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Abstract

We consider four-dimensional quadratic gravity coupled to infinite towers of free
massive scalar fields, Weyl fermions and vector bosons. We find that for specific
numbers of towers, finite cosmological and Newton constants are induced in the
1-loop effective action. This is derived both in Adler’s approach and by using
the heat kernel method, which yield identical results. If the infinite number of
massive states may be regarded as Kaluza–Klein modes arising from fields in
higher dimensions, there are no Kaluza–Klein states associated with the four-
dimensional graviton. Hence gravity is intrinsically four-dimensional.
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1 Introduction

Induced gravity is an old proposal [1–12] according to which gravity is not fundamental but

is rather induced by quantum effects from the matter content of the universe. In other words,

the gravitational dynamics and the associated curvature of spacetime are emerging phenom-

ena, a mean field approximation of the underlying microscopic degrees of freedom. In this

approach, Einstein gravity is similar to fluid dynamics which is a macroscopic approximation

of Bose–Einstein condensates.

In the induced gravity framework, one assumes a prescribed but not dynamical back-

ground on which matter fields are living. The latter are scalars, spinors and vectors coupled

to the spacetime metric, which is clearly not dynamical as it appears with no derivatives. For

spinors in particular, one also regards the spin connection of the background non dynamical

as well. However, although the classical action does not contain derivatives of the metric,

this is not true at the quantum level. Indeed, the cosmological and Einstein-Hilbert terms

of General Relativity are induced by loop corrections. This is the induced gravity proposal:

The dynamics of gravity emerges from the quantum fluctuations of matter fields. However,

a minimum requirement in this approach is that the induced Einstein term is finite. Other-

wise, a tree-level Einstein counterterm would be needed to absorb the infinities, which would

spoil the whole picture from the outset.

In the present work, we first consider the above approach within the formalism of Adler [2–

6], where the effective Einstein action parameters arise by integrating out massive matter

fields. The expressions of the cosmological and Newton constants are given by1

1

8π

Λind

Gind

=− 1

4
〈T (0)〉 ,

1

8πGind

=− i

48

∫
d4x x2 〈T̃ (x)T̃ (0)〉 ,

(1.1)

where T is the trace of the stress-energy tensor of the matter fields. Moreover, Õ(x) = O(x)−
〈O(x)〉 is the variation of any observable O with respect to its vacuum expectation value, and

all correlation functions are computed in Minkowski spacetime. We show that a particular

choice of matter content yields finite Λind and Gind. The spectrum is naturally interpreted

from a higher dimensional perspective. We assume a (4 + n)-dimensional spacetime of the
1Our choice of spacetime signature is (−,+,+,+).
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form M4×S1× · · · ×S1, where the n circles have radii Ri, i ∈ {1, . . . , n}, and M4 is a four-

dimensional curved spacetime. The matter fields living in M4 are the Kaluza-Klein (KK)

modes of free fields in 4+n dimensions. Notice that Adler’s approach has also been employed

in the DGP model [13], where a localized four-dimensional Einstein-Hilbert action is induced

on a brane sitting at a point of a fifth infinite dimension. However, a crucial difference in

our setup is that gravity is only four-dimensional, which means that the graviton propagates

in four dimensions and cannot see the extra directions. This is at odds with the usual

brane-world scenario, where the opposite happens, namely that the graviton lives in higher

dimension, while the matter fields are localized on a four-dimensional subspace. In the latter

case, the weakness of gravity with respect to the other interactions is a consequence of the

presence of extra space available for the graviton propagation.

However, in order to justify that the induced gravity action is to be extremized with

respect to the metric, it may be unavoidable to treat the graviton as a quantum field.

Another concern is that higher derivative terms of the metric are also induced by the loops

of matter fields. This is more easily seen by using heat kernel methods [1, 14–22] to derive

the 1-PI effective action. All of these terms turn out to be finite, except those with four

derivatives. Hence, counterterms of the same form should be introduced at tree level. If

the metric is to be quantized, then the general picture falls within the framework of the

so-called Quadratic Gravity [23–27]. Such theories are renormalizable, even in presence of

matter. In that case, renormalized cosmological and Newton constants are generated but not

predictable, as follows from their running under the renormalization group flow. However,

for infinite towers of matters states, we find that the Einstein action parameters Λind and

Gind remain predictable. This is achieved at the semiclassical level for the gravitational

degrees of freedom and still holds at the 1-loop level. Whether this statement continues to

be true at higher loop order of the gravity sector is a question that is beyond the scope of

the present work.

In Sect. 2, treating the metric as a classical background, we derive in the context of Adler’s

formalism the finite cosmological and Newton constants that are induced by integrating out

infinite towers of free real scalars, Weyl fermions and vector bosons. In Sect. 3, we show that

including non-dynamical or auxiliary fields in the classical theory does not alter the final

result for the effective Einstein action parameters. In Sect. 4, we argue that the gravitational
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degrees of freedom should be quantized in the context of Quadratic Gravity. In presence

of towers of matter fields, finiteness and predictability of all gravitational terms is ensured

at the 1-loop level, except for the Ricci square and Weyl square terms, which are running.

In Sect. 5, we summarize our results and sketch how they may accommodate the Standard

Model. However, more work for establishing whether this can be achieved is required.

2 Induced Einstein action

In order to derive induced cosmological and gravitational constants Λind and Gind in four

spacetime dimensions, we consider quantum free fields living in a given 4 + n dimensional

background manifold, where n ≥ 1 space-like directions are circles of constant radii Ri, and

the four-dimensional Lorentzian metric depends on the four-dimensional coordinates only,

gµν(x
λ). The higher dimensional origin of the degrees of freedom translates into infinite

towers of Kaluza-Klein modes. In the following, we apply Adler’s results [2–6] given in

Eq. (1.1) to towers of real scalar fields, Weyl fermions and vector fields. It is by choosing

suitably the initial spectrum in 4 + n dimensions that a finite four-dimensional theory for

gravity is obtained at the two-derivative level.

2.1 Real scalar field

In a four-dimensional spacetime with metric gµν of signature (−,+,+,+), the action of the

KK states arising from a real scalar free field in 4 + n dimensions is

Sφ = −
∫

d4x
√
−g 1

2

∑
~m

[
gµν∂µφ~m∂νφ~m +M2

~mφ
2
~m

]
, (2.1)

where ~m ≡ (m4, . . . ,m3+n) ∈ Zn labels the mode φ~m of squared mass

M~m( ~Q)2 =
3+n∑
i=4

(
mi +Qi

Ri

)2

. (2.2)

In the above formula, we include a shift of the momenta by a non-trivial real vector ~Q, so

that none of the KK modes is massless. In practice, this means that we impose ~Q /∈ Zn.
In that case, all states can be integrated out and a meaningful effective theory is obtained.

Note that such a shift is allowed once a pair of real scalar fields φ, φ̃ in higher dimensions is

3



combined into a complex scalar Φ ≡ (φ+ iφ̃)/
√

2, and that non-trivial boundary conditions

are imposed at least along one compact direction. To be specific, we have

Φ(xµ, ~x) =
1√∏
i 2πRi

∑
~m

Φ~m(xµ) e
i
∑
j

mj+Qj
Rj

xj

, (2.3)

where Φ~m ≡ (φ~m + iφ̃~m)/
√

2 and ~Q is a global U(1)n charge vector. The trace of the

stress-energy tensor reads

gµνT φµν ≡
−2√
−g

gµν
δSφ
δgµν

= −
∑
~m

[
gµν∂µφ~m∂νφ~m + 2M2

~mφ
2
~m

]
. (2.4)

What is required for deriving the induced gravity action is the above expression in Minkowski

spacetime (gµν = ηµν),

Tφ(x) = −
∑
~m

[
∂µφ~m∂

µφ~m + 2M2
~mφ

2
~m

]
, (2.5)

as well as the two-point functions in flat space

〈φ~m(x)φ~m′(y)〉 = δ~m,~m′ ∆~m(x−y) , where ∆~m(x−y) = −i
∫

d4k

(2π)4

eik·(x−y)

k2 +M2
~m − iε

. (2.6)

The contribution to the cosmological constant arising by integrating out the scalars φ~m
is proportional to the vacuum expectation value of Tφ, which is2

〈Tφ(0)〉 =
∑
~m

[
iδ(4)(0)−M2

~m ∆~m(0)
]
. (2.7)

Note that this expression is only formal for two reasons. On the one hand, the Dirac

distribution at x = 0, which arises for each mode ~m, yields an infinite constant. However,

the latter being mass- or radii-independent, it is free of any physical content and, as will

be seen in Sect. 3, can be removed by adjusting the content of non-dynamical (for example

auxiliary) fields in the full theory. On the other hand, each Feynman propagator ∆~m at

x = 0 leads to an UV quadratic divergence. As detailed in the Appendix, the latter can be

dealt with by adopting a prescription inspired by string theory compactified on tori:

• We first apply a Wick rotation and switch to first quantized formalism by introducing

a Schwinger parameter t for the propagator. The key point is to perform the Schwinger

integral in last.
2We have −i(2π)4δ(4)(0) = (2π)4δ(4)(0E) = V4, where 0E is the origin of the four-dimensional Euclidean

spacetime of infinite volume V4.
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• The Gaussian integral over the Euclidean momentum kE is done first.

• A Poisson summation is applied on the discrete KK sum over ~m.

• In this form, all but one term (associated with the UV divergence) of the discrete sum

can be integrated term by term over t.

In the end, the contribution to the induced cosmological constant given in Eq. (1.1) and

arising from the KK tower of scalar fields takes the form

1

8π

Λind

Gind

∣∣∣∣
φ

= − i
4

∑
~m

δ(4)(0) + I0( ~Q) , (2.8)

where we denote

I0( ~Q) = −
Γ
(
2 + n

2

)
32π6+n

2

( 3+n∏
i=4

Ri

)∑
~̀

e2iπ ~Q·~̀(∑
j `

2
jR

2
j

)2+n
2

, (2.9)

and where ~̀≡ (`4, . . . , `3+n) ∈ Zn. As mentioned above, the UV divergence manifests itself

as the term ~̀ = ~0. As will be shown in Sect. 2.4, it is the interplay between different KK

towers of states that will remove all ill-defined contributions ~̀= ~0.

The correlator to be computed for deriving the induced gravitational constant is

〈T̃φ(x)T̃φ(0)〉 = 2
∑
~m

[
∂µ∂ν∆~m(x) ∂µ∂ν∆~m(x) + 4M2

~m∂µ∆~m(x) ∂µ∆~m(x) + 4M4
~m∆~m(x)2

]
.

(2.10)

From the definition (1.1), we obtain

1

8πGind

∣∣∣∣
φ

= I1( ~Q) + I2( ~Q) + I3( ~Q) , (2.11)

where we have defined

I1( ~Q) =
i

24 (2π)8

∫
d4x x2

∑
~m

∫
d4p d4k

(p · k)2 ei(p+k)·x(
p2 +M2

~m − iε
)(
k2 +M2

~m − iε
) ,

I2( ~Q) =− i

6 (2π)8

∫
d4x x2

∑
~m

M2
~m

∫
d4p d4k

p · k ei(p+k)·x(
p2 +M2

~m − iε
)(
k2 +M2

~m − iε
) ,

I3( ~Q) =
i

6 (2π)8

∫
d4x x2

∑
~m

M4
~m

∫
d4p d4k

ei(p+k)·x(
p2 +M2

~m − iε
)(
k2 +M2

~m − iε
) .

(2.12)

The above quantities, can be computed by following the steps listed above for the cosmo-

logical constant, up to the additional integration over the Euclidean spacetime variable xE.
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As seen in the Appendix, after integration over the Euclidean momenta pE, kE, the integral

over xE turns out to be Gaussian and can therefore be trivially computed at this stage. The

final expressions take the forms

I1( ~Q) = −
Γ
(
1 + n

2

)
32π4+n

2

( 3+n∏
i=4

Ri

)∑
~̀

e2iπ ~Q·~̀(∑
j `

2
jR

2
j

)1+n
2

, I2( ~Q) = −4

3
I1( ~Q) , I3( ~Q) = 0 ,

(2.13)

where, as before, the divergent contributions ~̀ = ~0 will cancel out with those arising from

other KK towers. Hence, we obtain

1

8πGind

∣∣∣∣
φ

= −1

3
I1( ~Q) . (2.14)

2.2 Weyl fermion

Let us proceed with the analogous contributions to the Einstein gravity action induced by

integrated out massive fermions. To be specific, we consider a KK tower of four-dimensional

Weyl fermions ψ~m of masses M~m and that are free. Their action can be written as

Sψ =

∫
d4x
√
−g 1

2

∑
~m

[
i∇µψ̄~mσ̄

µψ~m − iψ̄~mσ̄µ∇µψ~m −M~m

(
ψ~mψ~m + ψ̄~mψ̄~m

)]
, (2.15)

where our conventions can be found in Ref. [28]. For a Weyl fermion ψ, which contains two

degrees of freedom, we denote its complex conjugate by ψ̄, and define ψψ = ψαψα, ψ̄ψ̄ =

ψ̄α̇ψ̄
α̇, where spinorial indices are raised and lowered with Lorentz invariant antisymmetric

tensors εαβ, εαβ or εα̇β̇, εα̇β̇. Moreover, σµαα̇ and σ̄µα̇α are 2 × 2 matrices that reduce in

Minkowski spacetime to those given in Appendix A of Ref. [28]. The stress-energy tensor

that appears in Eq. (1.1) is the symmetric Belifante tensor used in general relativity. Its

trace,

gµνTψµν ≡
ecµ√
−g

gµν
δSψ
δEν

c

, (2.16)

is defined in terms of the vielbein eaµ and inverse vielbein Eµ
a. In Minkowski spacetime

(eaµ = δaµ), the above trace reads

Tψ(x) =
∑
~m

[
3i

2

(
∂µψ̄~mσ̄

µψ~m − ψ̄~mσ̄µ∂µψ~m
)
− 2M~m

(
ψ~mψ~m + ψ̄~mψ̄~m

)]
, (2.17)
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while the two-point functions are

〈ψ~mα(x)ψβ~m′(y)〉 = δ~m~m′ δβαM~m ∆~m(x− y) ,

〈ψ̄α̇~m(x)ψ̄~m′β̇(y)〉 = δ~m~m′ δα̇
β̇
M~m ∆~m(x− y) ,

〈ψ~mα(x)ψ̄m′β̇(y)〉 = − iδ~m~m′ σµ
αβ̇
∂µ∆~m(x− y) .

(2.18)

The correlator involved in the cosmological term takes the following form,

〈Tψ(0)〉 =
∑
~m

[
−6iδ(4)(0) + 2M2

~m ∆~m(0)
]
, (2.19)

which yields
1

8π

Λind

Gind

∣∣∣∣
ψ

=
3i

2

∑
~m

δ(4)(0)− 2I0( ~Q) . (2.20)

Some remarks are in order:

• The physical contribution −2I0( ~Q), which is mass- or radii-dependent, is twice the

opposite of that found for a KK tower of real scalar fields. This is consistent with

the fact that the vacuum energies arising from quantum fluctuations of bosonic and

fermionic degrees of freedoms are opposite.

• On the contrary, the Dirac distribution terms do not respect this rule, suggesting again

that they are unphysical.

• Actually, I0( ~Q) reproduces exactly the expression of the 1-loop Coleman–Weinberg

vacuum energy associated with a KK tower of degrees of freedom (see Sect. 4).

To derive the contribution to the induced gravitational constant, we consider the two-

point function

〈T̃ψ(x)T̃ψ(0)〉 =
∑
~m

[
− 9
(
�∆~m(x)

)2
+ 9∂µ∆~m(x)∂µ�∆~m(x) + 39M2

~m∆~m(x)�∆~m(x)

− 7M2
~m∂µ∆~m(x)∂µ∆~m(x)− 32M4

~m∆~m(x)2
]
. (2.21)

The latter yields

1

8πGind

∣∣∣∣
ψ

= I4( ~Q) + I5( ~Q) + I6( ~Q)− 7

8
I2( ~Q)− 4 I3( ~Q) , (2.22)

7



which involves I2( ~Q) and I3( ~Q) computed before, as well as similar quantities defined as

I4( ~Q) =− 3i

16 (2π)8

∫
d4x x2

∑
~m

∫
d4p d4k

p2 k2 ei(p+k)·x(
p2 +M2

~m − iε
)(
k2 +M2

~m − iε
) ,

I5( ~Q) =
3i

16 (2π)8

∫
d4x x2

∑
~m

∫
d4p d4k

p2 (p · k) ei(p+k)·x(
p2 +M2

~m − iε
)(
k2 +M2

~m − iε
) ,

I6( ~Q) =− 13i

16 (2π)8

∫
d4x x2

∑
~m

M2
~m

∫
d4p d4k

p2 ei(p+k)·x(
p2 +M2

~m − iε
)(
k2 +M2

~m − iε
) .

(2.23)

Proceeding as before, the latter are found to be

I4( ~Q) = 0 , I5( ~Q) = −3

2
I1( ~Q) , I6( ~Q) = 0 , (2.24)

which leads to
1

8πGind

∣∣∣∣
ψ

= −1

3
I1( ~Q) . (2.25)

2.3 Vector field

The last contribution to the induced gravity action we consider is that arising by integrating

out a KK tower of vector bosons Aµ~m of masses M~m. Defining the field strength F~mµν =

∂µA~mν − ∂νA~mµ, the action of the massive spin-1 fields is

SA = −
∫

d4x
√
−g
∑
~m

[1

4
gµρgνσF~mµνF~mρσ +

1

2
M2

~m g
µνA~mµA~mν

]
, (2.26)

from which the trace of the stress-energy tensor is found to be

gµνTAµν ≡
−2√
−g

gµν
δSA
δgµν

= −
∑
~m

M2
~m g

µνA~mµA~mν . (2.27)

In Minkowski space, the latter reduces to

TA(x) = −
∑
~m

M2
~mA

µ
~mA~mµ , (2.28)

while the Feynman propagator in unitary gauge is

〈A~mµ(x)A~m′ν(y)〉 = δ~m~m′

(
ηµν −

∂µ∂ν
M2

~m

)
∆~m(x− y) . (2.29)

The vacuum expectation value of the trace reads

〈TA(0)〉 =
∑
~m

[
iδ(4)(0)− 3M2

~m ∆~m(0)
]
, (2.30)

8



where the factor 3 is the number of physical degrees of freedom of a massive vector boson in

unitary gauge. Therefore, the contribution to the cosmological constant is

1

8π

Λind

Gind

∣∣∣∣
A

= − i
4

∑
~m

δ(4)(0) + 3I0( ~Q) . (2.31)

Moreover, the two-point function of T̃A is

〈T̃A(x)T̃A(0)〉 = 2
∑
~m

[
∂µ∂ν∆~m(x) ∂µ∂ν∆~m(x)− 2M2

~m∆~m(x)∂2∆~m(x) + 4M4
~m∆~m(x)2

]
,

(2.32)

which yields
1

8πGind

∣∣∣∣
A

= I1( ~Q)− 4

39
I6( ~Q) + I3( ~Q)

= I1( ~Q) .

(2.33)

The pair of ghosts associated with each KK vector boson of internal momentum ~m must

also be taken into account. Because in unitary gauge their masses are

ξM2
~m =

∑
i

(
mi +Qi

Ri/
√
ξ

)2

, where ξ → +∞ , (2.34)

their contributions to the induced Einstein action can be deduced from those of a tower of

complex scalar fields, in the case of vanishing rescaled radii, Ri/
√
ξ → 0. Defining Tghosts to

be the trace of the stress-energy tensor of the KK towers of ghosts in Minkowski space, we

find from Eqs (2.7) and (2.10) that

〈Tghosts(0)〉 = −4
∑
~m

iδ(4)(0) ,

〈T̃ghosts(x)T̃ghosts(0)〉 = −16
∑
~m

[
M4

~m∆~m(x)2
]∣∣
Ri/
√
ξ
,

(2.35)

where we have added overall minus signs arising from the anticommuting nature of the fields.

As a result, the contributions of the ghosts to the gravitational constants are

1

8π

Λind

Gind

∣∣∣∣
ghosts

= i
∑
~m

δ(4)(0) ,

1

8πGind

∣∣∣∣
ghosts

= − 2I3( ~Q)
∣∣
Ri/
√
ξ

= 0 .

(2.36)
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2.4 Cancellation of UV divergences

For each KK tower of spin 0, 1
2
or 1 fields which are integrated out, the induced cosmological

term contains an infinite contribution proportional to i
∑

~m δ
(4)(0) that will be treated in

the next section. For the time being, we focus on the quadratic and quartic UV divergences,

which appear respectively in the expressions of the cosmological and Newtonian constants.

In our prescription, which is based on first quantized formalism, these pathologies show up

via infinite contributions for ~̀= ~0. Our goal is to determine the spectrum in 4+n dimensions

for which these divergences cancel out.

Let us consider Nφ, Nψ, NA KK towers of real scalars, Weyl fermions and vector bosons

(accompanied with their pairs of ghosts), and their associated charges ~Qu /∈ Zn, u =

1, . . . , Nψ + Nψ + NA. Once integrated out, the total constants appearing in the effective

action are

1

8π

Λind

Gind

=

Nφ∑
u=1

I0( ~Qu)− 2

Nφ+Nψ∑
u=Nφ+1

I0( ~Qu) + 3

Nφ+Nψ+NA∑
u=Nψ+Nψ+1

I0( ~Qu)

−
(
NΦ − 6NΨ +NA − 4NA

) i
4

∑
~m

δ(4)(0) ,

1

8πGind

=− 1

3

Nφ∑
u=1

I1( ~Qu)−
1

3

Nφ+Nψ∑
u=Nφ+1

I1( ~Qu) +

Nφ+Nψ+NA∑
u=Nψ+Nψ+1

I1( ~Qu) .

(2.37)

The key point is that all contributions ~̀= ~0 appearing in the quantities I0( ~Qu) and I1( ~Qu)

are charge independent. Hence, for these terms to cancel, is is necessary and sufficient to

satisfy the conditions

Nφ − 2Nψ + 3NA = 0 , −1

3
Nφ −

1

3
Nψ +NA = 0 , (2.38)

whose solutions are

(Nφ, Nψ, NA) = (1, 2, 1)N, N ∈ N . (2.39)

Notice that this result is irrespective to the choice of Nφ+Nψ +NA = 4N charge vectors ~Qu.

Therefore, there is no symmetry condition to assume between the KK towers of free fields

for the effective Einstein Lagrangian to be finite. However, as mentioned at the beginning of

Sect. 2, for the momentum shift ~Q to be interpreted as a global U(1)n charge vector in 4 +n

dimensions, we may impose N to be even and have only pairs of KK towers with identical

charges.
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To illustrate the above results, let us present some simple cases of charge configurations.

The simplest example we may consider is that of a universal value of the charges, namely
~Qu ≡ ~Q, u = 1, . . . , 4N . In this case, at each mass level M~m, there is a vector boson, a

real scalar and two Weyl fermions, which correspond to the field content of a massive vector

multiplet of an exact N4 = 1 supersymmetry. However, the conditions for cancelling the
~̀ = ~0 terms imply all other contributions ~̀ 6= ~0 to vanish as well, so that no gravitational

action (up to the Dirac distribution terms) is induced in this case,

1

8π

Λind

Gind

= N
(
1− 2× 2 + 3

)
I0( ~Q) +N

7i

2

∑
~m

δ(4)(0) = 0 +N
7i

2

∑
~m

δ(4)(0) ,

1

8πGind

= N
(
− 1

3
− 1

3
× 2 + 1

)
I1( ~Q) = 0 .

(2.40)

Non-trivial examples of effective Einstein actions correspond to the cases of spontaneous

breaking of the N4 = 1 supersymmetry. They are realized by a Scherk–Schwarz mecha-

nism [29, 30] which consists in lifting the degeneracy between the KK masses of the bosons

and fermions. The simplest choice of charge vectors assumes a universal mass shift ~Q, plus

an additional half-integer shift δ ~Q for all fermions,

Bosons : ~Qu = ~Q , Fermions : ~Qu = ~Q+ δ ~Q , δQi ∈
{

0,
1

2

}
, i = 1, . . . , n, δ ~Q 6= ~0 .

(2.41)

In this case, the sums over ~̀ involve a projector (1 − e2iπδ ~Q·~̀)/2 that eliminates an infinite

number of contributions ~̀, among which there are the dangerous terms ~̀= ~0. The induced

constants (2.37) can then be explicitly written as

1

8π

Λind

Gind

= −4N
Γ
(
2 + n

2

)
32π6+n

2

( 3+n∏
i=4

Ri

)∑
~k

e2iπ ~Q·~̀ (1− (−1)2δ ~Q·~̀)(∑
j `

2
jR

2
j

)2+n
2

+N
7i

2

∑
~m

δ(4)(0) ,

1

8πGind

= N
Γ
(
1 + n

2

)
48π4+n

2

( 3+n∏
i=4

Ri

)∑
~̀

e2iπ ~Q·~̀ (1− (−1)2δ ~Q·~̀)(∑
j `

2
jR

2
j

)1+n
2

.

(2.42)

Specializing for instance to the case of a single internal direction, n = 1, we have Q4 /∈ Z,
δQ4 = 1

2
and the above results reduce to

1

8π

Λind

Gind

= −4N
Γ
(

5
2

)
π

13
2

∑
k

e2iπQ4(2k+1)∣∣2k + 1
∣∣5 M4

susy +N
7i

2

∑
m4

δ(4)(0) ,

1

8πGind

= N
Γ
(

3
2

)
6π

9
2

∑
k

e2iπQ4(2k+1)∣∣2k + 1
∣∣3 M2

susy ,

(2.43)
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where Msusy is the mass gap between bosonic and fermionic superpartners, i.e. the super-

symmetry breaking scale,

Msusy ≡Mm4

(
Q4 +

1

2

)
−Mm4(Q4) =

1

2R4

. (2.44)

3 Non-dynamical fields

Non-dynamical scalar fields are often introduced in classical theories for various purposes.

For instance, they can be considered to implement linear realizations of symmetries in tree-

level actions. This is for example the case for supersymmetry, where they appear as auxiliary

fields in off-shell definitions of supermultiplets. In the following, we show that at the quantum

level, the alternative definitions of classical theories with or without non-dynamical fields

affect the “unphysical” infinite contributions proportional to iδ(4)(0), but not the physical part

of the cosmological term and the gravitational constant. We will specialize to the examples

of non-dynamical fields appearing in chiral and vector multiplets of N4 = 1 supersymmetry.

3.1 F -term

The component fields of a chiral multiplet are a complex scalar Φ, a Weyl fermion ψ and an

auxiliary complex scalar F . Considering a KK tower of such modes, the bosonic part of the

action is [28]

SΦF =

∫
d4x
√
−g

∑
~m

[
− gµν∂µΦ∗~m∂νΦ~m + F ∗~mF~m +M~m

(
Φ~mF~m + Φ∗~mF

∗
~m

)]
. (3.1)

A convenient way to analyze this system is to disentangle the scalars by applying a field

redefinition τ~m = F~m +M~mΦ∗~m, which yields

SΦF ≡ SΦ + Sτ ,

where SΦ = −
∫

d4x
√
−g

∑
~m

[
gµν∂µΦ∗~m∂νΦ~m +M2

~mΦ∗Φ
]
,

Sτ =

∫
d4x
√
−g τ ∗τ .

(3.2)

Of course, decomposing Φ~m into its real and imaginary parts, Φ~m ≡ (φ~m + iφ̃~m)/
√

2, SΦ is

nothing but the action of the real scalars φ~m, φ̃~m, as given in Eq. (2.1), while Sτ vanishes

12



upon using the classical equations of motion

τ~m ≡ F~m +M~mΦ∗~m = 0 , τ ∗~m ≡ F ∗~m +M~mΦ~m = 0 . (3.3)

If the contributions to the effective gravity action arising from the integrated out complex

scalars Φ~m are simply twice those given in Eqs (2.8) and (2.14), our goal is to see how the

result is affected by integrating out the auxiliary complex scalars τ~m.

The trace of the stress-energy tensor derived from Sτ is independent of the metric,

gµνT τµν ≡
−2√
−g

gµν
δSτ
δgµν

= 4
∑
~m

τ ∗~mτ~m ≡ Tτ (x) , (3.4)

while the propagator in Minkowski space derived from Sτ is3

〈τ~m(x)τ ∗~m′(y)〉 = δ~m,~m′ iδ(4)(x− y) ≡ δ~m,~m′
(
�−M2

~m

)
∆(x− y) . (3.5)

Thus, we obtain

〈Tτ (0)〉 = 4
∑
~m

iδ(4)(0) ,

〈T̃τ (x)T̃τ (0)〉 = 16
∑
~m

(
�−M2

~m

)
∆~m(x)

(
�−M2

~m

)
∆~m(x) ,

(3.6)

and it is straightforward to derive the contributions to the cosmological and Newtonian

constants,

1

8π

Λind

Gind

∣∣∣∣
τ

= −i
∑
~m

δ(4)(0) ,
1

8πGind

∣∣∣∣
τ

= 2I3( ~Q)− 16

9
I4( ~Q)− 32

39
I6( ~Q)

= 0 ,

(3.7)

where we have used the fact that all quantities I3( ~Q), I4( ~Q), I6( ~Q) vanish. Hence, we obtain

the announced result that the presence of the non-dynamical field F in the definition of the

classical theory affects only the number of infinite Dirac distributions at the origin, per KK

mode ~m.

3.2 D-, M -, N -terms

The second example we consider is that of the non-dynamical fields appearing in a vector

multiplet of N4 = 1 supersymmetry. The component fields of this supermultiplet are a
3The two-point function

〈(
F~m(x) +M~mΦ∗

~m(x)
)(
F ∗
~m′(y) +M~m′Φ~m′(y)

)〉
can also be obtained from those

derived from SΦF , and which are listed in Ref. [28].
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vector boson Aµ, a real scalar C, 2 Weyl fermions λ, ψ, and three real auxiliary fields D,

M , N .4 For a tower of KK states with masses M~m, the four-dimensional action restricted

to the bosonic sector is [28]

Sv.m. =

∫
d4x
√
−g

∑
~m

[
− 1

4
gµνgρσF~mµνF~mρσ +

1

2
D2
~m

+M2
~m

(
− 1

2
gµνA~mµA~mν −

1

2
gµν∂µC~m∂νC~m + C~mD~m +

1

2
M 2

~m +
1

2
N 2

~m

)]
.

(3.8)

This system can be divided into three pieces totally decoupled from one another.5 The first

subsystem amounts to the vector bosons Aµ~m, whose contributions to the effective gravity

action are already given in Eqs (2.31) and (2.33).

Because M~m 6= 0, we may redefine Φ~m ≡ M~mC~m/
√

2 and F~m ≡ D~m/
√

2, so that the

dynamics of the second subsystem that comprises the scalars C~m, D~m may be described by

the action

SCD =

∫
d4x
√
−g

∑
~m

[
− gµν∂µΦ~m∂νΦ~m + F~mF~m +M~m

(
Φ~mF~m + Φ~mF~m

)]
. (3.9)

The latter is nothing but SΦF given in Eq. (3.1), but for real scalars Φ~m and real non-

dynamical fields F~m. Therefore, the contributions of the fields C~m, D~m to the induced Ein-

stein action are those of a real scalar given in Eqs (2.8) and (2.14), plus those of the real

part of τ given in Eq. (3.7), namely

1

8π

Λind

Gind

∣∣∣∣
D

= − i
2

∑
~m

δ(4)(0) ,
1

8πGind

∣∣∣∣
D

= 0 . (3.10)

The last subsystem to be analyzed amounts to the fields M~m and N~m. However, defining

τ̂~m ≡M~m(M~m + iN~m)/
√

2, we see that their integration out is equivalent to that derived in

the previous section, that is

1

8π

Λind

Gind

∣∣∣∣
MN

= −i
∑
~m

δ(4)(0) ,
1

8πGind

∣∣∣∣
MN

= 0 . (3.11)

4In the massless case, C, ψ and M , N can be gauged away. However, in the massive case, the super-
multiplet can be viewed as a massless vector multiplet in Wess-Zumino gauge, (Aµ, λ,D), and a massless
chiral multiplet (Φ, ψ, F ), where the vector boson “eats” one degree of freedom of Φ, to let us with a massive
vector field Aµ, a degenerate scalar C, the Weyl fermions λ, ψ and three real auxiliary scalars.

5We remind that they are not even coupled gravitationally, since the metric gµν is only a constant
background and not a quantum field.
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3.3 Cancellation of the iδ(4)(0)-terms

We have seen that the real non-dynamical fields X~m,6 which have an action

SX =

∫
d4x
√
−g

∑
~m

1

2
X~mX~m , (3.12)

contribute to the effective gravitational constants as

1

8π

Λind

Gind

∣∣∣∣
X

= − i
2

∑
~m

δ(4)(0) ,
1

8πGind

∣∣∣∣
X

= 0 . (3.13)

Because the degrees of freedom in Eq. (2.39) are identical to those corresponding to KK

towers of N massive vector multiplets, it may be natural7 that they are accompanied by 3N

towers of non-dynamical real scalars. However, even in this case, this is not enough to cancel

the infinite contribution

N
7i

2

∑
~m

δ(4)(0) , (3.14)

which appears in the induced cosmological term, Eq. (2.37). Actually, 7N towers of non-

dynamical fields are required, for which we obtain the fully finite result

1

8π

Λind

Gind

=
N∑
u=1

I0( ~Qu)− 2
3N∑

u=N+1

I0( ~Qu) + 3
4N∑

u=3N+1

I0( ~Qu) ,

1

8πGind

= −1

3

N∑
u=1

I1( ~Qu)−
1

3

3N∑
u=N+1

I1( ~Qu) +
4N∑

u=3N+1

I1( ~Qu) .

(3.15)

4 Induced higher-derivative terms

In this section, we reconsider the possibility of seeing Einstein gravity as a long-wavelength

approximation of a more fundamental theory, when heavy matter fields are integrated

out. We follow the point of view introduced by Sakharov [1], which provides an alter-

native derivation of the low energy effective action. Because a lot is known about this

approach [10,14–22,31,32], it will be straightforward to cross-check the results presented in

6Such as Re τ~m/
√

2, Im τ~m/
√

2, D~m, M~mM~m, M~mN~m.
7This is the case when the theory admits an underlying N4 = 1 supersymmetry, which can be spon-

taneously broken or not. However, as mentioned in Sect. 2.4, generic charge vectors of the KK towers
break explicitly supersymmetry in four dimensions, and there is a priori no natural number of KK towers of
non-dynamical fields.
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Sec. 2, and even extend them to include higher-derivative terms. It turns out that integrating

out towers of massive spin-0, spin-1
2
and spin-1 quantum fields does not permit to cancel the

UV divergencies occurring in 4-derivative terms. Therefore, we will introduce counterterms

of the same form, namely classical kinetic terms for gµν with four derivatives. In principle,

there is no obstruction to adding such counterterms in the tree-level action when gµν is a

classical field. However, we start this section by arguing that the metric should rather be

treated as a quantum field.

4.1 Necessity to quantize gravity?

Up to now, the higher dimensional background metric gMN , M,N ∈ {0, . . . , 3+n}, has been
treated as a pure classical field that influences the dynamics of the quantum scalars, fermions

and vector bosons. Therefore, it is a matter of choice to take the components gij ≡ R2
i δij

constant, the vector fields giµ ≡ 0, and the four-dimensional metric gµν dependent on xλ

only.

However, the treatment of gMN(xL) as a pure classical object implies some drawbacks.

First, there is no natural reason to impose any extremization principle on the effective action,

with respect to the metric. In the setup presented in Sect. 2, this means that Einstein

equations must actually be imposed by hand on gµν(x
λ), as raised by Adler [5]. Another

issue is that if gµν is not quantized, the system of equations of motion of the classical metric

and the quantum fields is not invariant under metric-dependent field redefinitions of the

quantum matter degrees of freedom [33]. Therefore, we are led to quantize the metric.

The approach we will follow from now on assumes that in addition to the matter fields,

only gµν(xλ) is to be quantized. In that case, our choice to take giµ ≡ 0 and gij ≡ R2
i δij

as constant parameters is still allowed. In practice, extremizing Seff with respect to gµν(xλ)

yields Einstein theory, while no variational principle with respect to the radii is to be imposed.

This very fact is fortunate, since the Ri’s would otherwise behave as Lagrange multipliers

that would impose non suitable conditions. The dissymmetry in the treatment of giµ and gij,

as compared to the quantum field gµν , and the fact that the latter depends only on the four

coordinates xλ, implies that the fundamental theory (i.e. before integrating out the matter

fields) should now be considered as intrinsically four-dimensional. It should be regarded as
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“already compactified” and the infinite spectrum of spin-0, spin-1
2
and spin-1 fields in four

dimensions should only be formally seen as KK towers of states. In particular, there are

neither KK states for the graviton, nor graviphotons and radion fields.

4.2 Heat kernel expansion method

From now on, our fundamental theory at tree-level is four-dimensional. Beside the gravita-

tional sector, the quantum degrees of freedom comprise Nφ = N towers of scalars, Nψ = 2N

towers of Weyl fermions and NA = N towers of vector bosons of masses M~m( ~Qu) ≡ Mu~m.

As in Sect. 2, we first assume that all charge vectors satisfy ~Qu /∈ Zn. However, we will

generalize our analysis at the end of this section to include the possibility of having some
~Qu ∈ Zn. The total classical action is

Stree = Sg +
4N∑
u=1

Su( ~Qu) , (4.1)

where Su( ~Qu) is of the form given in Eq. (2.1) for u = 1, . . . , N , Eq. (2.15) for u =

N + 1, . . . , 3N , and Eq. (2.26) for u = 3N + 1, . . . , 4N . Moreover, Sg is a purely gravi-

tational action to be determined later. Our goal is to derive the 1-PI effective action in the

semiclassical limit for gµν , which can be written as [18]

Seff = Stree +W , (4.2)

whereW is the 1-loop contribution arising from the radiative corrections of the matter fields,

W =
i

2

∑
u

(−1)F
∑
~m

ln det
[
(−D2

u +M2
u~m − iε)σ2

]
. (4.3)

Because the actions Su are quadratic in the integrated fields, W is actually exact. In the

above expression, F = 0 for the bosonic towers u and F = 1 for the fermionic ones, while

D2
u is the kinetic operator, which contains 2-derivatives and depends on the metric. For

instance, for a tower of scalars φu~m, we have D2
uφu~m ≡ �gφu~m ≡ 1√

−g∂µ(
√
−g gµν∂νφu~m).

Finally, σ is an arbitrary length introduced for dimensional purpose.

Let us notice that for any eigenvalue Kσ2 of the operator in square brackets in Eq. (4.3),

which has a small negative imaginary part −iε, one has

ln(Kσ2) = −
∫ +∞

ρ2

ds
s
e−isK − ln

[
ieγ
(ρ
σ

)2]
+O(ρ2K) , (4.4)
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kuΛ kuR kuR2 kuC2

spin-0 real scalars 1 1
6

1
72

1
120

spin-1
2
Weyl fermions 2 −1

6
0 − 1

40

spin-1 massive vector bosons 3 −1
2

1
72

13
120

spin-1 massless vector boson 2 −2
3

0 1
10

Table 1: Values of the coefficients kuΛ, kuR, kuR2 and kuC2 appearing in Eq. (4.7) for each KK mode of
the massive towers of states. The case of a massless vector boson is also included for reference.

where ρ is a length (an UV cutoff) and γ is the Euler–Mascheroni constant. Using the

identity ln det ≡ tr ln and the above relation, we obtain

W = − i
2

∑
u

(−1)F
∑
~m

tr
∫ +∞

ρ2

ds
s
e−is(−D

2
u+M2

u~m−iε) +W1 ,

where W1 =
i

2

∑
u

(−1)F
∑
~m

trO
[
ρ2(−D2

u +M2
u~m − iε)

]
−→
ρ→0

0 .

(4.5)

Notice that all contributions ln(ieγ(ρ/σ)2) have cancelled out, due to the equal number of

bosonic and fermionic towers of states. Because W1 is irrelevant when ρ → 0, we will omit

it from now on. To proceed, the key point is to use the heat kernel expansion [14,18,31]

− i
2
tr e−is(−D

2
u+M2

u~m−iε) = −1

2

∫
d4x
√
−g e

−is(M2
u~m−iε)

(4πs)2

+∞∑
κ=0

(is)κauκ , (4.6)

where auκ depends on the spacetime geometry at x, and involves 2κ derivatives. For the

lower values of κ, we have

au0 = kuΛ ,

au1 = kuRR ,
√
−g au2 =

√
−g
(
kuR2R2 + kuC2 C2

)
+ total derivative ,

(4.7)

where R is the Ricci scalar, and C2 ≡ CµνλωCµνλω, with Cµνλω the Weyl tensor. The co-

efficients appearing in the right hand sides of these equations depend on the spin of each

tower u, and are given in Table 1 [14, 16–18]. Moreover, the total derivative term does not

contribute to the equations of motions and can be ignored. Among other things, the latter

contains a Gauss-Bonnet contribution, which is related to the Euler characteristic of the

four-dimensional spacetime,

χ =
1

32π2

∫
d4x
√
−g
(
RµνρσRµνρσ − 4RµνRµν +R2

)
, (4.8)
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C

A

ρ2
Re s

Im s

Figure 1: Contour integral used to derive Eq. (4.10).

where Rµνρσ and Rµν are the Riemann and Ricci tensors.

The 1-loop contribution W to the effective action can be decomposed as

W =

∫
d4x
√
−g

+∞∑
κ=0

Lκ ,

where Lκ(x) =
1

32π2

∑
u

(−1)Fauκ(x)
∑
~m

∫ +∞

ρ2
ids fuκ~m(is) ,

fuκ~m(is) = (is)κ−3 e−is(M
2
u~m−iε) .

(4.9)

In the Lagrangian density Lκ, the integral can be expressed as∫ +∞

ρ2
ids fuκ~m(is) =

∫ +∞

ρ2
dt fuκ~m(t) +

∫
A

ids fuκ~m(is) , (4.10)

where we have applied the change of variable t = is, and A is the small circular arc of radius

ρ2 shown in Fig. 1. The above identity is proven by noticing that fuκ~m has no pole inside

the contour C of Fig. 1, implying the integral over C to vanish. The rest of the discussion

depends on the degree of singularity of the functions fuκ~m:

• For κ ≥ 3, fuκ~m has no pole and the introduction of ρ was actually not necessary.

Taking the limit ρ→ 0 in the r.h.s. of Eq. (4.10), only the Wick-rotated integral over

t survives, and we find the finite result

∀κ ≥ 3 : Lκ =
Γ(κ− 2)

32π2

∑
u

(−1)F
∑
~m

1

M
2(κ−2)
u~m

auκ . (4.11)
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• For κ = 0, 1, we invert the discrete sums over ~m and the integrals, in order to use the

Poisson summation formula (A.4). The latter yields the expression∑
~m

fuκ~m(t) =
π
n
2

t3+n
2
−κ

(∏
i

Ri

)∑
~̀

e−
π2

t

∑
j(`jRj)

2

e2iπ ~Qu·~̀ , (4.12)

where all poles arise from the term ~̀= ~0. However, summing over the towers of states,

the coefficients of the contributions ~̀= ~0 vanish,∑
u

(−1)FkuΛ = Nφ − 2Nψ + 3NA = 0 ,

∑
u

(−1)FkuR =
1

6
Nφ −

(
− 1

6

)
Nψ −

1

2
NA = 0 ,

(4.13)

and it is safe to take the limit ρ→ 0. The integrals that survive are the Wick-rotated

ones over t, and they can be computed term by term using the change of variable

l := π2
∑

j(`jRj)
2/t. The final results for the Lagrangian densities are

L0 ≡ −
1

8π

Λind

Gind

=
Γ(2 + n

2
)

32π6+n
2

(∏
i

Ri

)∑
u

(−1)FkuΛ

∑
~̀6=~0

e2iπ ~Qu·~̀(∑
j `

2
jR

2
j

)2+n
2

,

L1 ≡
1

8πGind

R
2

=
Γ(1 + n

2
)

16π4+n
2

(∏
i

Ri

)∑
u

(−1)FkuR
∑
~̀6=~0

e2iπ ~Qu·~̀(∑
j `

2
jR

2
j

)1+n
2

R
2
,

(4.14)

which are in perfect agreement with the induced cosmological and gravitational con-

stants of Eq. (3.15).

• For κ = 2, Eq. (4.12) applies but the dangerous contributions ~̀ = ~0 do not vanish,

since ∑
u

(−1)FkuR2 =
1

72
Nφ − 0 ·Nψ +

1

72
NA =

N

36
,

∑
u

(−1)FkuC2 =
1

120
Nφ −

(
− 1

40

)
Nψ +

13

120
NA =

N

6
.

(4.15)

As a result, the 1-loop Lagrangian density L2 given in Eq. (4.9) is UV divergent, as

ρ → 0. To make sense, it must be combined, with tree-level C2- and R2-terms with

infinite bare couplings f 2
0B, f 2

2B. Hence, the purely gravitational tree-level action is

defined as

Sg =

∫
d4x
√
−g
[
R2

6f 2
0B

− C
2

2f 2
2B

]
. (4.16)

Notice that had we chosen other values of Nφ, Nψ, NA, the UV divergence of L2 would

not have vanished, as can be seen from Eq. (4.15).
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Collecting all of the above results, the 1-PI effective action reads

Seff =

∫
d4x
√
−g

[
1

8πGind

(R
2
− Λind

)
+
R2

6f 2
0

− C
2

2f 2
2

+
+∞∑
κ=3

Lκ +
4N∑
u=1

Su( ~Qu)

]
, (4.17)

where f 2
0 , f 2

2 are finite, renormalized couplings to be determined by measurements. On

the other hand, the cosmological and Newtonian constants, as well as all couplings of 2κ-

derivative terms with κ ≥ 3, are calculable in terms of the n radii Ri and the 4N charge

vectors ~Qu.

Notice that at this stage, we have treated the gravitational degrees of freedom semiclas-

sically. When f 2
0 , f 2

2 are positive, the latter amount to the massless graviton, a real scalar

field and a spin-2 ghost graviton.8 In the pure quadratic gravity case [23, 24], i.e. when

the kinetic terms are restricted to be of the form R2 and C2 only, and when matter fields

are not present, the theory is scale invariant. Therefore, dimensionful parameters such as a

cosmological constant and a reduced Planck mass M2
P ≡ 1/(8πG) cannot be generated at

the quantum level, at any order of perturbation theory. For instance, this can be checked at

the 1-loop level by considering the associated renormalization group equations [26,32,35,36],

dM2
P

dτ
=

(
2

3
f 2

0 −
5

3

f 4
2

f 2
0

)
M2

P ,

d(ΛM2
P)

dτ
=

5f 4
2 + f 4

0

8
M4

P + (5f 2
2 + f 2

0 )ΛM2
P ,

(4.18)

where τ ≡ ln(µ/µ0)/(4π)2, µ is the energy scale in MS scheme, and µ0 is an arbitrary fixed

energy. From the above expressions, it is clear that ΛM2
P = 0, M2

P = 0 is a fixed point

of the renormalization group. However, in the theory considered throughout the present

work, additional diagrams at 1-loop arise from a specific matter spectrum and yield finite,

non-running constants Λ = Λind and M2
P = 1/(8πGind). The key point is that at 1-loop,

Feynman diagrams associated with different sectors of the theory add linearly. Of course,

one has to raise the question of whether the induced Einstein terms remain predictable at

higher loop or not. As noticed before, higher order diagrams involving only gravitational

propagators cannot yield corrections to Λ and M2
P. Nevertheless, those mixing free KK

matter and gravitational states should be analyzed with scrutiny.
8Even if it is not fully settled in the literature, it is sometimes believed that the ghost degrees of freedom

don’t appear as external states of the S-matrix, and that they don’t spoil unitarity [25,26,34].
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Before closing this section, we would like to generalize our results to include the case where

some towers of states are characterized by charge vectors ~Qu ∈ Zn, which yield low lying

massless states. Notice that this is not possible in Adler’s approach, where all matter fields

are integrated out. However, in the 1-PI effective action, radiative corrections associated

with massless states can be taken into account. In Eq. (4.6), we have used the fact that

when the charges are non-integers, the heat kernel coefficients auκ are independent of the

modes ~m. Hence, as can be seen from Table 1, our derivations still hold for towers of real

scalars and Weyl fermions when ~Qu ∈ Zn. On the contrary, the heat kernel coefficients

for massless and massive vector bosons differ. However, combining a massless vector and a

massless real scalar field, the total coefficients match with those of a massive gauge boson

(see Table 1). Of course, this is not a coincidence since every massive KK vector boson

arises by absorbing one degenerate real scalar degree of freedom. Therefore, in order to

accommodate a tower of vector bosons with ~Qu ∈ Zn, we add from the outset a degree of

freedom φu, with classical action

S0
u = −

∫
d4x
√
−g 1

2
gµν∂µφu∂νφu . (4.19)

5 Conclusion

In this work, we have considered a four-dimensional gravity action based on four-derivative

kinetic terms coupled to infinite towers of free massive scalar, fermionic and vector fields.

In particular, no cosmological and Einstein-Hilbert terms are present at tree-level. At the

quantum level, though, we found that predictable induced cosmological constant Λind and

Newton constant Gind are generated by integrating out the infinite massive states. Λind and

Gind are expressed in terms of the radii and charges that specify the mass spectrum. Hence,

the standard Einstein gravity is recovered at large distances. This is achieved only for a spe-

cific number of towers of scalars, fermions and vectors. We have used two methods for our

calculations with identical results, namely Adler’s point of view [2–6] and heat kernel meth-

ods [14,15,18,21,22,31]. The bottom line of our approach is that the finite and not-running

values of Λind and Gind are only induced by towers of matter fields, and that there are no

KK modes associated with the graviton. In other words, spacetime is “already compact-

ified”, which is reminiscent of F-theory [37], where the fields in ten dimensions, including

the graviton, are not accompanied with KK towers of states arising from the underlying
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twelve-dimensional spacetime.

As long as the gravitation degrees of freedom are treated semiclassically, our effective

action is exact in the sense that it is obtained by computing Gaussian path integrals of

free massive fields. Our results for Λind and Gind remain valid once 1-loop effects in the

gravitational sector are included. However, higher-loop corrections are beyond the scope of

the present work.

A natural question to ask is whether our scenario may be generalized to account for the

Standard Model (SM). If the SM degrees of freedom were introduced without towers of states,

the induced parameters Λind, Gind would no longer be invariant under the renormalization

group [26,32,35,36]. Hence, the SM fields should be seen as being part of the towers of modes

considered in the present work. The Higgs scalar, the W±, Z0 bosons and the fermions may

correspond to low lying states, for choices of vectors ~Qu /∈ Zn that reproduce their classical

masses (see Eq. (2.2)). On the contrary, for the massless photon and gluons, one should

take ~Qu ∈ Zn. Of course, the low lying SM fields (massive or massless) should not be

integrated out, and the effective action should be 1-PI. In order for the induced cosmological

and Newton constants to be calculable, we may supply the SM towers with other towers in

a “hidden sector”, such that the rule of thumb given in Eq. (2.39) is satisfied. Moreover,

an extra real scalar should be included in the hidden sector for every tower of vectors fields

such that ~Qu ∈ Zn. However, let us remind that the analysis of the present paper has been

derived for free matter fields. Hence, it is fair to stress that in order to accommodate the SM,

one should extend our derivations to include interactions and therefore quantum corrections

of matter beyond 1-loop.
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Appendix

In this appendix, we detail the prescriptions we follow to evaluate the discrete KK sums and

integrals over momenta or spacetime coordinates that are encountered in the computations

of the induced cosmological and gravity constants. A cutoff Λmax in momentum can be

introduced from the beginning of the computations. However, because our final results are

finite in the limit Λmax → +∞, for the sake of notational simplicity, we will be cavalier

by writing all expressions with Λmax infinite. In all computations, our first step consists in

applying Wick rotations x0 = −ix0
E, k0 = ikE0 to convert all Lorentzian scalar products into

Euclidean ones. Then, we introduce Schwinger parameters to every Feynman propagator:

−i
∫

d4k

(2π)4

eik·x

k2 +M2
~m − iε

=

∫
d4kE

(2π)4

eikE·xE

k2
E +M2

~m

=

∫
d4kE

(2π)4

∫ +∞

0

dt e−k
2
Et+ikE·xEe−M

2
~mt . (A.1)

In the above equalities, it is understood that the initial UV cutoff in momentum translates

into a cutoff as t→ 0 in the Schwinger integral.

As an example, let us consider the second term of the correlator given in Eq. (2.7), with

normalization as given in Eq. (1.1) for describing a contribution to the cosmological constant

arising from a KK tower of real scalar fields,

I0( ~Q) =
1

4

∑
~m

M2
~m ∆~m(0) . (A.2)

Applying Eq. (A.1), we then invert the integrals over the Euclidean momentum and t, and

compute the Gaussian integral over kE. Next, we invert the discrete sum over the KK modes

~m and the integral over t. Applying the following Poisson summation formula on ~m,∑
~m

t
∑
i

(mi +Qi

Ri

)2

e
−t
∑
j

(
mj+Qj
Rj

)2
=

π
n
2

2 t
n
2

(∏
i

Ri

)∑
~̀

e−
π2

t

∑
j(`jRj)

2

e2iπ ~Q·~̀

×
(
n− 2π2

t

∑
k

(`kRk)
2
)
,

(A.3)

which can be derived from the one-dimensional identity∑
m

e−t
(
m+Q
R

)2
=
π

1
2

t
1
2

R
∑
`

e−
π2

t
(`R)2e2iπQ` , (A.4)

where m, ` ∈ Z, we find

I0( ~Q) =
(
∏

iRi)

27π2−n
2

∫ +∞

0

dt
t3+n

2

∑
~̀

e−
π2

t

∑
j(`jRj)

2

e2iπ ~Q·~̀
(
n− 2π2

t

∑
k

(`kRk)
2
)
. (A.5)
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Notice that the divergence is now fully concentrated in the ~̀ = ~0 term. Keeping in mind

that this pathological contribution will cancel out between different KK towers, we proceed

by integrating term by term over l := π2
∑

j(`jRj)
2/t, which is allowed for ~̀ 6= ~0 and only

formal for ~̀= ~0. The result is

I0( ~Q) =
I(n)

27π6+n
2

(∏
i

Ri

)∑
~̀

e2iπ ~Q·~̀(∑
j `

2
jR

2
j

)2+n
2

, (A.6)

where

I(n) =

∫ +∞

0

dl l1+n
2 e−l (n− 2l) = −4 Γ

(
2 +

n

2

)
. (A.7)

As another example, let us compute I1( ~Q) given in Eq. (2.12), which is part of the

gravitational constant arising by integrating out a KK tower of real scalar fields. Using

Eq. (A.1) and moving the Schwinger integrals to apply last, we have

I1( ~Q) = − 1

24 (2π)8

∫ +∞

0

dt1dt2
∫

d4xE x
2
E

∑
~m

e−(t1+t2)M2
~m J (t1, t2, xE) ,

where J (t1, t2, xE) =

∫
d4pE d4kE (pE · kE)2e−p

2
Et1+ipE·xEe−k

2
Et2+ikE·xE .

(A.8)

Performing the Gaussian integrals over pE and kE, we obtain

J (t1, t2, xE) =
π4

(t1t2)3

[
1− x2

E

8

( 1

t1
+

1

t2

)
+
x2

E

16

1

t1t2

]
e
−x

2
E
4

(
1
t1

+ 1
t2

)
. (A.9)

Because the integral over xE is now Gaussian, it is straightforward to derive

K(t1, t2) ≡
∫

d4xE x
2
E J (t1, t2, xE) = − 26π6

(t1 + t2)3

[
1− 24

t1t2
(t1 + t2)2

]
. (A.10)

The next step is to apply the Poisson summation formula (A.4) on the KK sum, which yields

I1( ~Q) = − π
n
2

24 (2π)8

(∏
i

Ri

)∫ +∞

0

dt1dt2
(t1 + t2)

n
2

∑
~̀

e
− π2

t1+t2

∑
j(`jRj)

2

e2iπ ~Q·~̀K(t1, t2) . (A.11)

As before, the term ~̀ = ~0 contains whole of the UV divergence. This follows from the fact

that all other contributions, ~̀ 6= 0, can be integrated term by term, due to the exponential

suppression as t1, t2 → 0. Note that integrating term by term before Poisson summation is

not allowed, since the Schwinger integrals for each individual mode ~m is divergent at t1 or
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t2 = 0. Because the ~̀= ~0 contributions arising from different KK towers will cancel out, we

proceed by integrating term by term over αi = ti/(π
2
∑

j(`jRj)
2), i = 1, 2, which leads to

I1( ~Q) =

(∏
iRi

)
3 · 25 π4+n

2

∑
~̀

e2iπ ~Q·~̀(∑
j `

2
jR

2
j

)1+n
2

L(n) ,

where L(n) =

∫ +∞

0

dα1dα2

(α1 + α2)3+n
2

e
− 1
α1+α2

[
1− 24

α1α2

(α1 + α2)2

]
.

(A.12)

Defining l = 1/(α1 + α2), u = α1/(α1 + α2), the last integral is found to be

L(n) =

∫ +∞

0

dl l
n
2 e−l

∫ 1

0

du
[
1− 24u(1− u)

]
= −3 Γ

(
1 +

n

2

)
. (A.13)

For completeness, we mention that all other expressions I2( ~Q), . . . , I6( ~Q) can be com-

puted in a similar way, except that I3( ~Q) necessitates the use of the more involved Poisson

summation formula∑
~m

t
∑
i

(mi +Qi

Ri

)2

t
∑
j

(mj +Qj

Rj

)2

e
−t
∑
k

(
mk+Qk
Rk

)2
=

π
n
2

4 t
n
2

(∏
i

Ri

)∑
~̀

e−
π2

t

∑
j(`jRj)

2

e2iπ ~Q·~̀ (A.14)

×
[
n(n+ 2)− 4(n+ 2)

π2

t

∑
k

(`kRk)
2 + 4

π4

t2

(∑
k

(`kRk)
2
)2
]
.
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