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W
e propose a new semi-automatic strat-
egy for the localization of brachyther-
apy seeds with transrectal ultrasound

imaging. We formulate the problem as a rigid
surface-to-image registration, where a geomet-
ric model is embedded in an external force field
pointing towards the last implanted seed. Con-
sidering the seed shape as a prior, we allevi-
ate the need for a posteriori filtering among
candidate shapes. Robustness to noise is en-
forced by constraining the model to rigid body
motion and by privileging image intensity over
higher order information. We present encour-
aging preliminary results on noisy synthetic im-
ages. More advanced validation on physical
phantoms and clinical images is ongoing.

1 Introduction
Low-dose rate brachytherapy (LDR-B), one of the key
treatment for prostate cancer, consists in inserting ra-
dioactive implants through the perineum directly into
the prostate. The procedure is generally supervised
under transrectal ultrasound (TRUS) guidance [1]. For
every seed, potential errors may occur between expected
and actual insertion site, advocating the recommenda-
tion for dynamic dose recalculation, where the configu-
ration of the remaining seeds would ideally be updated
using real time localization feedback [2]. In this context,
one of the major difficulties of LDR-B lies in accurately
localizing seeds directly from TRUS, a challenging task
due to the inherent limitations of this modality [3][4][5].

In this paper, we propose a proof of concept for a
seed localization technique based on evolving geometric
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models. We embed a seed-like cylindrical model in an
image-derived force field and constrain its evolution to
rigid-body deformation, i.e. we only allow translations
and rotations. The force field is computed so that
it is oriented towards the medial axis of the nearest
seed, providing fast and robust convergence towards
the desired target. We successfully validate this concept
on synthetic images. Validation on ultrasound imaging
using physical phantoms and clinical data is ongoing.

2 Method

Figure 1: Search space Ii, initial model S0 and orthogonal
projections of the medial vector field Fi (see
text) for a real clinical case. Vectors are mostly
oriented towards the medial axis of the seed.

The proposed localization workflow is as follows: 1)
after each seed si is implanted, a cuboidal search space
is defined in the vicinity of an initial position marked
by the operator, reducing the image to a cropped region
Ii (Fig. 1). 2) Then, a triangulated surface model St,
where t is an artificial time variable, is rigidly evolved
under an external force field Fi associated with si, until
it reaches steady state around the actual seed location.
3) The seed position is finally communicated to the
treatment planning system to recalculate the dose plan
accordingly.

One of our main contribution lies in the expression of
the vector field Fi associated with seed si. We exploit
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a side property of external edge fields for deformable
models such as Vector Field Convolution fields [6, 7] or
gradient vector flow [8]: their ability to point towards
the medial axis of objects if the intensity image itself is
substituted for the edge map [9]. Rigid motion towards
the medial axis can then be used to perform object
segmentation, alleviating the need for higher order in-
formation (e.g. gradient or Hessian) typically employed
in active contours frameworks [10, 11]. Such high order
information would be unreliable in TRUS imaging due
to excessive noise levels.

A Medial Vector Field [12] guiding the surface model
is expressed as:

Fi = Ii ∗ K, (1)

where ∗ represents the convolution operation and:

K(x) = [Kx(x, y, z),Ky(x, y, z),Kz(x, y, z)] (2)

is a vector field kernel (VFK), a vector kernel whose
vectors point towards its center with decreasing mag-
nitude [6]. To evolve the seed model, we first compute
the motion of the set of free surface vertices Vj of St

embedded in the vector field Fi:

Vt = Vt−1 + γF, (3)

where γ < 1 is a small artificial time step, Vt is the
coordinate matrix of vertices Vj and F is the force
matrix corresponding to values of Fi interpolated at
Vj . We then look for the rotation matrix R and the
translation vector T closest to Vt − Vt−1 in the L2

sense:

arg min
Rt,Tt

1

Nv

Nv∑
k=1

||Rt ·Vt−1
k + Tt −Vt

k||2. (4)

The solution of which is provided by singular value
decomposition [13]. The rigid evolution of from St−1

to St is then expressed as:

Vt
R = Vt−1[Rt]T + 1[Tt]T (5)

where 1 is a vector composed only of ones.
The vertices coordinates Vj of S are then updated

according to (5), and steps (3) to (5) are repeated
until the surface converges to the location of seed si.
The algorithm stops when the maximum displacement
between two steps is less than a threshold value ε. These
steps are performed after each implantation in almost
real time, providing estimations of the orientation and
localization of the last seed.

3 Results
We are currently at an early stage of the validation. As
a proof of concept, we generated a synthetic 3D image
showing pseudo seeds (PS) with different orientations,
that we corrupted with heavy noise and Gaussian blur
(Fig. 1). For each PS, we performed 50 initializations of

Figure 2: Axial slice of a synthetic 3D image showing
seven seed-like patterns with various orienta-
tions. Top: clean image. Bottom: noisy image.

the model by uniformly drawing initial coordinates in a
25×25×5 voxels neighborhood window (red square, Fig.
1). Distance (in voxels) between true and estimated
barycenters and angular error between the PS and the
surface model (obtained through principal component
analysis) were used as quantitative metrics [4], and are
shown in Fig. 3. Results are encouraging given the
low signal-to-noise ratio of the image, with errors of
a few voxels and orientation estimations generally less
than ten degrees off, with rare failure cases. A physical
phantom for ultrasound is also currently studied for
which preliminary, unquantified results are presented
in Fig. 4. Results on real TRUS images using expert
consensus are also considered for a thorough validation
of the approach.
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Figure 3: Barycenter distance and angular error for the
7 pseudo seeds using multiple initializations

Figure 4: Left: physical seed phantom. Middle: US im-
age. Right: preliminary unquantified localization
results corresponding to the bottom row.

4 Conclusion
We have presented a proof of concept for a fast semi-
automatic seed localization method using rigid geomet-
ric models, where the seed shape is incorporated as a
prior. Early results on synthetic images support the
potential interest of the approach for real time, intraop-
erative seed localization for dynamic dose estimation.
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