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Léonie Duquet, 75205 Paris Cedex 13, France
2Instituto de Astrofı́sica de Canarias (IAC), Departamento de Astrofı́sica, Universidad de La Laguna (ULL), E-38200, La Laguna, Spain
3LERMA, Observatoire de Paris, PSL Research University,CNRS, Sorbonne Universités, Université Paris Diderot, F-75014 Paris, France
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ABSTRACT
The new generation of deep photometric surveys requires unprecedentedly precise shape and
photometry measurements of billions of galaxies to achieve their main science goals. At such
depths, one major limiting factor is the blending of galaxies due to line-of-sight projection,
with an expected fraction of blended galaxies of up to 50 per cent. This proof-of-concept work
explores for the first time the use of deep neural networks to estimate the photometry of blended
pairs of galaxies in space-based monochrome images similar to the ones that will be delivered
by the Euclid space telescope under simplified idealized conditions. Using a clean sample of
isolated galaxies from the CANDELS survey, we artificially blend them and train two different
network models to recover the photometry of the two galaxies. We show that our approach
can recover the original photometry of the galaxies before being blended with ∼ 7 per cent
mean absolute percentage error on flux estimations without any human intervention and
without any assumption on the galaxy shape. This represents an improvement of at least a
factor of 4 compared to the classical SEXTRACTOR approach. We also show that, forcing the
network to simultaneously estimate fractional segmentation maps results in a slightly improved
photometry. All data products and codes have been made public to ease the comparison with
other approaches on a common data set. See https://github.com/aboucaud/coindeblend.

Key words: methods: data analysis – methods: statistical – techniques: image processing –
galaxies: general – galaxies: photometry.

1 IN T RO D U C T I O N

The upcoming years will be marked by the arrival of a new
generation of deep and wide galaxy surveys from ground [e.g. Large
Synoptic Survey Telescope (LSST), Ivezic et al. 2008], and space

� E-mail: alexandre.boucaud@apc.in2p3.fr

(e.g, Euclid, Racca et al. 2016). Under this new paradigm of big-data
surveys, the community aims to achieve an unprecedented level of
accuracy and precision both in terms of photometry (e.g. photomet-
ric redshifts, Krone-Martins, Ishida & de Souza 2014; Elliott et al.
2015; Beck et al. 2017; Salvato, Ilbert & Hoyle 2018), and shear
measurements (e.g. Kilbinger et al. 2017; Kitching et al. 2017) for
an unprecedented number of objects. This requires to revisit most
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of the commonly used procedures to extract measurements from
images, in order to reduce as far as possible all the systematic
effects and reach the requirements. One particular important source
of error is the blending of sources. As surveys become deeper and
deeper, we expect an increasing fraction of overlapping galaxies
which could bias the measurements at levels beyond requirements
(Dawson et al. 2016). For example, the estimates for LSST say
that ∼45 to 66 per cent of the sources are expected to overlap
to a degree of being problematic for a number of methods, with
∼75 per cent of blends probably composed of only two objects
(Dawson & Schneider 2014; Dawson et al. 2016). If galaxies are
not properly separated, their photometry is biased, which has a direct
impact on the derived redshift (and all other physical properties).
Efficient algorithms to automatically separate (deblend) detected
sources are crucial and will be a key ingredient in the processing
pipelines of the next generation surveys. However, there is currently
no standard solution in the literature and deblending remains an
open issue among the community.

The most widely used software for detecting and separating
objects in large fields is SEXTRACTOR1 (Bertin & Arnouts 1996)
but its use is far from being an optimal solution. In a nutshell,
this software looks for saddle points in the luminosity profiles of
galaxies using multiple thresholds. The main problem with such an
approach is that it is very sensitive to the configuration parameters
and it is difficult to configure so that it works in a wide variety
of cases. The fraction of blended sources which are not identified
as such can reach significant fractions (Laidler et al. 2006). An
alternative way is to simultaneously fit a parametric model to all
galaxies in the image and use the best-fitting models to estimate the
photometry (Pignatelli, Fasano & Cassata 2006; Mancone et al.
2013; Safarzadeh et al. 2015). This approach typically reaches
better photometric accuracy but still requires to properly identify
the centroids of all the different objects. It also assumes simplistic
models for the galaxy surface brightness distribution which do not
encapsulate all the diversity of galaxy morphologies, especially in
the more distant Universe. It is also expensive in terms of computing
time. The classical deblending approaches are therefore insufficient
to reach the level of requirements on measurements of galaxy
properties for upcoming surveys. It is thus timely to investigate
and compare different approaches.

Several groups are working on alternative solutions more adapted
to large volumes of data (Joseph, Courbin & Starck 2016; Tramacere
et al. 2016; Ivezić, Connolly & Jurić 2017). For example, recent
works by the LSST collaboration (Melchior et al. 2018) have started
to develop more global approaches based on non-negative matrix
factorization, that can achieve a more efficient source separation
and enable to put flexible constraints or priors on the shape of the
signals. This approach is however optimized for ground-based data
in which galaxies have little resolved structures and also takes full
advantage of the multiwavelength nature of LSST data. It is less well
adapted for monochrome space data such as the images delivered
by the Euclid space telescope (Jones & Heavens 2019).

The goal of this paper is to explore if machine learning and
more precisely deep learning is an approach worth investigating
for segmenting blended galaxies and estimating their photometry.
During recent years, the use of deep learning approaches for
tasks related to galaxy images has become a burgeoning field of
research in astronomy. One of the earliest and most pervasive
area of application is the classification of galaxy morphologies

1https://www.astromatic.net/software/SExtractor

(e.g. Dieleman, Willett & Dambre 2015; Barchi et al. 2017;
Domı́nguez Sánchez et al. 2018; Huertas-Company et al. 2018;
Khalifa et al. 2018). More recent research includes the recovery of
galaxy features in noisy images by Schawinski et al. (2017), the
finding of galaxy–galaxy strong lensing effects by Lanusse et al.
(2018), and the generation of physically realistic synthetic galaxy
images to augment existing data sets and consequently provide the
aforementioned deep learning approaches with larger training sets
(Ravanbakhsh et al. 2017; Fussell & Moews 2019).

In a recent work, Reiman & Göhre (2019) used deep learning for
the first time to deblend Sloan Digital Sky Survey (SDSS) galaxies.
They introduce a modified Generative Adversarial Network (GAN,
Goodfellow et al. 2014) to separate blended galaxies, combining
aspects of the super-resolution GAN (SRGAN) by Ledig et al.
(2017) and the deep residual learning framework by He et al.
(2016). With the generator as a modified residual network that
features two branches, each branch generates one of the two
blended galaxies. They show promising results. However, their
procedure to generate blended images for training based on the
pixelwise maximum of the two individual stamps does not reflect
the true process resulting in line-of-sight blending which sums the
photons coming from both sources.

In this paper, we further explore the use of machine learning
to both segment and measure the photometry of blended pairs of
galaxies. The approach presented here is designed having Euclid
data in mind as the main target of application (i.e. monochrome
space-based data). The goal is thus to obtain a neural network
optimized to predict the photometry of pairs of galaxies observed
with fairly high spatial resolution in one single band.

This paper is organized as follows: in Section 2, we describe
the realistic image data set of blended galaxy pairs we created.
We then detail the reasons behind the choice of deep learning
methods for this paper and carefully unroll the methodology used
to set up our networks in Section 3. These methods are applied to
our emulated data set in Section 4, where we compare the results
with SEXTRACTOR, before discussing the pros and cons in the final
Section 5.

2 DATA SET OF ARTI FI CI ALLY BLENDE D
G A L A X I E S

Galaxy blending is a confusion effect created by the projection of
photons from galaxies on a given line of sight, to the 2D plane. As
telescopes get more sensitive, we have access to a higher number
of galaxies and thus to a higher chance of finding multiple objects
in the same line of sight (Dawson & Schneider 2014).

The quantification of the effects of blending on the derived
galaxy properties is a difficult task by nature, due to the due to
the loss of spatial information from pixelation in the sensors and
convolution with the point spread function. Most existing methods
require additional knowledge (several wavelength bands), or a
priori knowledge, like parametric models, of the galaxy profiles,
symmetries, etc. Moreover, to assess the accuracy of such methods,
we are often left with bottom-up approaches like the simulation of
galaxy blending using software like GALSIM (Rowe et al. 2015),
for which we have access to the true light distribution of each
object in the image. But as realistic as they can be, simulated
images often show their limits when compared with the diversity
and the singularity of real data images (Haussler et al. 2007). This is
particularly critical for machine learning which implicitly assumes
that the training sets are fully representative of the real data.
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In order to get a realistic representation of observations, for this
work we decide to simulate blended objects from real observations.
Although this approach eventually propagates the biases and errors
existing in the observations, it has the advantage of including
fully realistic morphologies. We describe in the next paragraph
the methodology we follow to generate our galaxy sample.

2.1 Parent sample

The parent sample used in this paper is the H-band selected cata-
logue from the Cosmic Assembly Near-infrared Deep Extragalactic
Legacy (CANDELS) survey, presented in Dimauro et al. (2018).
The catalogue contains galaxies with F160W < 23.5, for which
both visual morphologies and parametric bulge–disc decomposition
are performed. From this parent data set, we first define a clean
sub-sample of isolated galaxies with unambiguous morphologies
that are then used to perform the blends. More precisely, we use
the neural-network-based morphological classification published
in Huertas-Company et al. (2015) and select galaxies with four
different morphological types:

(i) pure bulges: PSPH > 0.8 ,
(ii) pure discs: PDISC > 0.8 ,
(iii) two component bulge+disc: PSPH > 0.8 and PDISC > 0.8 ,
(iv) irregular galaxies: PIRR > 0.8 .

Note that the purpose of this selection is not to have a complete
sample of galaxies, but to have a clean data set of isolated galaxies
with different morphologies for which we can reasonably trust
the segmentation procedure. By selecting galaxies with very large
probabilities of being in a given morphological type we can be
reasonably certain that we remove originally blended systems
or complex structures such as mergers. We also notice that the
sample is built to be representative of the general field population
at intermediate redshifts, which is expected to be the dominant
population in the Euclid Survey. However, extreme environments
such as massive clusters or nearby very resolved galaxies are not
considered here.

From this initial sample, we generate 128 × 128 pixel stamps
centred on the objects. We then remove all other objects present in
the stamps. To that purpose, we apply a morphological dilation to
the original segmentation obtained with SEXTRACTOR and replace
all distinct regions with random pixels sampled from empty regions
in the background. This process is illustrated in Fig. 1.

In order to further clean the sample, we visually inspect the
selected galaxies and remove the ones which still present anomalies
such as originally blended systems not detected by SEXTRACTOR,
or the ones for which the removal of companions created some
visual artefacts in the images. The final sample results in ∼2000
galaxies whose types are summarized in Table 1. Fig. 1 shows a
selection of these galaxy stamps, along with the stamp after the
removal of neighbouring objects and the associated SEXTRACTOR

segmentation map of the central isolated galaxy.

2.2 Blending

To create the artificially blended systems, we combine the galaxies
of the clean sample we just obtained using the following procedure.
First, we randomly select one galaxy, referred to as the central
galaxy, with a magnitude and an effective radius respectively
denoted magcen and Rcen. Rcen is the semimajor axis of the best
Sérsic fit model from the catalogue by Dimauro et al. (2018).
Second, we pick a second galaxy in the catalogue, referred to as

the companion galaxy with properties magcomp and Rcomp, so that
it satisfies magcen − 2 < magcomp < magcen + 2. Then, we set R =
max(Rcen, Rcomp) as the biggest effective radius between the two
galaxies and randomly select a couple of shifts (�x, �y) from a
uniform distribution ranging from 0.5 · R and half of the image
size. We use these shifts to apply a translation to the stamp of the
companion galaxy. Finally, the blend is created by adding up the
pixels of two stamps.

Note that the blending process contains two oversimplifications
as compared to real observed blends. First, we avoid overlap in
the very inner parts of the central galaxy (<0.5Re) and secondly,
the central galaxy is always placed at the centre of the stamp. We
are fully aware of these simplifications but consider this enough
complexity for our blends in a first proof-of-concept work.

We repeat this process to build up a sample of 30 000 blend
images, which necessarily contains some redundancy because each
galaxy appears in multiple stamps. However this redundancy should
not be considered problematic due to the strict separation between
training and test galaxies (see Section 2.3). It allows us to build
a large enough sample to train the networks as described in the
following. We show in Fig. 2 some examples of blended pairs
with different magnitude differences and distances between the two
galaxies.

To summarize, at the end of this process, we have for every
generated blend system:

(i) the original CANDELS cut-outs of the central and companion
galaxy,

(ii) the associated SEXTRACTOR segmentation maps,
(iii) the associated SEXTRACTOR photometry (FLUX AUTO),
(iv) the generated blended stamp.

With the purpose of triggering the comparison with other ap-
proaches, the software used to generate the blends as described
above has been publicly released as a package called candels-
blender.2

2.3 Training, validation, and test data sets

As explained in the previous sections, the blend stamps contain some
level of redundancy since the same galaxy can appear in several of
them. This could artificially improve the results evaluated in the test
set because the network might have seen already the same galaxy in
the training phase. To avoid this potential bias, we adopt a specific
procedure. Following a standard approach in machine learning
(e.g. Bengio 2012), we split the data set into three subcategories:
training, validation, and test, respectively 60 per cent, 20 per cent,
and 20 per cent of the full data set. During the training, the model
loss (i.e. cost function) is periodically computed on the validation
sample to ensure it is not diverging from the training, which would
indicate overfitting or a bad convergence of the network. Training
and validation samples can be randomly selected from the same data
set, however the test sample, on which the metrics are computed,
must be carefully chosen to be both distinct from and representative
of the sample used for the training and validation. To achieve
this feature and obtain meaningful results, we isolate the sample
of galaxy stamps used for the test data set at the very beginning
by randomly picking them out of the catalogue. This way, all the
galaxies used to construct the blends for the training and validation
are never to be found in the test sample of blends, and vice versa.

2https://github.com/aboucaud/candels-blender
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Figure 1. Selection of CANDELS cut-outs displaying at their centre galaxies with different morphologies. The left-hand column shows the original CANDELS
image. The middle one shows the same cut-out after the neighbours removal procedure, leaving the central galaxy fully isolated. The rightmost column shows
the SEXTRACTOR segmentation map for that isolated galaxy. The galaxy images have been asinh-stretched to enhance the details.
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Table 1. Morphological mix of the final data set used to generate the blended
systems.

Galaxy type
Number before

inspection
Number after

inspection

Bulge 386 352
Disc 473 433
Bulge+disc 884 702
Irregular 875 432

Total 2618 1919

In the end, we have a training/validation set composed of 25 000
blends and a test set of 5000 blends. This generated data set is used
to train several deep neural network architectures as described in
the next section.

3 ME T H O D S

Our goal is to recover, with deep learning, the photometry of the
two galaxies before the blending process. The sample being made
of real galaxies, we make the assumption that the ground truth
(also referred to as the target in supervised learning) is the flux
of the isolated galaxy computed by SEXTRACTOR on the original
CANDELS cut-out. We also assume that the segmentation mask
provided by SEXTRACTOR for the isolated galaxies is correct. We
understand that these are strong assumptions. However, the main
purpose of the work does not depend on the absolute accuracy of the
training sample. The main objective is to calibrate how well we can
recover the photometry of blended galaxies relative to the accuracy
obtained on the same galaxies when they are isolated. In that respect,
the ground truth can be replaced with any other measurement.

We perform two different experiments. In the first one we use
a standard Convolutional Neural Network (CNN, LeCun et al.
1989; Schmidhuber 2014; Sze et al. 2017) to directly compute
the fluxes of the two galaxies from the blend image. We call this
configurationblend2flux . In the second experiment, we recover
with a unique architecture, the fractional segmentation map, which
is an image in with pixel values between 0 and 1, depending on
the fraction of flux belonging to a given galaxy ; as well as the
flux, for each of the two galaxies. The idea is to calibrate whether
having information on the fractional segmentation map helps the
network to obtain a more reliable photometry. We call this second
experiment blend2mask2flux .

The networks are implemented, trained, and evaluated using the
PYTHON API Keras,3 which runs on top of TensorFlow.4 The
source code needed to reproduce the results of this paper as well as
all the plots will be publicly released upon acceptance.

3.1 Configuration 1: blend2flux

Experience with deep learning has proven that reducing pre-
processing to a minimum often results in better results (Liang &
Hu 2015). We thus start off with a deep neural network model that
predicts fluxes directly from the blended images without any inter-
mediate step. We use to that purpose a standard CNN configuration
including a feature extraction convolutional part followed by a fully
connected (or dense) network. The input of the network is thus a

3https://keras.io
4https://github.com/tensorflow/tensorflow

one-channel image with two blended galaxies and the output is a
vector of two floating numbers corresponding to the fluxes of each
galaxy.

We build a modular version of this sequential network, where the
number of layers of both the convolutional and the dense network,
as well as their filter size are adjustable. The architecture whose
results are shown in this paper is sketched in detail in Fig. 3. The
CNN part is made of five convolutional layers activated using a
ReLU function and using convolution kernels of size 3 × 3 only.
Max-pooling layers are inserted in between each convolution layer
to downsample the images. The first layer starts with a filter size
of 256, and doubles this filter size every other layer. After the fifth
convolutional layer, the data are flattened to be fed to a three-layer
classical neural network, finally yielding a vector of size two with
the fluxes. Given that our network is aiming at correct relative
flux measurements, we choose to use the mean absolute percentage
error (MAPE, see equation 1) as our loss function. To adjust the
weights during training, we select the Adam algorithm, a popular
optimizer for deep learning due to its fast and effective learning
(Kingma & Ba 2014). Adam is an extended stochastic gradient
descent algorithm, meaning it iteratively updates network weights
with individual adaptive learning rates based on both first and second
moments of the gradients.

MAPE (ymeas, ytrue) = 100

n

∑

n

∣∣∣∣
ytrue − ymeas

ytrue

∣∣∣∣ (1)

This blend2flux network, which has about 25.7 million free
parameters, is then trained from scratch using the training set of
25 000 images. We consider the network as having converged after
the validation loss, computed on the validation part of the training
sample, stays on a plateau for a full 10 consecutive epochs after
having decreasing the learning rate several times (Yao, Rosasco &
Caponnetto 2007). For this network, it happened after 70 epochs
which took less than 5 h of training on an Nvidia K80 GPU.

The network built being modular, we trained a few variations
around the fiducial network presented above to compare their
relative performance. The results of the various network models
as a function of the number of filters for the first convolutional
layer are summarized in Table 2 with the fiducial results in the
middle column. The table shows that doubling the initial filter
size (right-hand column) only slightly increases the performance
on the validation set regarding the estimated fluxes in Section 4,
at the expense of quadrupling the number of parameters (hence
the training time and computation cost). Using instead a smaller
network with an initial filter size of 64 (left-hand column) reduces
the number of parameters to about 1.6 million, which has a higher
impact on the performance (∼ 1 per cent worse). The network still
reaches though a precision below 10 per cent on estimated fluxes,
despite being significantly reduced in size. We therefore want to
stress here that smaller and simpler networks than our fiducial one
still outperform SEXTRACTOR results.

3.2 Configuration 2: blend2mask2flux

In a second experiment, we aim at recovering the individual
segmentation maps for the two galaxies in addition to the pho-
tometry. The objective of this exercise is to quantify if a fraction
segmentation map contains additional information that the networks
can use to improve the photometry. We achieve this objective using
a concatenation of two different networks, one to produce the
fractional segmentation maps, and a second to predict the fluxes
from these maps and the blend image. We call that composite

MNRAS 491, 2481–2495 (2020)
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Figure 2. Selection of blended systems created and used in this work. The stamps are ordered vertically by the distance in pixels between the galaxy centres,
and horizontally with respect to the magnitude difference between the galaxies. The images have all been asinh-stretched for visualization purposes.

network blend2mask2flux. One important constrain when
building this network was to ensure it had approximately the same
number of free parameters as the fiducial blend2flux .

To produce the probabilistic maps, we use a suitable deep net-
work architecture from the literature called a U-Net (Ronneberger,
Fischer & Brox 2015). U-Net was designed to perform biomedical
image segmentation and has already proven useful to detect and
segment overlapping chromosomes. The network architecture is
quite unique and characterized by an ability to capture both fine
and large-scale information of the input image by keeping a copy
of each downsampling step (convolution + max-pooling) and
concatenating it at the upsampling step. For our purpose, we create
a modular version of the original U-Net architecture made of blocks
of two convolutional layers activated with ReLU, followed by either
a downsizing or upsizing layer (respectively, max-pooling and up
convolution layers). Because the output images are of the same
shape as the input blend, each downsizing block is associated with

an upsizing one in the network, and the model can therefore be
parametrized by the number of consecutive downsizing blocks, as
well as the size of the filters (number of convolution kernels). After
some tests and with a range of these parameters, we selected a U-
Net with a depth of 5 and an initial filter size of 32, which we also
refer to as the fiducial model. The exact architecture of this network
is depicted on Fig. 4. The last activation of the model is a sigmoid
function that creates output images with pixels in the range [0, 1].
We use a binary cross-entropy loss to train the model. To compare
with the input results, we convert the fractional segmentation maps
to traditional binary segmentation maps using a threshold at 0.5.
Further results of this pure segmentation stage will be discussed in
a specific Section 4.4 at the end of this paper.

The second part of this composite model is the retrieval of the
photometry using the blend image and the fractional segmentation
maps obtained with the U-Net. For this part, we use an architecture
similar to the blend2flux model shown in Section 3.1 with a

MNRAS 491, 2481–2495 (2020)
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Figure 3. Schematic representation of the fiducial blend2flux network. The network takes as input an image of a blended system and outputs the fluxes of
the two galaxies. The blue boxes correspond to the convolutional part of the network. The yellow part is the fully connected section. The sizes of the different
layers and convolutions are also indicated.

reduced number of free parameters, and changing the input to a
three-channel input – the concatenation of the blend image, the
fractional segmentation maps of the central galaxy, and of the com-
panion galaxy – (instead of one channel – the blend image – in the
original blend2flux network). Like the blend2flux model,
the output of the network is evaluated using the MAPE loss.

The composite blend2mask2flux network is trained follow-
ing a particular process. First, the U-Net is trained alone to produce
accurate segmentation maps of the two galaxies. Then, we load the
pre-trained weights of the U-Net into theblend2mask2flux net-
work, and train the network end-to-end with respect to the flux
retrieval, i.e. using the MAPE loss on the photometry. Note that we
still keep the loss on the U-Net but with a weight of 0.1 compared to
the photometry loss. This last optimization step, during which we
optimize the network with respect to both the segmentation and the
photometry loss, also fine-tunes the fractional segmentation maps
for flux measurement. A more detailed discussion on this aspect can
be found in Section 4.4.

This blend2mask2flux network presented above has 18.5
million free parameters, a number very close and even inferior
to the fiducial blend2flux model. The U-Net part is trained
from scratch on the 25 000 image training set for about 50 epochs.
Then the end-to-end blend2mask2flux network is trained
during a few hundred epochs with a small learning rate. This full
process takes about 50 h of training on a Nvidia K80 GPU, much
longer than that of the blend2flux network. Both the model
complexity, and the training process (reduced batch size for the
U-Net training) are accountable for that order of magnitude time
difference.

3.3 Baseline: SEXTRACTOR

In order to have a baseline to compare with, we also run a classical
SEXTRACTOR segmentation procedure on the blended systems.
We highlight that the comparison is not completely fair since
SEXTRACTOR does not only measure photometry but also detects
the objects without any prior on the number of existing objects.
However, the two deep learning approaches implicitly incorporate
a prior on the number of blended galaxies through the training set
(networks are trained only with images containing two objects).

In order to minimize that effect, and help SEXTRACTOR as much
as possible, we adapted the procedure reported by Rix et al. (2004),
Galametz et al. (2013), where SEXTRACTOR is first ran in a cold

Table 2. blend2flux network performance computed on the entire test
set using MAPE.

Initial filter size 64 256 512

Number of parameters
(Mio.)

1.6 25.7 102.7

Flux error central (per cent) 9.33 8.39 8.25
Flux error companion (per
cent)

8.79 8.01 7.98

Total flux error (per cent) 9.06 8.20 8.12

mode, aiming to select the larger elements in a blended image
followed by a second round where it is ran in a hot mode – which is
more sensitive to small structures. In our particular case, where the
data are known to have only two elements, the cold mode was used
to scan all the images and a subsequent run with the hot mode was
restricted to those images for which SEXTRACTOR identified only
one object. Our code used the PYTHON package sep (Barbary 2016)
and the parameters used for both modes are described in Table 3.

Following this procedure, results can be divided in three cases:

(i) SEXTRACTOR detects exactly two galaxies (75 per cent): fluxes
were associated with central or companion galaxy based on the
closest detection.

(ii) SEXTRACTOR detects only a single object, meaning it is not
able to deblend the pair (22 per cent): detected object was associated
with the central galaxy if its measured centroid is located within
0.5Rcen from the centre of the image. Otherwise, detection was
associated with the companion galaxy.

(iii) SEXTRACTOR overdeblends and detects more than two ob-
jects (3 per cent): the two brightest detections were considered –
others were ignored.

4 R ESULTS

In this section, we evaluate the results of the three experiments
described previously. The main objective is to test the photometric
accuracy of blended objects as compared with the photometry
obtained on the same objects when they are isolated. We use the
magnitude difference as the main indicator of accuracy and explore
the results as a function of two main parameters: the magnitude
difference between the two galaxies and the distance between the
two galaxy centroids.
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2488 A. Boucaud et al.

Figure 4. Schematic representation of the U-Net part of the blend2mask2flux network. The network takes as input an image of blended system and
outputs two fractional segmentation maps, each pixel is assigned a float value between 0 and 1 corresponding to the fraction of flux belonging to a given galaxy.
The lines indicate the connections among the different layers.

4.1 Overall photometric accuracy

Figs 5 and 6 show the recovered magnitude in the blended systems
(hereafter output magnitude) for the three different methods, the
blend2flux and blend2mask2flux networks and SEXTRAC-
TOR, as a function of the magnitude measured on the same isolated
galaxies (hereafter input magnitude). On Fig. 5, we focus the
results on the central (top) and the companion (bottom) galaxy
using the blends for which SEXTRACTOR detects them. On Fig. 6,
we aggregate the results on both galaxies, and distinguish the
cases for which SEXTRACTOR detects the pair (top) and over- or
underdeblends (bottom).

On both figures, the deep learning architectures behave very
similarly. The relation between the two quantities is centred on
the one-to-one line and the typical scatter is ∼0.1 mag. The scatter
is roughly constant over all the luminosity range explored which
means that the photometry can be recovered with similar accuracy
for bright and faint objects in our sample. This is clearly not the case
for the SEXTRACTOR results which present a noticeable increase of
the scatter at the faint end. This difference highlights an important
advantage of a machine learning approach. The loss function used
(MAPE) does penalize errors regardless of the flux, which helps
producing an unbiased estimator.

In each panel of Figs 5 and 6, we quantify in more detail
the bias and scatter on the recovered photometry. The embedded
histograms show the distribution of photometric error �mag =

Table 3. SEXTRACTOR parameters for hot and cold modes.

Parameter Hot Cold

Detection threshold 4 5
Minimum pixel area per object 6 10
Minimum contrast ratio 0.0001 0.01
Number of thresholds for deblending 64 64

magblend − magisolated between the output and input magnitudes.
The distributions for both the central and the companion galaxy
are generally well centred around zero for the three codes, which
indicates that the estimators are globally unbiased. We note that
the SEXTRACTOR panels present a slightly skewed histogram and
positive bias of 0.1 mag for the central galaxy. We explain this slight
bias by looking at the selection process of the companion galaxy
described in Section 2, which is skewed a bit towards selecting
fainter galaxies than the central ones.

The visible difference between the methods are shown in
the scatter. Both deep learning approaches present a very low
scatter of ∼0.1 mag compared to the ∼0.5–0.7 mag scatter of
SEXTRACTOR. Another good indicator of the model performance,
used for training the models, is the MAPE (see equation 1),
computed here on the magnitude. Again, both network model
show good and similar performance, with always a slight ad-
vantage for the blend2mask2flux, whereas SEXTRACTOR is
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Blended galaxy photometry with CNNs 2489

Figure 5. Magnitude measured on the blend systems as a function of the magnitude measured by SEXTRACTOR on the same isolated galaxies (isolated
magnitude). The top row shows the results for the central galaxy using the blends for which SEXTRACTOR detected either the two galaxies or only the
central one. The bottom row shows the results for the companion galaxy using the blends for which SEXTRACTORdetected either the two galaxies or only the
companion. The columns refer to different codes or models applied to the blend images, respectively from left to rightblend2flux,blend2mask2flux and
SEXTRACTOR. The dashed line denotes identical estimation from blended and isolated galaxy images to guide the eye. The inner panels show the histograms of
photometric errors (�mag = magblend − magisolated). The numbers in each panel indicate the average photometric error �mag, the dispersion σmag, the fraction
of outliers, defined as |�mag| > 0.75, and the MAPE on the flux.

distanced. These two indicators show an overall improvement of
the measured photometry of a factor 4 using the deep learn-
ing models compared to using SEXTRACTOR on these blended
galaxies.

Another important difference between the methods is the fraction
of catastrophic errors, i.e. cases in which the estimated photom-
etry in the blended systems significantly differs from the input
value. We arbitrarily define catastrophic errors as |�mag| > 0.75,
which corresponds to an error of a factor of 2 in flux. The
fraction of outliers defined that way is two orders of magnitude
smaller with the deep learning methods compared to SEXTRAC-
TOR. Both network architectures achieve a comparable fraction of
∼ 0.1 per cent outliers, whereas the SEXTRACTOR fraction is of
the order of ∼ 10 per cent, even when restricting the results to the
cases where SEXTRACTOR detects both objects (see top panel of
Fig. 6).

Lastly, as shown on the bottom panels of Fig. 6, the performance
of both blend2flux and blend2mask2flux models on the
galaxies that SEXTRACTOR did not manage to accurately deblend
(25 per cent) gets affected compared with the well deblended cases
(top panels) but remains unbiased with a low scatter and an outlier
rate below 0.4 per cent.

4.2 Photometric accuracy versus blend properties

Aiming for an unbiased performance for a range of blend properties,
we report results as a function of the magnitude difference between
blended galaxies and the distance between the two objects.

In Fig. 7, we show the binned photometric error (the bias and
scatter in our magnitude estimate) as a function of the difference
in magnitude between the two blended galaxies. We observe that
the two deep learning approaches present a very stable behaviour
across the whole range of magnitude difference. As expected, the
bias slightly increases when one of the galaxies in the pair is
significantly brighter. However, it remains below ∼0.06. Overall
the bias remains always lower than the SEXTRACTOR-based
estimates. The deep learning results are also very stable in terms
of scatter which is of the order of ∼0.1 mag. Here, the scatter for
SEXTRACTOR-based estimates is always significantly larger (∼0.25
mag) than for the networks, and also shows a strong increase with
magnitude difference between central galaxy and companion. For
both networks this trend is only slightly visible.

We look at the the bias and scatter with respect to the normalized
distance between the two galaxies (Fig. 8). While the deep learning
results display little photometric dependence with distance for both
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Figure 6. Magnitude measured on the blend systems as a function of the magnitude measured by SEXTRACTOR on the same isolated galaxies (isolated
magnitude). The top row shows the results for the central and companion galaxies on the blends for which SEXTRACTOR detected exactly two galaxies, while
the bottom row show the results on the blends for which SEXTRACTOR detected either one or more than two galaxies (under- or overdeblending). The different
columns indicate different codes or models applied to the blend images, from left to right blend2flux, blend2mask2flux, and SEXTRACTOR. The
dashed line denotes identical estimation from blended and isolated galaxy images to guide the eye. The inner panels show the histograms of photometric errors
(�mag = magblend − magisolated). The numbers in each panel indicate the average photometric error �mag, the dispersion σmag, the fraction of outliers, defined
as |�mag| > 0.75, and the MAPE on the flux.

central galaxy and companion, the SEXTRACTOR results show a
fluxes underestimated by up to 1 mag for close objects (<Re).

In both plots, the SEXTRACTOR measurements are systematically
more biased and more scattered than the machine learning-based
estimates across the whole range of parameters. We also notice that
both neural net architectures behave very similarly.

4.3 Photometric accuracy and morphology

The galaxies in our sample are classified into four morphological
types (pure bulge, pure disc, two component bulge+disck, irregular)
and are distributed as was shown in Table 1. One major property of
machine leaning methods is that they do not assume any external
prior on the galaxy shape (as opposed to model fitting techniques).
Alternatively, the prior is inferred from the data during training. We
explore in Fig. 9 the dependence of the photometric accuracy on the
morphological type. We plot the median bias and scatter in bins of
magnitude and distance now divided by morphological type.

Surprisingly, spheroidal galaxies tend to present larger errors
when these galaxies are fainter than the other galaxy in the blended
system (�mag > 0). This behaviour seems to be present in both
codes. The reason for this is unclear. One possible explanation is that
the outskirts of the spheroids are too faint to be detected. Since these
objects typically have large Sérsic indices (i.e. steep luminosity

profiles), the fraction of light in the outskirts is not negligible.
Another possible explanation is that, as can be seen in Table 1,
spheroids are under represented as compared to other classes.
It might be that the network did not see enough examples. The
behaviour of SEXTRACTOR is different, in the sense, that irregulars
clearly present a larger bias than the other morphological types.
This is expected, since irregular light profiles are more difficult to
capture. The machine learning approaches perform better since the
priors were learned during the training phase.

As can be seen in Fig. 9 the photometric accuracy (magnitude
scatter) overall is considerably lower for our two deep learning
algorithms than for SEXTRACTOR results.

4.4 Segmentation maps

Throughout the paper, segmentation maps have been con-
sidered as a by-product of both SEXTRACTOR and the
blend2mask2flux network, possibly improving the photome-
try. In this subsection, we focus on the recovery of the segmentation
maps of blended galaxies from the deep learning architecture, as
well as the comparison between the results of the initial training
of the U-Net alone and the ones after the training of the full
blend2mask2flux network, which is characterized by the
tuning of the fractional segmentation maps for photometry.
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Figure 7. Binned photometric errors (�mag = magblend − magisolated) as
a function of the relative magnitude difference in the blended system.
Solid lines and left-hand axis denote median values and dotted lines and
right-hand axis refer to scatter values. Colours indicate different codes:
blend2flux (dark green), blend2mask2flux (pink), and SEXTRAC-
TOR (blue). The top plot shows the values for the central galaxy and the
bottom plot for the companion galaxy. In both plots, only the results where
the selected galaxy is detected with the SEXTRACTOR method are used.

In Section 3.2, we describe the blend2mask2fluxmodel as a
hybrid network made of a U-Net whose output is fed to a modified
blend2flux network. The U-Net is in charge of reproducing the
two SEXTRACTOR segmentation maps of the original CANDELS
galaxy cutouts from the blend image. In other words, its task is to
take as input the full 128 × 128 blend image and produce two
binary 128 × 128 images that correspond to the masks of the
central and companion galaxy; this can be seen for a selection
of four blends in Fig. 10. For better assessment of the accuracy
of the method, we trained the network to output the fractional
segmentation maps in a specific order, central galaxy first, and then
the companion. The cost function (loss) used to train the modified

Figure 8. Binned photometric errors (�mag = magblend − magisolated) as
a function of the distance between the two galaxies, normalized by the
effective radius of the selected galaxy. The notations and data selection are
the same as the one in Fig. 7.

U-Net is a binary-crossentropy, which performs well for a pixel-
by-pixel binary classification as needed for our segmentation maps.

To score the results, the binary-crossentropy loss is not very
informative since every pixel rightfully classified as background
adds up to the accuracy, while we would like to assess the similarity
to the target SEXTRACTOR segmentation map. For that purpose, we
use a metric called Intersection over Union (IoU) also known as
Jaccard index (Jaccard 1901) of set A and B

IoU(A, B) = |A ∩ B|
|A ∪ B| = |A ∩ B|

|A| + |B| − |A ∩ B| . (2)

It is usually defined in computer vision for bounding boxes, but can
be adapted to any shape. This metric has the advantage of decreasing
very rapidly to zero in case of a mismatch between A and B in terms
of location or morphology. Therefore a score superior to 0.5 is
considered a good score.
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Figure 9. Dependence of photometric bias (solid lines, top panels) and scatter (dotted lines, bottom panels) on the morphological type for the three
codes considered in this work as a function of the magnitude difference. From left to right, the different panels show the results for blend2flux ,
blend2mask2flux, and SEXTRACTOR, respectively. The different colours indicate the morphological type: spheroids (yellow), disc + spheroids (blue), and
discs (red) and irregulars (light green). The dark blue lines show the results for all galaxies.

After training, the U-Net with the setup described in Section 3.2
obtains an average IoU score of

IoUU−Net = 0.82

on the test images, which is an indication of a very good recovery.
However, once the blend2mask2flux is trained end-to-end to
recover the photometry, thus allowing the parameters of the U-
Net section to vary, the average IoU score on the test data set drops to

IoUblend2mask2flux = 0.70.

The outcome and evolution from the pure segmentation ob-
jective to the photometry objective can be seen in Fig. 10. We
observe that the masks predicted by the two networks differ.
The blend2mask2flux network has therefore modified the
segmentation maps to improve photometric accuracy.

To further quantify the evolution of the segmentation when
tuning the network for the photometry, we show the histograms
of the IoU score for the two models in Fig. 11. We see that the
pure segmentation network has a very small dispersion, which
broadens and becomes worse when it is optimized for the pho-
tometry. To better understand this difference, we compare directly
the area of the overlapping region in the predicted masks to
the ground truth. We compute the area by summing the pixels
belonging to the segmentation maps of both galaxies npred and
compare with the sum on the initial SEXTRACTOR segmentation
maps ntrue via a simple estimator averaged over the entire test

data set

�n =
〈
ntrue − npred

〉

〈ntrue〉 .

We measure �n � −0.05 for the U-Net and �n � 0.31 for
the blend2mask2flux model, which means that the number
of pixels belonging to the overlapping region is slightly overes-
timated by the former method and well underestimated by the
latter. The interpretation is that the blend2mask2flux net-
work tends to ignore the regions of overlap between galaxies
since inferring the flux from these regions is more uncertain.
This most probably results in a small positive bias reported in
Fig. 7.

5 SU M M A RY A N D C O N C L U S I O N S

We have presented a first test of a deep learning method to measure
the photometry of blended systems in monochrome space-based
images of the distant Universe under simplified conditions.

First, we built a training set out of observed high-redshift galaxies
from the CANDELS survey which have been artificially blended.
The data set covers a representative range of morphologies (bulges,
discs, and irregulars), magnitude differences (−2 < �mag < 2),
and distances (0.5Re < D < 4Re) between the pairs. The data set of
blended pairs is made public with this work to promote comparisons
with other approaches.
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Figure 10. Selection of four simulated blends from the test data set and the recovery of the individual galaxy masks through the U-Net and
blend2mask2flux networks. The leftmost column shows the stamp of blended galaxies that is input of the network. The next two columns are the
segmentation masks obtained on the individual galaxy images with SEXTRACTOR (considered ground truth in this work), blue refer to the central galaxy
and brown to the companion one. The last four columns show the predicted maps after threshold, yielded respectively by the U-Net architecture and the
blend2mask2flux model as labelled. For each recovered galaxy mask, the segmentation score (IoU) as compared the input mask is indicated in the lower
right corner.

Figure 11. Histogram of the distribution of segmentation score (IoU)
comparing the segmentation maps of the individual galaxies with
the one obtained on the blended image with the U-Net and the
blend2mask2fluxmodel, for all the blended galaxies in the test set. The
U-Net model being the starting point of the blend2mask2flux model,
we can consider the difference between the orange histograms and bars to
the blue ones as an indicator of the impact on masks when optimizing for
the photometry.

We have tested two different neural network architectures. The
first one measures the fluxes of the two galaxies directly from the
images. The second approach, more complex, also estimates the
fractional segmentation maps. The networks are trained with a sam-

ple of 25 000 galaxy pairs and tested on an independent sample of
5000 pairs. The results are compared to the standard SEXTRACTOR

approach on the same test set. Our main results are:

(i) Both deep learning approaches result in an unbiased pho-
tometric estimate with a typical uncertainty of ∼0.1 mag. This
represents an improvement of at least a factor of 4 in flux error as
compared with SEXTRACTOR even if the comparison is restricted
to the cases where SEXTRACTOR detects exactly two objects as
expected.

(ii) The fraction of galaxies for which the photometric error ex-
ceeds 0.75 mag is as low as ∼ 1 per cent in the two machine learning
approaches. This value reaches ∼ 12 per cent for SEXTRACTOR. Our
deep learning methods also reach an excellent photometric accuracy
in these cases where SEXTRACTOR over- or underdeblends (i.e. finds
more or less than two galaxies per image).

(iii) The photometric accuracy obtained with the two deep
learning approaches is very stable across all magnitude differences
and distances explored in this work. Even for large magnitude
differences between the two galaxies (factor ∼2), the photometric
uncertainty stays close to ∼0.2 mag. This represents a major
improvement as compared to SEXTRACTOR whose performance
strongly depends on the properties of the blended system; at large
magnitude differences its photometric uncertainty can reach 1 mag.

(iv) The presented method does not assume any pre-defined
model for the shape of galaxies. This is translated into a comparable
photometric accuracy for all the morphological types explored in
this work (discs, bulges, and irregulars).
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(v) Estimating and using the segmentation maps to estimate
photometry results in a marginal gain in terms of photometric
accuracy. The more complex network reaches slightly lower pho-
tometric errors and a smaller fraction of outliers at the expense of
significantly larger training times. However, it has the advantage
that the fractional segmentation maps can be used to estimate
uncertainties. We will explore this in future work.

(vi) When a network is asked to optimize both for segmentation
masks and photometry simultaneously, the recovered masks are
usually tighter than the original ones derived by SEXTRACTOR on
the isolated galaxies. This is especially true for irregular and bulgy
galaxies.

This proof-of-concept work shows that machine learning can be
used as a powerful tool on large imaging data sets, to measure
the photometry. Despite the simplistic constraints we imposed on
our data set: two galaxies per stamp, one galaxy pinned at the
image centre and no blends with completely overlapping galaxy
centroids (also referred to as unrecognized blends), our photometric
measurement networks have demonstrated that on monochromatic
images, they outperform the traditional SEXTRACTOR approach with
respect to photometric accuracy, precision, outliers fraction and
stability towards different morphological types.

On top of that, we trained a network to also produce fractional
segmentation maps. With a lower number of free parameters, the
network using these maps systematically achieved better results
on the photometry than the direct mapping between the blend
image to the flux measurement. These probabilistic maps – that
once thresholded are called segmentation maps – may well be used
as a starting point by other software to guide the modelling of the
blend galaxies.

Future work will focus on generalizing the approach presented
here to a more realistic situation, including multiple (>2) galaxies
and more complex blend configurations as well as estimating full
posterior of fluxes instead of single point estimates.
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