A35

where Li,(z) is the polylogarithm function, and n =
0,1,2,... is a natural number, Eq. (A33) can be put
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in the form:

<Z j; :Q> 2FT {L13[ —(ltV:I:/LHjFILA)/T}
_Li3[_e(uviuHiuA)/T]}
Q2T . 1+ elnvEnntua)/T \
g U - Dy + O
(A36)

The high temperature limit can be extracted by noting
that

a\ __ 3C(3) 2CL (12 3 4
le( e )— T ﬁ ?11,12 E+O(a ),
a a2
In(1+€%) =In2+ >tg + O(a®), (A37)

where ((z) is the Riemann zeta function. The following
result is obtained:

~,

T2 4T
(: th Q) #A

—F(ILL\/:E‘LLH){ + In2

3

(pv £ pm)® +3p%
32

3w2—|—a2[ MA—&—O( )} +O(Q4)}, (A38)

+ +0(T™h

1272 2T

where w? = Q2T* and a? = p2QT* = Q2T3(I? - 1).
Performing the exact same steps for the ¢ component
yields:

T2  4Tuu

(: Jf ) ZQF(MviNH){i In2

3 2

2 2
(MV + /J'H) + 3:u‘A + O(Tfl)

+ 32

w? + 3a? [

1272

1j:ﬁ+0( )}+O(Q4)}. (A39)

For (: J% :q), the following expression is obtained:

2072

<5 ji ZQ> ==+ {Li2[,6*(uviuH:FuA)/T]
—Lig[—e(“Vif‘HiMA)/T]}

P08 (412 = 3)sinhl(uy + )/ T]
2472 cosh[(py + pg)/T) + cosh(pa/T)

+0(0Y).
(A40)

Using the following expansion for the polylogarithm:

2 2 3
T a
=———aln2—

Lig(—e®) = -2 T 53 TOW). (A4



the following expansion is obtained:

~ Qr?
(:Ji ) = i?(uv iMH){

(v & pm)? +3p3
12T

2TIn2 =+ pa + +0(T7?)
W 4307 L o] +o@h . (ae)
48T '

The charge density )+ and azimuthal conduct1v1ty oL
can be obtained by inverting the expansion . Noting
that Qi = u- (: Jx :0) = T((: JL 9>*p9< JZ ),
the following expression is obtained:

T2  4Tua

Qi:(ﬂvi,uH){ + In2

3 2

1 + 13+ 3u% I ,uqu
3T 2
w? + a? [ 1A

o 154 o(r=2)] + 0(94)}. (A43)

+ +0(T™)

+

The charge conductivity can be obtained using

s Tu (- J q) _ QG JL ) — ¢ JL )
or T 2 = Q33
v Epum HA 2
o 1+ 4 5T A L0(T7?)]| +0(02).  (A44)

Finally, the vortical conductivity o% can be obtained as
follows:

w _ Y <: i :Q> o <: J:T: :Q>
9+ = w? T2
QMiT parts pa (3 +3u%) 2
=4+ In2 + T
+ 12m2T +0( )
+ Mu FOT™2)]+0QY.  (A45)

48m2T

The vector and helical quantities can be reconstructed
from the above results using:

(A46)

(: JS/H Q) = %(( JY q) £ (- ).

4. Axial charge current

The bilinear form F (v, x) for the axial charge current

(ACC) is:

T, x) = ¥7"7°x. (A47)
Taking into account the charge conjugation symmetry,
Vi = i'yzU;‘, it can be shown that

TV, Vy) = =T U, Up)]" = Ta(U;, Uj). - (A48)
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The above property implies that the term on the first
line in Eq. @D makes a vanishing contribution to the
t.e.v.s of the components of the ACC. Using the explicit
expression for the modes given in Eq. , the following
results can be obtained [44]:

U U ——Pi TV (o) 4+ g (a
THUU) =gkt |20, ) + 20 ()|

Crr 17y —_ 245 gx o
jA (Uja UJ) 47T2pijm_7‘ (qJP)V

. 1 20k,
T30 0) =13 | a0 + 2255, )| (819
J

The results above show that J4(U;,U;) and J% (U;,U;)
are odd under the simultaneous flip (kj,\;) —
(—kj,—A;j). Because of this property, Eq. (A17) shows
that

(Oarl = T4 w0 |0ar) = (Onr| = T i [0ar) = 0. (A50)

Thus, the t.e.v.s of the ¢t and ¢ components of the ACC
with respect to the rotating vacuum are the same as when
expressed with respect to the Minkowski vacuum. This
conclusion does not hold true for the z component, for
which there will be non-vanishing vacuum terms in the
t.e.v. computed with respect to the Minkowski vacuum.

Using Eq. 7 the following expressions can be ob-
tained [44]:

X [1p, (D — tx2x0) + 1, (P + Hx—2x0)]
p 2 \pJ % (ap)
X / dk | 2XqJ ;5 (ap)
0 pJm(ap)

Employing the same steps as in Subsec. we obtain:

(A51)

(pQ)% Q2 (25 + 2)!
(T = g XA Z
4 T o= 02]+1 — (2n + 2j)!
d2n

X sLj,j/O dpp® dp2n ("8, (P — Hxas2x0)

+ng,(p + pa—2x0)] - (A52)

The above expression can be approximated up to O(£2?)
by taking into account the n = 0 and n = 1 terms. The
following result is obtained:

rrs , T

~ T .
(T ) = =5 [Lig(=e"14T) — Lig(=e" 3277
67“%,—1/:’1) _ Lig(_e*l‘,%,l/T>:|
era/T (cosh BYEEE | cosh £4)
eHa/T (cosh BYZHL + cosh L2 )

+0(2%. (A53)

+Lig(—
Q2T
2472

+

(4T% — 1) In




In the high temperature limit, the following result is ob-
tained:

paT?  4ATpypm

3 5 In2
T

(: jﬁ‘ ) = F{

3 2 3
/“LA(NJV + ,UfH) + 1y + O(Tfl)

+ 32

Hv HH
2T

3w? + a?
1272

[a + +0(T?)] + 0(94)}.
(A54)
Similarly, the ¢ component is given by:

paT?  ATpypy

3 3 In2
T

(: j:f Q) = QF{

Bpalpy + pr)® + ph

+ 32

+0(T™h

w? + 3a?
1272

Hv g
2T

[a + +0(T?)] + 0(94)}.
(A55)
The charge density Q4 and azimuthal conductivity o7
can be obtained using the relations (A43]) and (A44]).
The results is summarised in Eqgs. (22b)) and (25b)), re-
spectively.
For (: J4 :q), the following expression is obtained:
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with respect to the rotating vacuum can be obtained by
subtracting this term. The result is:

T2 |y + g+

D J% o) = Q2 | —
(- Ja a) 6 + 272
UV H A -2 4
—_— T=2,0%(. (A
+ e O, Q). (A5S)

The corresponding vortical conductivity can be obtained
as shown in Eq. (A45) and the result is summarised in

Eq. .

5. Stress-energy tensor

For completeness of the overall presentation, we also
provide the result for the thermal expectation value
(t.e.v.) of the stress-energy tensor (SET),

N
o~

7 = ~ =~ ~
Tw = 5[¥7. Vi) ¥ = Vi, U7 ¥

NVZQ

(A59)

The bilinear form introduced in Eq. (A12]) which corre-
sponds to the SET is:

It is easy to check that
Tuv (V5 Vi) = =[Tow (U, Up)]* = =T (U5, Uj). - (A61)

Due to the above property, the first line in Eq.
vanishes, as was the case for the t.e.v. of the ACC dis-
cussed in Sec. The explicit expressions for the bi-
linears 7., (U;, U;) are presented in Refs. [43] 44] and for
brevity, they are not reproduced here. The procedure to
compute the t.e.v.s is also detailed in these references, be-

~ r2Qr? . - T . —p1 /T
2B A o
¥ Lig(—e "3/T) ¢ LiQ(fe*“%vl/T)}
(DI ye_g) | 1T+ cosh g
4872 cosh 42 + cosh 2VEAE— cogh 42 + cosh ’M:;hﬂih

The large temperature expansion is easily obtained:

Tj+u2v+u?q+ui

.77 . _ 2

Hv LH A

-2
92T +0(T™7)

%;‘LQ [1+0(T7?)] + 0(94)}' (A57)

It can be seen that the term on the last line above is
independent of the thermodynamic parameters 7" and 1y
(I € {V,H, A}). This term represents the vacuum con-
tribution (0] : J- % :q |0ar), which was previously found
in many studies [25] 26, 44]. The t.e.v. of J* computed

aqto ynamic content of the SET can be extracted

by co siderifl‘&%n)e following decomposition:

e ra/T 4 cosh MphHq n%ibtg the one employed for the ACC in Sec.[A ]

(: f,w ) = P(duyuy, — g )+ +u, W +u, W, (A62)

which contains the isotropic pressure component,

TR2T4 T2
p— ) 2 2
180 + 6 (i + pyy + 1)
+/fé + iy + ph + 6(ud pd + i pd + phed)
1272
Q3w ta? [ 3y + py + Hh)
72 w2
4 T
4 2RARIIVE 19 4 O(T0), (A63)
v

the anisotropic stress contribution,
2 2
I =1y, (T“TV _ ialtaV _ iwuwu
2 2

g (THFw” + 77 wH), (A64)



and the heat flux:

WH = k. 7" + g wt.

(A65)
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The conductivities x, and k,, are as follows:

1 (3, + pi + 14) _
T _ T2 |4 H A o(T 1

T2 4 T 3 2 2

o _iaT” Ay o 3palpy + pi)
3 2 32
N pv e (3py + w3, + k)
6m2T
w? 4 a? KV L H
or—3,04 A66

while the coefficient 11y is given by:

HA 23:920% -2 02
Iy =—-—-=— T74,0°). A
H=gs ey TOTTRAY. (AGT)

For massless particles, we find that IIy, = 0, while the
energy density is &€ = 3P.
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