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We address the problem of hybridization between topological surface states and a non-topological
flat bulk band. Our model, being a mixture of three-dimensional Bernevig-Hughes-Zhang and two-
dimensional pseudospin-1 Hamiltonian, allows explicit treatment of the topological surface state
evolution by continuously changing the hybridization between the inverted bands and an additional
”parasitic” flat band in the bulk. We show that the hybridization with a flat band lying below the
edge of conduction band converts the initial Dirac-like surface states into a branch below and one
above the flat band. Our results univocally demonstrate that the upper branch of the topological
surface states is formed by Dyakonov-Khaetskii surface states known for HgTe since the 1980s.
Additionally we explore an evolution of the surface states and the arising of Fermi arcs in Dirac
semimetals when the flat band crosses the conduction band.

I. INTRODUCTION

The research on topological materials constitutes one
of the most active areas in modern condensed matter
physics. Initiated by Kane and Mele, who introduced
topology as a new property of two-dimensional (2D) in-
sulators1, their idea has subsequently been generalized
to three-dimensional (3D) materials2, yielding a whole
family of novel topological insulators (TIs). In general,
the nontrivial topology of TIs arises from the inversion
between two bands with opposite parity, resulting in the
appearance of gapless states at the boundaries, which
are insensitive to impurities and disorder3–6. In 2D TIs
counter-propagating one-dimensional (1D) gapless states
with opposite spin arise at the edges while 3D TIs feature
helical surface states consisting of a single Dirac cone,
where the spin points perpendicular to the momentum.

To date multiple 2D and 3D TIs have been experi-
mentally verified (2D TIs7–13; 3D TIs14–21), yet many
materials with inverted band structure are bulk metals
with additional helical surface states. The most promi-
nent example for this case is the HgTe-class. Here the
presence of the heavy-hole |Γ8,±3/2〉 band in combina-
tion with an inverted pair of the electron |Γ6,±1/2〉 and
light-hole |Γ8,±1/2〉 bands transform HgTe into a bulk
semimetal. In order to observe the topologically nontriv-
ial surface states, as predicted by the theoretical analysis
based on the Z2 topological invariant22, it is necessary to
open a gap between conduction |Γ8,±1/2〉 and valence
|Γ8,±3/2〉 band. In the 3D case this can be achieved by
applying tensile biaxial strain to the HgTe bulk film22,23

which has been demonstrated experimentally in Ref.24.
Theoretically the appearance of surface states in 2D

and 3D TIs can be understood within the Bernevig-
Hughes-Zhang (BHZ) model describing the band inver-
sion in 2D7 and 3D systems15. However, in addition to
the Dirac-like surface states arising from the band inver-
sion, gapless HgTe should also host parabolic Dyakonov-
Khaetskii (DK) surface states, theoretically predicted in
the 1980s25. As the DK states are caused by the cou-
pling between the light-hole |Γ8,±1/2〉 and heavy-hole

|Γ8,±3/2〉 band, they should remain even in the pres-
ence of the strain-induced band gap26. Thus, the com-
plete picture of the surface states in strained HgTe should
differ significantly from the predictions based on the 3D
BHZ model15. The picture of the surface states becomes
even more complex in the case of compressive biaxial
strain, when the |Γ8,±1/2〉 and |Γ8,±3/2〉 bands touch
at certain points of the Brillouin zone27, which is partic-
ularly similar to unstrained Cd3As2 crystals28–30 known
to be 3D Dirac semimetals.

In order to gain better insight into this particular query
we investigate analytically the transformation of Dirac-
like surface states induced by the hybridization between
the inverted |Γ8,±1/2〉 and |Γ6,±1/2〉 bands with an ad-
ditional heavy-hole |Γ8,±3/2〉 band. To include an ad-
ditional band, we have combined the 3D BHZ Hamilto-
nian15 with the 2D pseudospin-1 Dirac-Weyl Hamilto-
nian (cf. Refs31,32) by introducing an effective hybridiza-
tion strength. This allows us to explore the evolution
of topological surface states at different position of the
”parasitic” band by varying the hybridization strength.
At a specific value of hybridization strength, our linear
model qualitatively represents the picture of the surface
states in the vicinity of the Γ point known from the tight-
binding calculations for Cd3As2

33 and HgTe34. The re-
sults demonstrate that the parabolic Dyakonov-Khaetskii
surface states known from HgTe25 stem from the modifi-
cation of the Dirac-like surface states by a hybridization
with an additional |Γ8,±3/2〉 band in the bulk.

The paper is structured as follows. We introduce a
general analytical model based on a combination of the
3D BHZ and 2D pseudospin-1 Dirac-Weyl Hamiltonian
in Section II. Subsequently we discuss the topological
surface states at different strengths of the hybridization
with the flat band as well as for different boundaries at
different position of the flat band, including the 3D TI
and Dirac semimetal cases. Finally, the main results are
summarized in Section IV.
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II. THEORETICAL MODEL

For the analytical model we first consider a ”modified”
6-band Hamiltonian including a variable hybridization
with a ”parasitic” bulk band:

Ĥ =

(
Ĥ0(k̂x, k̂y, k̂z) Ĥz(k̂z)

Ĥz(k̂z)† Ĥ∗0 (−k̂x,−k̂y,−k̂z)

)
, (1)

Here the asterisk stands for complex conjugation and
”†” corresponds to Hermitian conjugation. The elements

Ĥ0(k̂x, k̂y, k̂z) and Ĥz(k̂z) in Eq. (1) are written as

Ĥ0 =

 C0 +M0 ~v‖k̂+ sinα ~v‖k̂− cosα

~v‖k̂− sinα C0 + S0 0

~v‖k̂+ cosα 0 C0 −M0

+O(k2)

(2)
and

Ĥz =

 0 0 ~v⊥k̂z
0 0 0

~v⊥k̂z 0 0

+O(k2), (3)

where k̂± = k̂x ± ik̂y with k̂x, k̂y, k̂z being momen-
tum operators. We note that C0 corresponds to a set
of zero energies, S0 describes the position of the ”para-
sitic” band and v‖ as well as v⊥ are the values of velocity
for the massless particles. In our case, the x, y and z
axes are oriented along the (100), (010) and (001) crys-
tallographic directions. For simplicity, we further assume
v‖ = v⊥ = v, which can be found in HgCdTe crystals35,36.
The mass parameter M describes the inversion of bands
with opposite parities at which M0 > 0 correspond to the
normal band ordering and M0 < 0 to an inverted one7,15.

An important quantity of Ĥ0 is the parameter α, which
describes the hybridization of the topological surface
states with the ”parasitic” bulk flat band. An exact α
value for a given system can by obtained by k·p pertur-
bation theory up to linear-in-k order developed in the
vicinity of critical points of the Brillouin zone consider-
ing all point group symmetries of the bulk crystal. For
instance, the Hamiltonian in Eq. (1) at α = π/3 is essen-
tially the 6-band Kane Hamiltonian regarding the Γ6 and
Γ8 bands, which describes the band structure in the vicin-
ity of the Γ point of zinc-blende crystals (see Appendix).
This means that, depending on α, the Hamiltonian in
Eq. (1) interpolates between 3D BHZ Hamiltonian with
decoupled flat band at α = 0 for Bi2Se3-class materials15

and the Kane Hamiltonian at α = π/3.

Additionally, one can see that Ĥ in Eq. (1) with M0 =

S0 = 0, k̂z = 0 and α = π/4 corresponds, up to a simple
unitary transformation, to the 2D pseudospin-1 Dirac-
Weyl Hamiltonian for massless fermions (cf. Refs31,32).

We note that Ĥ(α), Ĥ(−α) and Ĥ(π/2±α) are all related
by unitary transformation. Also there are no quadratic
terms considered in Ĥz and Ĥ0 for Eqs. (2) and (3) as
their form strongly depends on the crystalline symme-
try and may differ for two crystals with different values

of α. Therefore, the universality of the model cannot
be preserved beyond the linear approximation but it is
in good agreement with magnetooptical experiments for
real crystals with α = 037,38 and α = π/329,30,35,36.

Supplementary one can see that Ĥ in Eq. (1) is in-
variant under inversion symmetry, but a real crystal may
not necessarily feature an inversion center in the unit cell,
which can results in additional terms in the Hamiltonian.
An explicit form of these terms also depends on the crys-
talline symmetry and may differ for two crystals with
the same value of α. For instance, breaking the inversion
symmetry in compressively strained HgTe and unstrained
Cd3As2, both represented by α = π/3, results in a tran-
sition from Dirac- into Weyl-semimetal in HgTe39 while
for Cd3As2 it retains a fourfold degenerate Dirac node33.
In both crystals, the strength of these terms extracted
from experimental data is small29,30,35,36, and can be ne-
glected. Having said that, we will retain the Hamiltonian
in a general form for the reasons of universality and ex-
plicitly consider the inversion symmetrical case.

Under these assumptions the Hamiltonian in Eq. (1)
has three eigenvalues, each double degenerate due to the
time-reversal symmetry. The eigenvalues E follow the
equation:

~2v2(k2x + k2y)(Ehh cos2 α+ Elh sin2 α)+

+ ~2v2k2zEhh = EcEhhElh, (4)

where kx, ky, kz are the quantum numbers of the mo-
mentum operators, Ec(E) = C0 + M0 − E, Ehh(E) =
C0 + S0 − E and Elh(E) = C0 −M0 − E.

III. TOPOLOGICAL SURFACE STATES

For the dispersion of the topological surface states, we
further consider an interface between two semiconduc-
tors with conventional (M

(I)
0 > 0, CdTe) and inverted

(M
(II)
0 < 0, HgTe) band structure. Since the position

of all the bands can be different on both sides of the
interface it is justified to make the parameters C0 and
S0, in addition to M0, dependent on the coordinates.
For coordinates far away from the interface the values
of these parameters naturally tend to the values inher-
ent to the bulk materials. However, the concrete form
of M0(x, y, z), C0(x, y, z) and S0(x, y, z) depends on the
smoothness of the junction and the crystallographic ori-
entation.

We will consider two different cases, corresponding to
the abrupt junction oriented along different crystallo-
graphic directions. As for the other parameters, we con-
sider v and α to be independent of coordinates with the
same values from both side of the junction, like it is suffi-
cient for the boundary between CdTe and HgTe36. Under
these assumptions it can be seen from Eq. (1), that the
Hamiltonian remains Hermitian even in the presence of

the junction, presuming the operators k̂x, k̂y and k̂z do
not commute.
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The initial Schrödinger equation with the 6×6 Hamil-
tonian Ĥ can be considered as a set of differential equa-
tions for the (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6)T envelope functions,
resulting in an 6×6 differential matrix. First, we note
that each pair of (ϕ1, ϕ4), (ϕ2, ϕ5) and (ϕ3, ϕ6) repre-
sents the electron states with opposite spin orientation
in the given band. Namely, for α = π/3 in HgTe-class
materials, they correspond to the |Γ6,±1/2〉, |Γ8,±3/2〉
and |Γ8,±1/2〉 band, respectively (see Appendix). Sec-
ond, the absence of k-dependent terms in the diagonal
elements allows one to express four of the six envelope
functions by the two other functions for the same band.
Such procedure, which is known as Gaussian elimination,
is often used for multi-band Hamiltonians40–43.

Considering the pair of (ϕ1, ϕ4) envelope functions we
can express the four functions ϕ2, ϕ3, ϕ5, ϕ6 in terms of
ϕ1 and ϕ4 by keeping the right order of non-commuting
operators. Then, substituting the expressions for ϕ2, ϕ3,
ϕ5, ϕ6 into the other two equations, we obtain the 2× 2
energy-dependent Hamiltonian ĤE , which describes the
evolution of the vector Φ = (Φ1,Φ2)T = (ϕ1, ϕ4)T for
two spin states:(

Â+ iB̂ − E K̂

K̂† Â− iB̂ − E

)(
Φ1(x, y, z)
Φ2(x, y, z)

)
= 0, (5)

where E is the eigenvalue, and

Â = Ec − ~2v2k̂z
1

Elh
k̂z − ~2v2k̂x

(
cos2 α

Elh
+

sin2 α

Ehh

)
k̂x −

−~2v2k̂y
(

cos2 α

Elh
+

sin2 α

Ehh

)
k̂y, (6)

B̂ = ~2v2k̂y
(

cos2 α

Elh
− sin2 α

Ehh

)
k̂x −

−~2v2k̂x
(

cos2 α

Elh
− sin2 α

Ehh

)
k̂y, (7)

K̂ = ~2v2k̂z
cosα

Elh
k̂− − ~2v2k̂−

cosα

Elh
k̂z. (8)

Here, we kept the previous notations, and Ec, Ehh and
Elh are the same as for Eq. (4). This changes in the
following where they also become dependent on the co-
ordinates:

Ec = C0(x, y, z) +M0(x, y, z)− E,
Ehh = C0(x, y, z) + S0(x, y, z)− E,
Elh = C0(x, y, z)−M0(x, y, z)− E.

We note that the eigenvalue problem in Eq. (5) is
very similar to conventional Schrödinger equation with
the single-band Hamiltonian including non-diagonal spin-
orbit interaction40–42. Moreover, the procedure described
above can be also performed for the other pairs (ϕ2, ϕ5)
and (ϕ3, ϕ6) of the envelope functions.

Although the 2×2 energy-dependent Hamiltonian ĤE

in Eq. (5) is non-Hermitian, its eigenvalues are real and

are the same as those of Ĥ in Eq. (1). Recent progress
achieved over the last two decades proves that a con-
sistent quantum mechanics can be also built on non-
Hermitian Hamiltonians with PT symmetry44–46, where
P and T are parity and time-reversal operators, respec-
tively. One can see that ĤE in Eq. (5) can be presented
in the form:

Ĥ2x2(k) = d0(k)σ0 + dx(k)σx + dy(k)σy + idz(k)σz,

where σ0 is a 2×2 unity matrix, σx, σy and σz are Pauli
matrices, d0(k), dx(k), dy(k), dz(k) are the real functions

of k. The Hamiltonian Ĥ2x2(k) always has the real eigen-
values guaranteed by PT symmetry (where PT = σxK
and K is the complex conjugation operator)44,45. In gen-
eral, non-Hermiticity arises from the presence of energy
or particle exchanges with its environment47,48. The
presence of heterojunction in the crystal induces addi-
tional interaction between all the bands from the op-
posite sides of the boundary, which results in the non-
Hermiticity of ĤE describing the pair (ϕ1, ϕ4).

A. Surface states for the boundary parallel to
(001) crystallographic plane

Let us now consider an abrupt semi-infinite boundary
parallel to the (001) crystallographic plane, placed at z =
0. In this case, M0(x, y, z), C0(x, y, z) and S0(x, y, z) only
depend on z:

M0(z) = M
(I)
0 +

(
M

(II)
0 −M (I)

0

)
θ(z),

C0(z) = C
(I)
0 +

(
C

(II)
0 − C(I)

0

)
θ(z),

S0(z) = S
(I)
0 +

(
S
(II)
0 − S(I)

0

)
θ(z), (9)

where θ(z) is a step-like function defined as θ(z) = 0 at
z < 0 and θ(z) = 1 at z ≥ 0. As mentioned above, the

region I corresponds to CdTe withM
(I)
0 > 0, while the re-

gion II represents HgTe with M
(II)
0 < 0. We demonstrate

in the following, that the step-like interface allows us to
calculate the dispersion of surface states analytically at
arbitrary values of α. However, the analytical solution
can be found at α = 0 for several smooth interfaces as
well49.

The step-like form of M0(z), C0(z) and S0(z) in Eq. (9)
does not only preserve translation symmetry along the x
and y directions but also facilitates the reduction of the
eigenvalue problem in Eq. (5) to a set of homogeneous
differential equations for the regions z < 0 and z > 0.
Then the dispersion of the surface states can be found by
applying the boundary conditions at z = 0, which were
obtained after integrating Eq. (5) across the small region
in the vicinity of z = 0. Based on the above arguments,
kx and ky are the good quantum numbers and the wave-
function of the surface states localized in the vicinity of
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FIG. 1. (Color online) Dispersion of the surface states (dotted red) as a function of k (where k2 = k2x +k2y) for S
(II)
0 = −M (II)

0

at different strengths of hybridization with the flat bands: (a) α = π/20, (b) α = π/3, (c) α = 9π/20, (d) α = π/2. The
boundary is parallel to the (001) crystallographic plane. The grey regions correspond to the bulk states in the film projected
onto the boundary. The solid black curves represent the edges of the projected bulk bands. The bulk states in the barriers

arising at |E| ≥ M
(I)
0 are beyond the scale of the panels. The dashed purple lines represent the asymptotic energies Eas± at

large k, given by Eq. (17). The value of α = π/3 corresponds to unstrained HgCdTe crystals35,36.

z = 0 has the form:

Φ
(II)
1,2 ∼ exp

(
−λ(II)z z

)
exp (ikxx+ ikyy) for z > 0,

Φ
(I)
1,2 ∼ exp

(
λ(I)z z

)
exp (ikxx+ ikyy) , for z < 0, (10)

where λ
(I)
z and λ

(II)
z are written as:

λ(n)z =

√√√√k2

(
1 +

E
(n)
lh − E

(n)
hh

E
(n)
hh

sin2 α

)
−
E

(n)
c E

(n)
lh

~2v2
.

(11)
Here, n = I, II and k2 = k2x + k2y. Note that Eq. (11)
can be also derived from Eq. (4) by formally substituting
−k2z → λ2z. One can show that the following functions
should be continuous across the junction:

(
Φ1

Φ2

)
,


1

Elh(E)

∂

∂z
−ik−

cosα

Elh(E)

ik+
cosα

Elh(E)

1

Elh(E)

∂

∂z


(

Φ1

Φ2

)
. (12)

Applying the boundary conditions to Φ
(I)
1,2 and Φ

(II)
1,2 ,

the secular equation for the non-trivial solution leads to(
λ(I)z E

(II)
lh + λ(II)z E

(I)
lh

)2
=
(
E

(II)
lh − E(I)

lh

)2
k2 cos2 α.

(13)
Equations (11) and (13) give the energy dispersion re-
lations of the surface states. It is seen that the surface
states at k = 0 exist if E

(I)
lh and E

(II)
lh are of different sign,

which requires different signs of M
(I)
0 and M

(II)
0 . Substi-

tution of Eq. (11) into Eq. (13) results in a biquadratic
equation, which can be solved analytically.

For simplicity, we set C
(n)
0 = 0 and analyze the case

S
(n)
0 = −M (n)

0 . The latter for instance corresponds to
the Kane fermions in unstrained HgCdTe crystals35,36.
In this case, Eq. (4) provides an energy dispersion for

the bulk states, which is independent of α:

E = C0 ±
√
M2

0 + ~2v2(k2x + k2y) + ~2v2k2z ,

E = C0 −M0,
(14)

while Eq. (13) for the surface states is reduced to

A
(
~2v2k2

)2−B~2v2k2+E2(E+M
(I)
0 )2(E+M

(II)
0 )2 = 0,

(15)
where

A =
(M

(I)
0 −M (II)

0 )2

4
sin4 α+

+ (E +M
(I)
0 )(E +M

(II)
0 ) sin2 α,

B = (E2−M (I)
0 M

(II)
0 )(E+M

(I)
0 )(E+M

(II)
0 ) sin2 α+

+ (E +M
(I)
0 )2(E +M

(II)
0 )2. (16)

One can see that for α = 0, i.e in the absence of hy-

bridization with a flat band, in addition to E = −M (I)
0

and E = −M (II)
0 , Eqs. (15) and (16) also give E = ±~vk.

The latter coincides with the results obtained within 3D
BHZ model with the open boundary conditions50.

The presence of hybridization splits initial Dirac-like
surface states E = ±~vk into several branches below and
above the flat bands in the materials at both sides of the
boundary. Particularly, the surface states lying between

the flat bands E = −M (I)
0 and E = −M (II)

0 are pushed
away from the edges of the flat bands at α 6= 0. At large
values of k, their asymptotic energies are written as

Eas± = −M
(I)
0 +M

(II)
0

2
± M

(I)
0 −M (II)

0

2
cosα, (17)

which can be found from Eqs (15) and (16) with A = 0.
We note that Eas± is independent of k only in the linear

approximation of Ĥ in Eq. (1), used for the analytical in-
vestigation of the surface states at different values of α.
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FIG. 2. (Color online) Dispersion of the surface states (dotted red) as a function of k (where k2 = k2x +k2y) for S
(II)
0 < −M (II)

0

at different values of α. The grey regions correspond to the bulk states in the film projected onto the boundary. The boundary

is parallel to (001) crystallographic plane, S
(II)
0 = 110 meV. The solid black curves represent the edges of the projected bulk

bands. The bulk states in the barriers are beyond the scale of the panels. The value of α = π/3 corresponds to the tensile
strained HgTe crystals.

Including the quadratic terms, whose explicit form de-
pend on α, results in non-zero curvature for Eas±. The
latter has been shown by numerical tight-binding calcu-
lations on cubic lattices for the case of α = π/3, corre-
sponding to real HgTe crystals34.

Figure 1 shows the dispersion of the bulk and sur-
face states for different values of α in the range (0, π/2]
for an unstrained film with parameters of HgTe (~v =

850 meV·nm36 and M
(II)
0 = −150 meV) sandwiched be-

tween CdTe barriers (M
(I)
0 = 450 meV). We note that

the energy range −M (I)
0 < E < M

(I)
0 corresponds to

the band gap in the barriers. Although the bulk dis-
persion in the film remains the same for any values of

α (due to S
(n)
0 = −M (n)

0 , see Eq. (14)), the dispersion
of the surface states strongly depends on hybridization
with the flat bands in both materials. At small values of
α (see Fig. 1(a)), it consists of four branches E = Eas+,
E = ±~vk and E = Eas− anticrossing in the vicinity of
the crossing points. In this case, the values of Eas+ and

Eas− are very close to −M (II)
0 and −M (I)

0 , respectively,
since cosα ≈ 1 in Eq. (17). This picture can be also
treated within the conventional degenerate perturbation
approach.

With increasing of α, the surface states for −M (I)
0 <

E < −M (II)
0 are pushed away from the energies of the flat

bulk bands in the materials at both sides of the bound-
ary toward the regions where these bulk states are absent.
This is clearly represented by the evolution of the asymp-
totic energies Eas+ and Eas−, which are getting closer
to each other when α increases as shown in Fig. 1(a-c).
Note that dispersion of the surface states remains linear
in the vicinity of the Γ point of the Brillouin zone. At
the specific value of α = π/2, the asymptotic energies

coincide both being equal to −(M
(I)
0 + M

(II)
0 )/2, and

the surface states become degenerate, see Fig. 1(d). The
latter means the absence of odd-in-k terms in their dis-
persion. We note that the surface states, similar to those
provided in Fig. 1(b) for α = π/3, were also obtained

by more sophisticated numerical calculations based on
tight-binding extension of the 6-band Kane Hamiltonian
with square terms34. Although, the results of Ref.34 de-
pend on the constant of artificial cubic lattice used in the
calculations, they qualitatively reproduce the dispersion
of the surface states at small quasimomentum obtained
from our analytical model at α = π/3.

In addition to the modification of the surface states
in the range of −M (I)

0 < E < −M (II)
0 , the hybridiza-

tion with the flat bulk bands also yields new ”massive”
branches in the regions above and below the flat bands.
We refer to the upper ”massive” surface states above
the flat band as the Dyakonov-Khaetskii (DK) branch.
Dyakonov and Khaetskii25 were the first, who predicted
the massive states at the surface of HgTe crystal. They
derived analytically this branch in 1981 by using Lut-
tinger Hamiltonian for the Γ8 bands51 with an open
boundary conditions. In 1985, existence of the localized
states at the HgTe/CdTe interface was also predicted for
the quantum wells52 and superlattices53.

Although the Luttinger Hamiltonian, used in Refs25,52,
does not formally consider the inverted |Γ6,±1/2〉 band,
this Hamiltonian can be obtained from the 6-band Kane
Hamiltonian with the HgTe/CdTe interface by assum-

ing M
(II)
0 → −∞ and M

(I)
0 → ∞. Therefore, the up-

per ”massive” surface states in Fig. 1 and solution of
Dyakonov and Khaetskii25, obtained for particular case
of α = π/3, have the same origin. As seen from Fig. 1,
such DK branch is caused by the band inversion in the
presence of hybridization with the flat bulk band.

Now we consider a bulk crystal, in which the flat band
does not coincide with the bottom of the conduction
band, i.e. S

(II)
0 6= −M (II)

0 . The case of S
(II)
0 < −M (II)

0

corresponds to an external tensile biaxial strain, which
opens a band gap, yielding 3D TI state22,24. The op-

posite case of S
(II)
0 > −M (II)

0 is realized in the com-
pressively strained HgTe films27 or in unstrained Cd3As2
crystals29,30. As in previous case, we set C

(n)
0 = 0 and

assume S
(I)
0 = −M (I)

0 in CdTe layer.
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FIG. 3. (Color online) Dispersion of the surface states (dotted red) as a function of k (where k2 = k2x +k2y) for S
(II)
0 > −M (II)

0

at different values of α. The grey regions correspond to the bulk states in the film projected onto the boundary. The boundary

is parallel to (001) crystallographic plane, S
(II)
0 = 190 meV. The solid black curves represent the edges of the projected bulk

bands. The solid blue curves show the bulk dispersion at kz = ±kD, where ~2v2k2D = (S
(II)
0 )2 − (M

(II)
0 )2. Blue symbols

represent projection of bulk Dirac nodes at α 6= 0 on the boundary surface. The bulk states in the barriers are beyond the
scale of the panels. The value of α = π/3 corresponds to the compressively strained HgTe (or unstrained Cd3As2) crystals.

Fig. 2 shows a picture of the bulk and surface states
at different values of α in the (0, π/2] range for ten-

sile strained film the with parameters of HgTe (S
(II)
0 =

110 meV) sandwiched between CdTe barriers. Note that
now the energy dispersions are calculated numerically on
the basis of Eq. (4) and Eqs. (11), (13) for the bulk and
surface states, respectively. It is seen that energy of the
bulk states and the value of a band-gap between the
flat and conduction bands strongly depend on α. The
maximum gap is achieved in the absence of hybridiza-
tion, while increasing of α leads to a band-gap vanish-
ing. The value of α = π/2 corresponds to a semimetal
with circular nodal line at kz = 0 and k = kN , where

k2N = 2M
(II)
0 (M

(II)
0 + S

(II)
0 )/(~2v2).

As seen from Fig. 2, the surface states in a tensile
strained film at different α values remain qualitatively
the same, as in Fig. 1 for the unstrained film. The main
difference is seen in the DK branch, which now exists in
the band-gap for the bulk states for all α. This is con-
sistent with the general topological arguments claiming
that tensile strained HgTe is a 3D TI with gapless sur-
face states22. However, these surface states can not be
represented by massless Dirac fermions, as it is stated in
some experimental works on HgTe strained by a CdTe
substrate (see, for instance, Refs.54–56). Fig. 2 clearly
shows that the surface states at the HgTe/CdTe bound-
ary of strained HgTe-based 3D TI are ”massive” due to
the hybridization with heavy-hole |Γ8,±3/2〉 band and
represented by DK branch25.

In the opposite case of S
(II)
0 > −M (II)

0 , the flat band
crosses the conduction band at certain points of the Bril-
louin zone at α 6= 0 yielding a 3D Dirac semimetal.
At these points, the conduction and flat valence bands
can be considered as two highly anisotropic and tilted
cones29,30,33, whose nodes lie at kx = ky = 0 and
kz = ±kD with k2D = (S2

0 − M2
0 )/(~2v2), see Eq. (4).

Note that at α = 0, the crossing points are located at
the sphere defined by ~2v2(k2x + k2y + k2z) = (S2

0 −M2
0 ),

and the 3D Dirac semimetal state does not arise.

Fig. 3 presents the bulk and surface states in a film

with S
(II)
0 > −M (II)

0 (where S
(II)
0 = 190 meV) at differ-

ent strengths of hybridization with a flat band. As in the

previous case of S
(II)
0 < −M (II)

0 , the bulk and surface
states both depend on the values of α. Interestingly, the
dispersion of the surface states in Fig. 3 for all α 6= 0
starts from projection of the bulk Dirac nodes. The bulk
band dispersion as a function of k at kz = kD is repre-
sented by the blue curves. We note that the particular
case α = π/3 is in a good qualitative agreement with
the picture of the surface states obtained from the tight-
binding calculations for Cd3As2 on a tetragonal lattice33

(see Fig. 3(a,b) therein).

B. Surface states for the boundary parallel to
(010) plane

One of the inherent characteristics of the surface states
in Dirac semimetals is the existence of a pair of sur-
face Fermi arcs connecting bulk Dirac nodes projected
on the surface boundary. The arcs meet at a sharp cor-
ner or ”kink” at the projected nodes. Such a kink is
not allowed in a purely 2D metal, it is a special feature
of the crystal symmetry-protected Weyl structure of the
Dirac semimetals57. As the Dirac nodes are located along
the (001) crystallographic direction, the surface bound-
ary parallel to the (001) plane has no Fermi arcs.

Let us now briefly consider the surface states for the
boundary containing two projections of the bulk Dirac

nodes at S
(II)
0 > −M (II)

0 . For the boundary plane paral-
lel to the x-z plane and placed at y = 0, M0, C0 and S0
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FIG. 4. (Color online) Dispersion of the surface (dotted red,

kx = 0) states as a function of kz for S
(II)
0 > −M (II)

0 with the
boundary parallel to (010) crystallographic plane at different
values of α. The grey regions correspond to the bulk states in
the film projected onto the boundary. The solid black curves
represent the edges of the projected bulk bands. As for Fig. 3,

we assume S
(II)
0 = 190 meV. Blue symbols represent position

of bulk Dirac nodes at α 6= 0. The solid curves marked the
edges of the bulk bands. Dispersion of the bulk bands in
the barriers is beyond the scale of the panels. The value of
α = π/3 corresponds to the compressively strained HgTe (or
unstrained Cd3As2) crystals.

have a step-like dependence on y:

M0(y) = M
(I)
0 +

(
M

(II)
0 −M (I)

0

)
θ(y),

C0(y) = C
(I)
0 +

(
C

(II)
0 − C(I)

0

)
θ(y),

S0(y) = S
(I)
0 +

(
S
(II)
0 − S(I)

0

)
θ(y). (18)

Basing on the arguments similar to the case of (001)
interface, the wave-function of the surface states for the
(010) boundary has the form:

Φ
(II)
1,2 ∼ exp

(
−λ(II)y y

)
exp (ikxx+ ikzz) for y > 0,

Φ
(I)
1,2 ∼ exp

(
λ(I)y y

)
exp (ikxx+ ikzz) , for y < 0, (19)

where λ
(I)
y and λ

(II)
y are written as:

λ(n)y =

√√√√√k2x +
k2z −

E(n)
c E

(n)
lh

~2v2

1 +
E

(n)
lh −E

(n)
hh

E
(n)
hh

sin2 α
, (20)

where the index n = I, II corresponds to y < 0 and
y > 0, respectively.

FIG. 5. (Color online) Energy contour for the surface states

at E = S
(II)
0 for the boundary parallel to (010) crystallo-

graphic plane at S
(II)
0 > −M (II)

0 . Blue symbols represent
position of bulk Dirac nodes at α 6= 0. Note that Dirac
nodes and Fermi arcs do not exist at α = 0. The value of
α = π/3 corresponds to the compressively strained HgTe (or
unstrained Cd3As2) with crystals.

Integration of Eq. (5) across the small region of y = 0
gives the continuity function across the junction:

(
Φ1

Φ2

)
,

R+
∂

∂y
+R−kx kz

cosα

Elh

kz
cosα

Elh
R+

∂

∂y
−R−kx


(

Φ1

Φ2

)
,

(21)
where R+ and R− are function of E and α:

R±(E) =
cos2 α

Elh(E)
± sin2 α

Ehh(E)
. (22)

Applying these boundary conditions to Φ
(I)
1,2 and Φ

(II)
1,2 ,

the secular equation for the non-trivial solution leads to(
λ(I)y R

(I)
+ (E) + λ(II)y R

(II)
+ (E)

)2
=

= k2z

(
1

E
(II)
lh

− 1

E
(I)
lh

)2

cos2 α+

+ k2x

(
R

(II)
− (E)−R(I)

− (E)
)2
. (23)

Substitution of λ
(I)
y and λ

(II)
y into Eq. (13) also results in

a quadratic equation for k2z and k2x, which can be solved
analytically. Such a quadratic equation gives the energy
dispersion and energy contours of the surface states for
the boundary parallel to the (010) crystallographic plane.

Fig. 4 shows the dispersions of the bulk and surface

states as a function of kz for the bulk film with S
(II)
0 >

−M (II)
0 and (010) surface boundary. Here, we set C

(n)
0 =

0, S
(I)
0 = −M (I)

0 , S
(II)
0 = 190 meV and assume kx = 0.

As for the (001) boundary, the picture of surface states
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for all α values consists of two branches above and below
the bottom of the conduction band at E = −M (II)

0 . As
it is seen, the upper DK branch for all α 6= 0 crosses
the bulk dispersion precisely at the Dirac nodes. This
stems from the fact that two separated Dirac nodes are
connected by the topological surface states57. A current
picture of the surface states for α = π/3 is also consistent
with the tight-binding calculations for Cd3As2

33.

Fig. 5 provides energy contours for the surface states

at E = S
(II)
0 at different strengths of hybridization with

the flat band. In contrast to the (001) boundary, for
which the energy contour of the surface states at the
Dirac nodes reduces to a point, the nontrivial surface
states at the (010) boundary are clearly visible. Its Fermi

surface at E = S
(II)
0 is composed of two Fermi arcs with

the kinks at the projected bulk Dirac nodes. As seen from
Fig. 5, the length of Fermi arcs depends on the values of
α. This means that the period of quantum oscillations
originated from cyclotron orbits weaving together Fermi
arcs and chiral bulk states57, should also depend on the
hybridization strength.

IV. SUMMARY

In conclusion, we have performed an analytical study of
the hybridization between topological surface states and
the non-topological flat band in the bulk. It was shown
that the hybridization with the flat band divides the ini-
tially Dirac-like surface states, derived from the 3D BHZ
model, into two branches, one below the flat band and an-
other one above the edge of conduction band. The upper
branch at α = π/3 is formed by Dyakonov-Khaetskii sur-
face states25 known for HgTe since the 1980s. Adjusting
the hybridization strength, we have explored the evolu-
tion of topological surface states in 3D TIs and 3D Dirac
semimetals arising at different positions of the flat band.
Our results show that the surface states lying inside the
band gap of 3D TIs, as well as the Fermi arcs of 3D Dirac
semimetals in HgTe and Cd3As2 are represented by the
DK branch of the surface states. Although, we have ap-
plied the linear approximation for the bulk Hamiltonian,
our model qualitatively represents the picture of surface
states at small values of k, known for α = π/3 from
numerical tight-binding calculations on tetragonal33 and
cubic lattices34. This work paves the way for further an-
alytical investigations of different characteristics of the
surface states hybridized with non-topological bands.
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APPENDIX: 6-BAND KANE HAMILTONIAN

In order to demonstrate that the Hamiltonian in
Eq. (1) for α = π/3 corresponds to the 6-band Kane
Hamiltonian, we consider the 8-band Kane Hamilto-
nian28, whose form is dependent on the choice of the
basis set of the Bloch amplitudes for the Γ6, Γ8 and Γ7

bands. In the given basis set

U1(r) = |Γ6,+1/2〉 = S ↑;

U2(r) = |Γ8,+3/2〉 = − i
√

2

2
X ↑ − i

√
6

6
Y ↑ +

i
√

3

3
Z ↓;

U3(r) = |Γ8,+1/2〉 =

√
2

2
X ↑ −

√
6

6
Y ↑ +

√
3

3
Z ↓;

U4(r) = |Γ7,+1/2〉 =
i
√

3

3
Z ↑ − i

√
6

3
Y ↓;

U5(r) = |Γ6,−1/2〉 = S ↓;

U6(r) = |Γ8,−3/2〉 =
i
√

2

2
X ↓ +

i
√

6

6
Y ↓ +

i
√

3

3
Z ↑;

U7(r) = |Γ8,−1/2〉 =

√
2

2
X ↓ −

√
6

6
Y ↓ −

√
3

3
Z ↑;

U8(r) = |Γ7,+1/2〉 = − i
√

3

3
Z ↓ − i

√
6

3
Y ↑,

the 8-band Kane Hamiltonian Ĥ8×8
k in the presence of

only the linear terms takes the form
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Ĥ8×8
k =



Ec

√
2
2 P k̂+

√
6
6 P k̂− −

√
3
3 P k̂z 0 0

√
6
3 P k̂z −

√
3
3 P k̂−√

2
2 P k̂− E′v 0 0 0 0 0 0√
6
6 P k̂+ 0 Ev 0

√
6
3 P k̂z 0 0 0

−
√
3
3 P k̂z 0 0 E′′v −∆ −

√
3
3 P k̂− 0 0 0

0 0
√
6
3 P k̂z −

√
3
3 P k̂+ Ec −

√
2
2 P k̂− −

√
6
6 P k̂+

√
3
3 P k̂z

0 0 0 0 −
√
2
2 P k̂+ E′v 0 0√

6
3 P k̂z 0 0 0 −

√
6
6 P k̂− 0 Ev 0

−
√
3
3 P k̂+ 0 0 0

√
3
3 P k̂z 0 0 E′′v −∆


. (24)

Here, P is the Kane momentum matrix element, ∆ is the spin orbit energy and Ec as well as Ev are the conduction
and valence band edges, respectively. We note that the values of Ev, E′v and E′′v differ if there is biaxial strain in the
(001) crystallographic plane58.

In the limit of large ∆, the Hamiltonian Ĥ8×8
k can be easily projected on the subspace, orthogonal to the the

split-off Γ7 band. As we are not interested in terms quadratic in k,the projection is done by simply eliminating the
fourth and the eight row and column of the matrix in Eq. (24):

Ĥ =



Ec

√
2
2 P k̂+

√
6
6 P k̂− 0 0

√
6
3 P k̂z√

2
2 P k̂− E′v 0 0 0 0√
6
6 P k̂+ 0 Ev

√
6
3 P k̂z 0 0

0 0
√
6
3 P k̂z Ec −

√
2
2 P k̂− −

√
6
6 P k̂+

0 0 0 −
√
2
2 P k̂+ E′v 0√

6
3 P k̂z 0 0 −

√
6
6 P k̂− 0 Ev


. (25)

As it is seen, Eq. (25) coincides with Eq. (1) at α = π/3 and ~v‖ = ~v⊥ =
√

6P/3.
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