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We consider an explicit effective field theory example based on the Bousso-Polchinski

framework with a large number N of hidden sectors contributing to supersymmetry breaking.

Each contribution comes from four form quantized fluxes, multiplied by random couplings.

The soft terms in the observable sector in this case become random variables, with mean

values and standard deviations which are computable. We show that this setup naturally

leads to a solution of the flavor problem in low-energy supersymmetry if N is sufficiently

large. We investigate the consequences for flavor violating processes at low-energy and for

dark matter.
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I. INTRODUCTION AND MOTIVATION

Supersymmetry breaking in MSSM (Minimal Supersymmetric Standard Model) is introduced in

terms of explicit soft breaking terms. These are large in number ∼ 105, most of which violate flavor

and CP symmetries. Phenomenologically there are strong constraints on the flavor off-diagonal

entries, requiring them to be suppressed (compared to the flavour diagonal ones) by one to several

orders of magnitude. The flavor violation constraints on the first two generations are significantly

stronger compared to the ones involving the third generation. These bounds are well documented

in the literature [1] (for reviews, see [2–4]).

To solve the problem with flavour violating soft terms, several solutions have been proposed.

If supersymmetry breaking is mediated purely in terms of gauge interactions, the resulting soft

terms would not contain any flavor violation [5–8]. However, the discovery of the Higgs boson puts

constraints on such models. If the Higgs boson is of supersymmetric origin, one would expect the

mass of the lightest CP even Higgs boson in Minimal Supersymmetric Standard Model (MSSM)

to be rather light. This already puts severe constraints on the supersymmetric parameter space,

in particular that of the third generation up-type squarks (the stops): they are either required

to mix almost maximally or to be heavy, between 3 to 4 TeV (See for example, [9]). Several

supersymmetry breaking models like minimal gauge mediation and its variations are disfavoured

in the light of the Higgs discovery [10] or require a rather heavy spectra in the range of multi-TeV

[9].

In string or supergravity based models, it has been long known that it in general scenarios it is

hard to escape flavour violation, unless some specific conditions are chosen [11, 12]. For example, if

the Kähler potential of the matter fields is canonical and independent of the moduli/hidden sector

fields, one could expect an universal, flavor-independent form for the soft terms as in minimal

Supergravity. On the other hand, the problem can also be avoided if supersymmetry breaking is

dominantly dilaton mediated [13]. Other solutions include decoupling of the first two generations

[14] or imposing flavour symmetries (See for example, [15–18] and references there in).

In the present letter, we would like to address these issues from a different point of view, insipred

by the landscape of string theory vacua. We will consider a large number N of sectors contributing

to supersymmetry breaking. Large number of sequestered hidden sectors have also been considered

recently in [19–21], in models with multiple (pseudo)goldstini. Other works which have addressed

supersymmetric soft spectrum phenomenology from the landscape following [22] include [23–26].

In particular a solution to flavour and CP problems in the landscape through heavy first two
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generations was proposed in [27].

In the present work, we consider quantized four form fluxes a la Bousso-Polchinski [28]. Each

sector contributes in a quantized way, with a quantum that will be taken to be below the elec-

troweak scale. Due to the large number of contributions, the observable soft terms become random

variables with Normal-type distributions around an average value. The setup has also the virtue of

minimizing fine-tuning of the electroweak scale, due to the small contributions of each sector. We

find that our setup can address at the same time the flavor problem of low-energy SUSY by gener-

ating FCNC effects proportional to standard deviation of soft terms from their mean value, which

are parametrically suppressed as 1/
√
N . By performing a RG analysis from high to low-energy,

the setup makes also concrete predictions for low-energy flavor observables.

The letter is organized as follows. In Section 2, we review the Bousso-Polchinski setup and

follow it in Section 3 with a review of four-forms fluxes. In the same section, we derive the soft

terms and also show the impact on the flavour violating soft terms in the limit of large N . We also

set up the boundary conditions for the scanning. In Section 4 we discuss the numerical results and

present constraints from K0 − K̄0 oscillations and µ→ e+ γ. The framework also has interesting

implications for dark matter which we discuss briefly at the end of the section. We end with a

small section of conclusions and outlook.

II. THE BOUSSO-POLCHINSKI SETUP

The logic and setup we put forward is mainly originating from Bousso and Polchinski approach

to the cosmological constant [28]. We are regarding the implications of the string theory landscape

for observable sector soft SUSY breaking terms. We will assume a large N � 1 number of SUSY-

breaking sectors communicating through gravitational couplings to the Supersymmetric Standard

Model (SSM). Such models could naturally appear in string theory, where there may be several

independent sources of supersymmetry breaking.

Higher-dimensional operators and gravitational interactions lead to interactions between the

moduli and the visible sector. One writes an effective action for the visible sector fields at a high

scale, treating the hidden sector fields as non-dynamical background fields. This is justified if they

are very heavy compared to the observable fields. One then writes a set of renormalization group

equations for the higher-dimensional operators and evolves them into the infrared, ignoring the

hidden sector dynamics. Supersymmetry breaking F and D components of the background hidden

sector fields then give rise to visible sector soft supersymmetry breaking parameters.
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Usually SUSY breaking is parametrized in terms of a single hidden sector field. This gives to a

spectra at high scale (up to O(1) parameters) in terms of the scale of SUSY breaking Fα. In our

case, we consider instead MSSM interacting with N hidden sectors at the Planck scale. In the

models we are considering, auxiliary fields of the hidden sector fields contain quantized four-form

fluxes, with discrete charges contributing to supersymmetry breaking, as in the Bousso-Polchinski

solution to the cosmological constant problem.

The main features of our framework are:

• Integer quanta parameterising the soft supersymmetry breaking contribution from each hid-

den sector

• Minimal number of parameters representing coupling between hidden sector fields and

MSSM. Since these couplings depend on moduli vev’s and interactions, we parametrize them

by random continuous parameters taking values inside a compact interval around zero.

• Assume gravity mediation for simplicity. A similar scan can be done for gauge mediation,

although the details will be quantitatively different.

• We consider a flat probability distribution of flux in each hidden sector. Since each flux is a

random variable, due to the central limit theorem, this will lead to Normal-type distributions

for the soft terms.

While we will impose the cancellation of the cosmological constant à la Bousso-Polchinski, we

do not necessarily use our framework to address the cosmological constant problem. Instead we use

the framework as a network of hidden sectors each contributing individually to soft supersymmetry

breaking.

III. FOUR-FORMS AND FLUXES

Three form gauge potentials with (non-dynamical) four-form field strengths were considered

longtime ago for addressing the cosmological constant problem [29–36], the gauge hierarchy problem

[37–40](see also [41]), the strong CP problem [42, 43], inflation [44–47] and supersymmetry breaking

[48]. On the other hand, it turned out to play an important role in the landscape of string theory

compactifications [49–51] (for a recent review see e.g. [52]). Here we briefly review the main points

of a theory containing three-forms with quantized form-forms field strengths.
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Let us start from a lagrangian containing some scalar fields ϕi and three-form fields Cαmnp, with

the action

S0 =

∫
d4x {−1

2
(∂ϕi)

2 − Λ0 −
1

2× 4!
Fα,2mnpq +

1

24
fα(ϕi) ε

mnpqFαmnpq} , (1)

where

Fαmnpq = ∂mC
α
npq + 3 perms. . (2)

For future convenience we define

Fα =
1

4!
εmnpqFαmnpq , F

α
mnpq = −εmnpqFα . (3)

The lagrangian (1) has actually to be supplemented with a boundary term

Sb =
1

6

∫
d4x ∂m

(
Fmnpqα Cαnpq − fα(ϕi)ε

mnpqCαnpq
)
. (4)

The total action is

S = S0 + Sb =

∫
d4x {−1

2
(∂ϕi)

2 − Λ0 −
1

2× 4!
Fα,2mnpq −

1

6
εmnpq∂mfα(ϕi) C

α
npq}

+
1

6

∫
d4x ∂m

(
Fmnpqα Cαnpq

)
. (5)

A massless three-form gauge field in four spacetime dimensions has no on-shell degrees of freedom.

As such, it can be integrated out via its field eqs.

∂mFαmnpq = εmnpq∂
mfα(ϕi) , (6)

whose solution is given by

Fα = −fα(ϕi) + cα , (7)

where cα is a constant, which is to be interpreted as a flux. It was argued in [28] that cα are

quantized in units of the fundamental membrane coupling cα = mαe, fact that has important

consequences for the landscape of string theory. After doing so, the final lagrangian takes the form

S =

∫
d4x {−1

2
(∂ϕi)

2 − Λ0 −
1

2

∑
α

(fα(ϕi)− cα)2} . (8)

The final resulting cosmological constant is therefore scanned by the flux

Λ = Λ0 +
1

2

∑
α

(fα(ϕi)− cα)2 . (9)

Notice that the boundary term Sb is crucial in obtaining the correct action. Ignoring it leads to

the wrong sign of the last term in (8), fact that created confusion in the past.
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A. Supersymmetric formulation

The embedding of four-form fluxes in supersymmetry and supergravity proceeds by introducing

three-form multiplets, defined as the real superfields [53–59]

Uα = Ūα = Bα + i(θχα − θ̄χ̄α) + θ2M̄α + θ̄2Mα +
1

3
θσmθ̄εmnpqC

npq
α +

θ2θ̄(
√

2λ̄α +
1

2
σ̄m∂mχα) + θ̄2θ(

√
2λα −

1

2
σm∂mχ̄α) + θ2θ̄2(Dα −

1

4
�Bα) . (10)

The difference between Uα and a regular vector superfield V is the replacement of the vector

potential Vm by a three-form Cnpqα . In order to find correct kinetic terms, the analog of the chiral

field strength superfield Wα for a vector multiplet is replaced by the chiral superfield [53]

Tα = −1

4
D̄2Uα , Tα(ym, θ) = Mα +

√
2θλα + θ2(Dα + iFα) , (11)

with Fα defined as in (3). The definition (11) is invariant under the gauge transformation Uα →

Uα − Lα, where Lα are linear multiplets. Correspondingly, lagrangians expressed as a function of

Tα will have this gauge freedom. One can therefore choose a gauge in which Bα = χα = 0 in (10)

and the physical fields are complex scalars Mα and Weyl fermions λα.

Notice that for the purpose of finding the correct on-shell lagrangian and scalar potential, there

is a simpler formulation in which Tα are treated as standard chiral superfields with Dα + iFα as

auxiliary fields, no boundary terms are included, but the superpotential of the theory is changed

according to [57–59]

W (φi, Tα)→W ′(φi, Tα) = W (φi, Sα) + icαTα , (12)

where cα are the quantized fluxes. The linear terms in the superpotential shift linearly the auxiliary

fields. In supergravity, the (F-term) scalar potential can be written as (MP = 1 in what follows)

V = Kαβ̄F
αF β̄ − 3m2

3/2 , where Fα = e
K
2 Kαβ̄DβW . (13)

The linear flux terms shift therefore the auxiliary fields according to

Fα = e
K
2 Kαβ̄DβW ′ = e

K
2 Kαβ̄DβW − ie

K
2 Kαγ̄(c̄γ̄ +Kγ̄ T̄β̄ c̄β̄) , (14)

leading to a scanning of the cosmological constant.

B. Soft terms in supergravity

We start from a supergravity lagrangian containing hidden sector (moduli) fields Tα, whose

auxiliary fields contain the four-form fluxes we introduced previously, coupled to matter fields
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called Qi in what follows. The Kahler potential and superpotential are defined by

K = K̂(Tα, T̄α) +Kij̄(Tα, T̄α)QiQ̄j̄ +
1

2

(
Zij(Tα, T̄α)QiQj + h.c.

)
,

W = Ŵ (Tα) +
1

2
µ̃ij(Tα)QiQj +

1

3
Ỹijk(Tα)QiQjQk + · · · . (15)

The low-energy softly broken supersymmetric lagrangian is defined by the superpotential and soft

scalar potential

Weff =
1

2
µijQ

iQj +
1

3
YijkQ

iQjQk ,

Lsoft = −m2
ij̄q

iqj̄ −
(

1

2
Bijq

iqj +
1

3
Aijkq

iqjqk +
1

2
Maλaλa + h.c.

)
, (16)

where Yijk = eK/2Ỹijk. After imposing the cancellation of the cosmological constant, the various

soft terms and the supersymmetric masses are given by [11–13, 60, 61]

Ma =
1

2
g2
aF

α∂αfa ,

m2
ij̄ = m2

3/2Kij̄ − FαF β̄Rij̄αβ̄ , where Rij̄αβ̄ = ∂α∂β̄Kij̄ −Kmn̄∂αKin̄∂β̄Kmj̄ ,

Aijk = (m3/2 − Fα∂α logm3/2)Yijk + Fα∂αYijk − 3FαΓlα(iYljk) , (17)

where we have introduced also the Kahler connexion

ΓKIJ = KKL̄∂IKJL̄ . (18)

Bij terms are not displayed since they will not be scanned in what follows. Similarly the µ term is

determined by the radiative electroweak symmetry breaking conditions at the weak scale.

C. Scanning soft terms and gravitino mass

Taking into account the scanning of auxiliary fields from four-forms fluxes, in what follows we

use the simplified scanning

Fα = mαm̃MP , (19)

where mα are integers and m̃MP is the quantum of scanning. Taking into account the cancellation

of the cosmological constant, and setting the matter fields wavefunctions in a canonical form, the
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formulae for the scanning will be taken to be

m3/2 = m̃(g0 +
∑
α

gαmα) , m2
3/2 =

1

3

N∑
α=1

F 2
α

M2
P

=
1

3
m̃2
∑
α

m2
α ,

(m2
0)ij̄ = m2

3/2δij̄ + m̃2
∑
α

dα,ij̄m
2
α ,

Ma
1/2 = m̃

∑
α

saαmα ,

Aijk = m3/2yijk + m̃
∑
α

aα,ijkmα , (20)

where α = 1 · · ·N , −M ≤ mα ≤ M (integers), −d0 ≤ aα, dα, sα, gα ≤ d0 (continuous). These last

couplings are taking to be continuous in order to take into account the couplings of the hidden

sector fields with the MSSM ones, which are dependent on the hidden sector vev’s and interactions.

Note that the soft terms defined above are in the so-called super CKM basis which is important

for the flavor discussion below.

The scanning of the gravitino mass, combined with the cancellation of the cosmological constant

(the Deser-Zumino relation) implies a constrained among the fluxes

g2
0 + 2g0

∑
α

gαmα +
∑
α,β

gαgβmαmβ =
1

3

∑
α

m2
α . (21)

Taking the average value of (21) this implies in particular

g2
0 =

∑
α

(1/3− g2
α)m2

α '
N

9
(1− d2

0)M2 , m3/2 = m̃g0 ∼ O(
√
N)m̃ . (22)

where we have used the large flux limit M � 1. We can also compute

m2
3/2 =

m̃2

3

∑
α

m2
α ∼

1

9
NM2m̃2 , (23)

The mean values of the soft terms are therefore computed to be

(m2
0)ij̄ = m2

3/2δij̄ , Aijk = m3/2yijk, Ma
1/2 = 0 . (24)

There are two type of averages : one over the flux quanta mα and the other over the (continuous)

couplings dα. Being independent variables, one can use formulae of the type

f1(dα)f2(mα) = f1(dα)× f2(mα) =
1

2d0

∫ d0

−d0
dxf1(x) × 1

2M + 1

M∑
mα=−M

f2(mα) . (25)

By using such formulae, one finds

(∆m2
0)2 = (∆m2

3/2)2 + m̃4
∑
α

d2
αm

4
α '

NM4

15
m̃4

(
4

27
+ d2

0

)
,

where (∆m2
3/2)2 =

m̃4

9

∑
α

[m4
α − (m2

α)2] . (26)
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Consequently, one finds

(δij)LL/RR ≡
δm2

0

m2
0

' 1√
N

√
1

5

(
4 + 27d2

0

)
. (27)

The off-diagonal entries, which have zero average values, are governed by the standard deviation

δm2
0. One concludes then that they are suppressed compared to the diagonal entries. For a large

number of hidden sector N ≥ 106, the flavor problem of MSSM is therefore solved. While this

discussion is considering the flavor violating entries at the supergravity scale, in practice at the

weak scale, as we will see in the next section, N ∼ 100 would be sufficient to absolve strong

constraints from ∆mK . For the constraint from µ→ e+ γ, however, N ∼ 100 is not sufficient and

a larger value of N should be chosen.

It should be noted however that the above discussion is pertaining to definition of δij at the

high scale. At the weak scale, for the leptonic sector (in the absence of right handed neutrinos),

there is no significant change in the mean values, where as for the hadronic (squark) sector, due

to the large gluino contributions to the squark masses in RG running, the δq,u,dij would be further

suppressed by a factor from 7 up to an order of magnitude.

For the gaugino masses, one finds

∆M2
1/2 = m̃2

∑
α

s2
αm

2
α ' Nm̃2d

2
0M

2

9
. (28)

Therefore one finds the standard deviation

∆M1/2 = d0

√
m2

3/2 . (29)

For A-terms, let us consider for definiteness

Au = m3/2y
u
D + m̃

∑
α

auαmα , (30)

where in the mass basis for fermions and scalar-fermion-gaugino couplings are diagonal, yuD is

diagonal in the flavor space. If auα ∼ yuãα, then one expects the flavor violation in this case to be

under control. However, if this is not the case, we can use the same arguments as above. One then

finds the standard deviation

(∆Au)2 = m2
3/2(yuD)2 + m̃2

∑
α

(auα)2m2
α −

(
m3/2y

u
D

)2
' NM2

9
m̃2d2

0

(
1 + (yuD)2

)
. (31)
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The A-terms are such that additional flavor violation (other than from Yukawa couplings) would

be from the variance of the distribution. Thus we have

(δuij)LR/RL ≡
∆Auvu

m2
0

∼ 3d0vu√
Nm̃M

. (32)

From the above it is clear that, similarly to the case of scalar masses, there is a suppression 1/
√
N

coming from the large number of hidden-sector fields.

Notice that our starting expressions for soft terms (17) and the scanning we performed above

is different compared to one based on a naive spurion-type parameterization of soft terms:

N∑
α=1

saα
MP

∫
d2θTαW

aW a → Ma
1/2 =

1

MP

N∑
α=1

saαFTα , (33)

N∑
α=1

dα,ij
M2
P

∫
d4θT †αTαQ

†
iQj → m2

f̃ij
=

1

M2
P

N∑
α=1

dα,ijF
†
Tα
FTα , (34)

N∑
α=1

aα,ijk
MP

∫
d2θTαQiQjQk → Aijk =

1

MP

N∑
α=1

aα,ijkFTα , (35)

N∑
α=1

bα
M2
P

∫
d4θTαT

†
αHuHd → BHuHd =

1

M2
P

N∑
α=1

bαFTαF
†
Tα

, (36)

N∑
α=1

qα
MP

∫
d4θT †αHuHd → µ =

1

MP

N∑
α=1

qαF
†
Tα

. (37)

The difference is that in the SUGRA expressions (17) the flavor-blind contributions proportional

to m2
3/2 scan coherently (add up) in soft terms, whereas the other contributions, which are similar

to the global SUSY expressions (37), being multiplied by random couplings scanned around zero,

average to zero. A similar scan we performed above, but starting from (37) would not lead a

suppression of FCNC effects, unlike our scan above.

IV. NUMERICAL ANALYSIS

Using eqs.(20) as boundary conditions at the high scale, we perform a numerical analysis of

the resulting soft spectrum at the weak scale and studied the phenomenology. For the numerical

analysis, we have considered N to be 100, with mα varying discretely and randomly from -100 to
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100. We explored taking m̃ to be 20 GeV. The maximum value of m3/2 is roughly about 6 TeV.

The parameters dα, sα, aα, gα are varied between {-1/4,1/4}. A larger value for the d0 parameters

would lead to significant number of the points ruled out due to tachyonic masses at the weak scale.

We believe that larger values d0 ∼ O(1) would not significantly alter the results presented here.

Finally we set tanβ = 10. We show that these values of N are enough to demonstrate the 1/
√
N

suppression on the flavor violating off-diagonal entries. We use Suseflav [62] for computation of

the spectrum and computing the flavor observables.

(a) (b)

FIG. 1: A scatter plot showing the variation of maximum value of δij of the type LL/RR with

respect to number of hidden sectors, N at the high scale (left side). A histogram of the δij is

presented. As expected the mean is very close to zero and the variance is as computed in the text.

The variation of the off-diagonal flavor entries in the sfermion mass matrices is presented in

Figs.(1(a)) and (1(b)). In Fig.(1(a)) we present the scatter plot of a typical δij as defined in

eq.(27). From the plot it is clear that the δij does fall off as 1/
√
N . The second figure show the

same data in terms of a histogram, where as we can see the mean value is close to zero and the

variance is as expected from the formulae in eqs.(26,27).

The high scale distributions are then evolved to the weak scale where the full soft supersym-

metric spectrum is computed. Radiative electroweak symmetry breaking conditions are imposed.

Experimental constraints from LHC and the Higgs mass are also taken in consideration. As is

standard practice we consider one δij at a time. In the present letter, we consider the two of

the strongest constraints, i.e. the mass difference between the neutral K-mesons, ∆MK and the

leptonic rare decay µ → e + γ. A more detailed analysis with rest of the flavor processes will be
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presented elsewhere [63].

(a) (b)

FIG. 2: Regions of the parameter space which satisfy the bounds from LHC, Higgs mass and other

phenomenological bounds. We have chosen N to be 100 and m̃ to be 20 GeV. The distribution of

δ values is as per the Eqs. (27) and (32). The left side plot is for LL type mass insertion whereas

the right hand side is for LR type mass insertion. All points satisfy the experimental constraint

from ∆MK .

At the weak scale, the diagonal entries would be enhanced due to renormalisation group equation

running, while the inter-generational entries of the squark matrices would only receive corrections

suppressed by the product of Yukawa couplings and CKM angles [64]. Due to this the δij would

be further suppressed roughly by an additional factor which is proportional to the gluino mass

corrections and roughly independent of the number of hidden sector fields. In figs. 2(a),2(b) we

present the regions of the parameter space allowed by ∆Mk constraint as a function of the gluino

mass. It should be noted here that we have taken the weak scale values of the mass insertions of

eq.(27), where all the parameters appearing on the RHS are computed at the weak scale. The left

figure is for the LL mass insertion where as the right figure is for the LR mass insertion. As can

be seen from the figure, all the points lie below the experimentally measured value of ∆MK [65].

The spectrum at the weak scale for the first two generations is about 5-6 TeV and the gluino mass

is shown in the figure after taking into consideration the limits from LHC. For this spectrum and

a diluted δ . 10−1 the constraint from ∆MK is satisfied.
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(a) (b)

FIG. 3: Regions of the parameter space constrained by the leptonic rare decay µ→ e+γ for (δ12)LL

(on the left) and for (δ12)LR (on the right). The horizontal (red) line is the present experimental

limit from MEG experiment. As can be seen, a large part of the parameter space survives the

experimental limit for N=100.

The leptonic rare process µ → e + γ is however more strongly constraining for the same set

of parameters, i.e, N = 100 and m̃ = 20 GeV. In Figs. 3(a) and 3(b) we present results of

the scanning as a function of the δ parameter and µ. The left figure is for a LL type mass

insertion whereas the right figure is for RR type mass insertion. As one can see from the figures,

a significantly large region of the parameter space is still compatible with the latest result from

the MEG experiment[66], but the constraints from LR are significantly stronger, as expected. A

larger N value & 105 would lead to complete dilution of the δ.

Finally we have also looked for regions with neutralino dark matter which could lead to correct

relic density while satisfying the constraints from direct detection and flavour. As can be seen from

Fig 4(a), there are two branches which satisfy relic density as well as the direct detection result.

The first branch has dark matter masses . 100 GeV and the lightest neutralino is a pure bino.

In the second branch the neutralino has a region in which it is a pure bino and another region

where there is a significant admixture from wino and higgsino. The regions where the neutralino

are pure bino have significant co-annihilations with the chargino as can be seen from the Fig 4(b).

These regions arise due to the non-universality in the gaugino masses at the high scale due to the

sα parameters. On the other hand, regions with bino-higgsino mixing arise due to cancellations

in M1/2 in contributions from various fluxes of different spurion fields. As the charges/fluxes mα
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take both signs, for significantly large N there is an enhanced probability of cancellations between

the charges leading to small M1/2 at the high scale. We numerically found that this probability is

significantly high for N & 30. Due to the universal nature of the gravitino mass, such cancellations

do not occur in the soft scalar mass terms. A low value for µ is very probable in these regions

leading to significant bino-higgsino mixing. Together they lead to regions with physically viable

regions of neutralino dark matter. More details of these regions will be presented elsewhere [63].

(a) (b)

FIG. 4: Regions of the parameter space which satisfy the relic density and the direct detection

results from Xenon 1T. On the left we have shown the spin independent cross-section with respect

to the lightest neutralino mass and the Bino component of the lightest neutralino. On the right,

we show the same, with the mass difference between chargino and Bino.

V. CONCLUSIONS AND OUTLOOK

We presented a novel solution to the supersymmetric flavor problem in the presence of large

number of hidden sector (spurion) fields. Such a scenario naturally arises in the string landscape.

The result does not depend on the explicit details of the string construction, but crucially on the

form of the soft terms in the supergravity potential in the presence of a large number of hidden

sector fields, eqs.(20). They naturally lead to a suppression of the flavour violating entries as

1/
√
N . At the weak scale, there is further suppression due to the renormalisation group running,

especially for the hadronic mass insertions. We have shown that numerically N = 100 is sufficient

to remove the constraints from ∆MK , whereas a much larger N would be required to eliminate

completely the constraints on the leptonic sector from µ→ e+ γ. Conversely, a discovery of such
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leptonic processes in forthcoming experiments could be a smoking gun of such a scenario. The four

fluxes contribution to the soft terms presented here provides an interesting framework to further

study the implications for low energy phenomenology.
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