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INTRODUCTION

Industrial components, systems and products might fail due to multiple failure processes, i.e. wear, corrosion, fracture, fatigue and etc. [START_REF] Jiang | Modeling zoned shock effects on stochastic degradation in dependent failure processes[END_REF]. In literature, failure processes are categorized into two types: degradation processes (or soft failures) and catastrophic failure processes (or hard failures) [START_REF] Li | Reliability modeling of multi-state degraded systems with multi-competing failures and random shocks[END_REF]. In general, soft failures are modeled by a continuous degradation process, e.g., diffusion process [START_REF] Lemoine | On failure modeling[END_REF], continuous-time semi Markov's process [START_REF] Lin | Integrating random shocks into multi-state physics models of degradation processes for component reliability assessment[END_REF], etc. Hard failures are modeled by a random shock process, e.g., a Poisson process [START_REF] Lemoine | On failure modeling[END_REF][START_REF] Lin | Integrating random shocks into multi-state physics models of degradation processes for component reliability assessment[END_REF][START_REF] Klutke | The availability of inspected systems subject to shocks and graceful degradation[END_REF]. Soft failures occur when the total degradation exceeds its threshold. Hard failures are caused by the random shock process in various shock patterns such as extreme shock, cumulative shocks,  -shocks, m -shocks, run shocks [START_REF] Rafiee | Reliability modeling for dependent competing failure processes with changing degradation rate[END_REF].

In practice, those processes are often dependent, making the reliability modeling more complex and therefore referred to as multiple Dependent Competing Failure Processes (DCFP). As a result of the dependence, the arrival shocks may change some attributes of the degradation process [START_REF] Rafiee | Reliability modeling for dependent competing failure processes with changing degradation rate[END_REF] or bring additional damages to the degradation process [START_REF] Peng | Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[END_REF][START_REF] Jiang | Reliability and maintenance modeling for dependent competing failure processes with shifting failure thresholds[END_REF]. The hard failure process may be effected by the degradation process in terms of shock intensity [START_REF] Caballe | A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes[END_REF][START_REF] Huynh | Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks[END_REF][START_REF] Huynh | A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events[END_REF][START_REF] Bagdonavicius | Statistical analysis of linear degradation and failure time data with multiple failure modes[END_REF], shock loads [START_REF] Fan | Multicomponent lifetime distributions in the presence of ageing[END_REF], hard failure threshold [START_REF] Jiang | Reliability and maintenance modeling for dependent competing failure processes with shifting failure thresholds[END_REF] and etc. Various models are developed to calculate the reliability of the DCFPs. For example, [START_REF] Peng | Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[END_REF] assume that the arrival of shocks would bring an abrupt increase to the normal degradation process and develop a model to calculate the reliability. [START_REF] Jiang | Reliability and maintenance modeling for dependent competing failure processes with shifting failure thresholds[END_REF] develop a reliability model to consider the dependency between degradation and shocks where the failure threshold is shifted by random shocks. [START_REF] Rafiee | Reliability modeling for dependent competing failure processes with changing degradation rate[END_REF] consider the circumstance where the degradation rate is shifted by different shock patterns. [START_REF] Jiang | Modeling zoned shock effects on stochastic degradation in dependent failure processes[END_REF] categorize shocks into different shock zones based on their magnitudes, and consider dependence where shocks in different zones have different effects on the degradation process.

In the existing reliability models concerning DCFP, systems fail when either a soft failure or a hard failure happens. Hence, in those models, system's reliability is regarded as the probability that neither soft failure nor hard failure occurs in a period of time, which is calculated by the product of the conditional probability of no soft failure and that of no hard failure conditioned on parameters shared by the two probability functions. Due to the introduction of dependence, the developed reliability functions are usually too complicated to be evaluated analytically. Rather, the reliability has to be calculated by Monte Carlo method, which needs large amount of computation to ensure the accuracy of the results.
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Stochastic Hybrid System (SHS) models are capable of characterizing the system behaviors that involve both continuous and discrete stochastic processes [START_REF] Hespanha | Stochastic Hybrid Systems: Application to Communication Networks[END_REF]. Using Dynkin's formula, the conditional moments of each system state of an SHS can be determined by solving a set of differential equations [START_REF] Hespanha | Stochastic Hybrid Systems: Application to Communication Networks[END_REF]. In this paper, we try to exploit the SHS model to reduce the computational costs of calculating the reliability of DCFPs. As an initial attempt, we consider the system discussed by [START_REF] Peng | Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[END_REF] in this paper, where the degradations depend on random shocks, i.e., the arrival of a random shock would cause an abrupt increase on the cumulative degradation measures.

The reminder of this paper is organized as follows. Sect. 2 gives a brief introduction of stochastic hybrid systems and its solutions. Sect. 3 formulates the DCFP as an SHS and derives the conditional moments of the system states based on Dynkin's formula. The conditional moments are used in Sect. 4 to estimate the reliability and its lower bound for the DCFP. Sect. 5 presents a numerical example to demonstrate the proposed model and compares its solution with the results from Monte Carlo simulation. A brief conclusion of the this paper is made in Sect. 6.

BACKGROUND KNOWLEDGE ON SHS

Generally speaking, stochastic hybrid systems are suitable to characterize systems whose state evolution contains both continuous stochastic processes and discrete stochastic processes. A latest formally defined SHS model proposed by [START_REF] Hespanha | Stochastic Hybrid Systems: Application to Communication Networks[END_REF] is applied in this paper. This SHS model is a subset of a more general class of stochastic processes referred to as the piecewise-deterministic Markov's processes [START_REF] Davis | Markov models and optimization[END_REF]. For formal definitions and analytic solution methods for the SHS, one can refer to [START_REF] Hespanha | Stochastic Hybrid Systems: Application to Communication Networks[END_REF][START_REF] Hespanha | A model for stochastic hybrid systems with application to communication networks[END_REF][START_REF] Hespanha | Modelling and analysis of stochastic hybrid systems[END_REF].

The state space of a SHS is a combination of a discrete state

  q t Q  and a continuous state   n t  x
, where Q is a finite set containing all the possible discrete modes of the system. Generally, a SHS is defined by the following items [START_REF] Hespanha | Modelling and analysis of stochastic hybrid systems[END_REF]:

(1) A SDE that describes the evolution of the continuous state:
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and if transition j occurs at time T the combined state of the SHS will be reset instantaneously by:
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According to [START_REF] Hespanha | Modelling and analysis of stochastic hybrid systems[END_REF], given a test function
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which is twice continuously differentiable with respect to x and once continuously differentiable with respect to t , we have:
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where    ,, L q x t  is known as the extended generator of SHS, and for   ,,
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q x t 
with respect to x , respectively. Generally, test functions are defined as functions with respect to measures of the continuous state. Hereby, we define a family of test functions of the form:
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where m can be any natural number of interest. Let

    i m q t 
denote the m -order conditional moment of the continuous state x , which is defined by
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Then, by (4)(5) we can obtain a group of differential equations with respect to arbitrary order condi-
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By solving the differential equations in (8) , we can obtain knowledge about dynamics of the continuous state, based on which further analysis can be conducted.

3 SHS-BASED FAILURE BEHAVIOR MODELING

System description

As shown in Figure 1, we consider a system suffering two dependent failure processes: soft failures caused jointly by continuous degradation and additional abrupt degradation increment due to random shocks, and hard failures caused by sudden overload from the same shock process. Dependence exists among the two process, that is, the arrival of a shock would bring an additional damage to the degradation process. Failures occur whenever one of the following two events happens: i. the degradation process reaches its threshold, denoted by H ; ii. a shock whose magnitude exceeds a critical strength level, denoted by D , occurs.

Additional assumptions of this model include: (1) The continuous degradation process is modeled by a Stochastic Differential Equation (SDE).

 
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where  

xt is the degradation measure,  is a constant denoting the degradation rate, t w represents the Wiener process with 

SHS modeling of the system

The SHS concerning the DCFP is described by the state-transition diagram in Figure 2. The system is a combination of (i) a continuous-time, discrete-state stochastic process     12 , q t q q  , where 1 q and 2 q are two possible states of the system. When 1 qq  , the system is degrading according to the degradation process, while 2 qq  indicates that the system fails due to hard failures; and (ii) a continuous-time continuous-state stochastic process   xt that describes the degradation of the system over time. As shown in Figure 2, the system's discrete state starts from 1 qq  , under which the dynamics of continuous state   xt is governed by ( 9). When a shock with magnitude less than D arrives, system's discrete state remains at 1 qq  , and the continuous state  

xt will be reset:

    , x t x t d
 where d is the damage caused by the random shock. When a shock with magnitude over D arrives, the system transfers to the hard failure mode 2 qq  and the continuous state   xt is reset to zero. The transition rates and transition reset maps of the above SHS are defined as follows:
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where m can be any natural number of interest. We also define the conditional moments of the continuous state x in each discrete state by: m m q m m q t E x t q t q q t q t E x t q t q q t q
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With the conditional moments defined above, we can obtain any order of conditional moments of interest by choosing m . It is obvious that     0 i q t  represents the probability that system's discrete state belongs to i qq  . Substituting (9)(10)(11)( 12) into (5), we have the extended generator of the SHS as:
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According to ( 8) and ( 14) , we have differential equations with respect to the conditional moments of 𝑥 as follows:
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Because of the fact that when 2 qq 

, the continuous state   xt always equals to zero, in (15) we only concern the zero-order conditional moment at state 2 q , i.e. the probability that the system fails due to a hard failure. It's clear that
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since the system must belong to one of the two discrete modes. By (15), we can obtain the following set of differential equations: 
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By solving ( 16) and ( 17 x q q t   and standard variance
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Therefore, the reliability of the DCFP is
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The lower bound of reliability can also be estimated using Markov's inequality. According to Markov's inequality (Pishro-Nik, 2014), if X is an nonnegative random variable and Pr .
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This inequality could be easily extended to the following inequality with respect to the conditional probability case:
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Therefore, the lower bound of reliability is estimated by . q q R t q t q x t H q t q x t H q t q q t q x t H q t q E x t q t q q t q H In this paper a stochastic hybrid system characterizing systems subject to dependent competing failure processes are developed. The dependence is modeled by assuming the arrival of a random shock would lead to an abrupt increment of the degradation process. By solving the SHS-based DCFP model, dynamics of the conditional moments of degradation are obtained. Based on that, the lower boundary of system's reliability is estimated by Markov's inequality, and the exact reliability is approximated by moment method. Results show that the developed method provides accurate predictions of system's evolution with better computational performance.
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  , and b is a constant.(2) Random shocks arrive according to a Poisson process with intensity  .(3) The magnitude of each shock load, denoted by i W , is an i.i.d. random variable following normal dis-To consider the dependence, we assume the arrival of each shock would bring a degradation increment of a constant d .
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 1 Figure 1. (a) Soft failure process (b) hard failure process

  ), we are able to find out (i) the probability of the SHS residing in each discrete mode, and (ii) the first-order and second-order moments of   xt conditioned on   qt .

Figure 2 .

 2 Figure 2. State-transition diagram for the SHS

  is carried out using the parameters listed in Table1. To demonstrate the developed model, analytic solutions obtained by solving the differential equations in (17) are compared with results of Monte Carlo simulation, as shown in Figures3-6. Results show that the dynamics of are very accurately predicted by the SHS model. The estimated reliability by moment method is consistent with results by Monte Carlo simulation. The estimated lower bound provide a relatively conservative reliability estimation. Besides, the running time of Monte Carlo simulation is 2796.3 times more than that of the developed analytic approach (By Monte Carlo simulation: 548.08s, by analytic approach: 0.196s).

  Figure 3. Results of

Table 1 .

 1 Parameter values ______________________________________________ Parameter Value ______________________________________________
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