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1 INTRODUCTION 
Industrial components, systems and products might 
fail due to multiple failure processes, i.e. wear, cor-
rosion, fracture, fatigue and etc. (Jiang et al., 2015). 
In literature, failure processes are categorized into 
two types: degradation processes (or soft failures) 
and catastrophic failure processes (or hard failures) 
(Li and Pham, 2005). In general, soft failures are 
modeled by a continuous degradation process, e.g., 
diffusion process (Lemoine and Wenocur, 1985), 
continuous-time semi Markov’s process (Lin et al., 
2015), etc. Hard failures are modeled by a random 
shock process, e.g., a Poisson process (Lemoine and 
Wenocur, 1985, Lin et al., 2015, Klutke and Yang, 
2002). Soft failures occur when the total degradation 
exceeds its threshold. Hard failures are caused by the 
random shock process in various shock patterns such 
as extreme shock, cumulative shocks,  -shocks, 
m -shocks, run shocks (Rafiee et al., 2014). 

In practice, those processes are often dependent, 
making the reliability modeling more complex and 
therefore referred to as multiple Dependent Compet-
ing Failure Processes (DCFP). As a result of the de-
pendence, the arrival shocks may change some at-
tributes of the degradation process (Rafiee et al., 
2014) or bring additional damages to the degradation 
process (Peng et al., 2010, Jiang et al., 2012). The 
hard failure process may be effected by the degrada-
tion process in terms of shock intensity (Caballe et 
al., 2015, Huynh et al., 2012, Huynh et al., 2011, 
Bagdonavicius et al., 2004), shock loads (Fan et al., 

2000), hard failure threshold (Jiang et al., 2012) and 
etc. Various models are developed to calculate the 
reliability of the DCFPs. For example, Peng et al. 
(2010) assume that the arrival of shocks would bring 
an abrupt increase to the normal degradation process 
and develop a model to calculate the reliability. 
Jiang et al. (2012) develop a reliability model to 
consider the dependency between degradation and 
shocks where the failure threshold is shifted by ran-
dom shocks. Rafiee et al. (2014) consider the cir-
cumstance where the degradation rate is shifted by 
different shock patterns. Jiang et al. (2015) catego-
rize shocks into different shock zones based on their 
magnitudes, and consider dependence where shocks 
in different zones have different effects on the deg-
radation process. 

In the existing reliability models concerning 
DCFP, systems fail when either a soft failure or a 
hard failure happens. Hence, in those models, sys-
tem’s reliability is regarded as the probability that 
neither soft failure nor hard failure occurs in a period 
of time, which is calculated by the product of the 
conditional probability of no soft failure and that of 
no hard failure conditioned on parameters shared by 
the two probability functions. Due to the introduc-
tion of dependence, the developed reliability func-
tions are usually too complicated to be evaluated an-
alytically. Rather, the reliability has to be calculated 
by Monte Carlo method, which needs large amount 
of computation to ensure the accuracy of the results. 
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ABSTRACT: A novel approach is developed to calculate the reliability of dependent competing failure pro-
cesses (DCFP) based on stochastic hybrid systems (SHS). The DCFP considers the dependency between a 
degradation process and a random shock process, where the arrival of a random shock will bring an abrupt 
change to the degradation process. A SHS model is developed to describe the evolution of system behaviors, 
where the degradation process is characterized by stochastic differential equations (SDEs). The SDEs are de-
pendent on the transition of system modes, which represent the random shock process. The conditional mo-
ments of the degradation measure in each system mode is derived. Based on the conditional moments, the sys-
tem reliability and its lower bound are estimated using First Order Second Moment (FOSM) method and 
Markov’s inequality, respectively. Results show that the SHS-based method yields an accurate estimation of 
reliability with less computational costs compared to traditional Monte Carlo-based method. 



Stochastic Hybrid System (SHS) models are ca-
pable of characterizing the system behaviors that in-
volve both continuous and discrete stochastic pro-
cesses (Hespanha, 2004). Using Dynkin’s formula, 
the conditional moments of each system state of an 
SHS can be determined by solving a set of differen-
tial equations (Hespanha, 2004). In this paper, we try 
to exploit the SHS model to reduce the computation-
al costs of calculating the reliability of DCFPs. As 
an initial attempt, we consider the system discussed 
by Peng et al. (2010) in this paper, where the degra-
dations depend on random shocks, i.e., the arrival of 
a random shock would cause an abrupt increase on 
the cumulative degradation measures. 

The reminder of this paper is organized as fol-
lows. Sect. 2 gives a brief introduction of stochastic 
hybrid systems and its solutions. Sect. 3 formulates 
the DCFP as an SHS and derives the conditional 
moments of the system states based on Dynkin’s 
formula. The conditional moments are used in Sect. 
4 to estimate the reliability and its lower bound for 
the DCFP. Sect. 5 presents a numerical example to 
demonstrate the proposed model and compares its 
solution with the results from Monte Carlo simula-
tion. A brief conclusion of the this paper is made in 
Sect. 6. 

2 BACKGROUND KNOWLEDGE ON SHS 

Generally speaking, stochastic hybrid systems are 
suitable to characterize systems whose state evolu-
tion contains both continuous stochastic processes 
and discrete stochastic processes. A latest formally 
defined SHS model proposed by Hespanha (2004) is 
applied in this paper. This SHS model is a subset of 
a more general class of stochastic processes referred 
to as the piecewise-deterministic Markov’s processes 
(Davis, 1993). For formal definitions and analytic 
solution methods for the SHS, one can refer to (Hes-
panha, 2004, Hespanha, 2005, Hespanha, 2006). 

The state space of a SHS is a combination of a 
discrete state  q t Q  and a continuous state 
  nt x , where Q  is a finite set containing all the 

possible discrete modes of the system. Generally, a 
SHS is defined by the following items (Hespanha, 
2006): 

(1) A SDE that describes the evolution of the con-
tinuous state: 

           , , , , ,td t f q t t t dt g q t t t d x x x w  (1) 

where : k

t

 w  is a k-dimensional Wiener pro-
cess, : ,n nf Q    and : .n n kg Q      

(2) Transition rates     , , ,j q t t t x  and transi-
tion reset maps     , , , 1,..., ,j q t t t j l x  for all the 
l  transitions of the SHS among discrete modes. The 
probability of transition j  occurring in the time 
domain  ,t t t   is: 

      , , ,j q t t t t o t   x  (2) 

and if transition j  occurs at time T , the combined 
state of the SHS will be reset instantaneously by: 

         , , , .jq T T q T T T  x x  (3) 

According to (Hespanha, 2006), given a test func-
tion     , , ,q t t t x : ,nQ     which is 
twice continuously differentiable with respect to x  
and once continuously differentiable with respect to 
t , we have: 

    
      
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, ,

dE q t t t
E L q t t t

dt




 
     

x
x  (4) 

where   , ,L q x t  is known as the extended gener-
ator of SHS, and for  , , nq x t Q      
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 (5) 

where t   denotes the partial derivative of 
 , ,q x t  with respect to t , x   and 

22 x   
denote the gradient and Hessian matrix of  , ,q x t  
with respect to x , respectively. 

Generally, test functions are defined as functions 
with respect to measures of the continuous state. 
Hereby, we define a family of test functions of the 
form: 

   , ,
0i

m
m i

q

i

x q q
q x

q q


 
 


 (6) 

where m  can be any natural number of interest. Let 
   

i

m

q t  denote the m -order conditional moment of 
the continuous state x , which is defined by 

       

      

: ,

Pr .

i i

m m

q q

m

i i

t E q x

E x t q t q q t q

  
 

     

 (7) 

Then, by (4)(5) we can obtain a group of differen-
tial equations with respect to arbitrary order condi-
tional moments     , ,

i

m

q it q Q m   : 

     
 

 , .
i i

mm

q q
d t E L q x dt   

 
 (8) 

By solving the differential equations in (8) , we can 
obtain knowledge about dynamics of the continuous 
state, based on which further analysis can be con-
ducted. 



3 SHS-BASED FAILURE BEHAVIOR 
MODELING 

3.1 System description 

As shown in Figure 1, we consider a system suffer-
ing two dependent failure processes: soft failures 
caused jointly by continuous degradation and addi-
tional abrupt degradation increment due to random 
shocks, and hard failures caused by sudden overload 
from the same shock process. Dependence exists 
among the two process, that is, the arrival of a shock 
would bring an additional damage to the degradation 
process. Failures occur whenever one of the follow-
ing two events happens: 
i. the degradation process reaches its threshold, de-
noted by H ; 
ii. a shock whose magnitude exceeds a critical 
strength level, denoted by D , occurs. 

Additional assumptions of this model include: 
(1) The continuous degradation process is modeled 
by a Stochastic Differential Equation (SDE). 

   ,tdx t dt b dw    (9) 

where  x t  is the degradation measure,   is a 
constant denoting the degradation rate, tw  repre-
sents the Wiener process with 1  , and b  is a 
constant. 
(2) Random shocks arrive according to a Poisson 
process with intensity  . 
(3) The magnitude of each shock load, denoted by 

iW , is an i.i.d. random variable following normal dis-
tribution  2,W WN   . 
(4) To consider the dependence, we assume the arri-
val of each shock would bring a degradation incre-
ment of a constant d . 
 

 
 
Figure 1. (a) Soft failure process (b) hard failure process 

3.2 SHS modeling of the system 

The SHS concerning the DCFP is described by the 
state-transition diagram in Figure 2. The system is a 
combination of (i) a continuous-time, discrete-state 
stochastic process    1 2,q t q q , where 1q  and 2q  
are two possible states of the system. When 1q q , 
the system is degrading according to the degradation 
process, while 2q q  indicates that the system fails 
due to hard failures; and (ii) a continuous-time con-
tinuous-state stochastic process  x t   that de-
scribes the degradation of the system over time. As 
shown in Figure 2, the system’s discrete state starts 
from 1q q , under which the dynamics of continu-
ous state  x t  is governed by (9). When a shock 
with magnitude less than D  arrives, system’s dis-
crete state remains at 1q q , and the continuous 
state  x t  will be reset:     ,x t x t d  where d  is 
the damage caused by the random shock. When a 
shock with magnitude over D  arrives, the system 
transfers to the hard failure mode 2q q  and the 
continuous state  x t  is reset to zero. 

The transition rates and transition reset maps of 
the above SHS are defined as follows: 
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In this paper, we are interested in the evolution of 
degradation level x . So we define the test functions 

   ,
i

m

q q x  in each discrete state  , 1,2iq i  to be: 
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 (12) 

where m  can be any natural number of interest. We 
also define the conditional moments of the continu-
ous state x  in each discrete state by: 

          
          

1

2

1 1

2 2

: Pr ,

: Pr .

m m

q

m m

q

t E x t q t q q t q

t E x t q t q q t q





     

     

 (13) 

With the conditional moments defined above, we 
can obtain any order of conditional moments of in-
terest by choosing m . It is obvious that    0

iq t  rep-
resents the probability that system’s discrete state 
belongs to iq q . Substituting (9)(10)(11)(12) into 
(5), we have the extended generator of the SHS as: 
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According to (8) and (14) , we have differential 
equations with respect to the conditional moments of 
𝑥 as follows: 

             
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
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Because of the fact that when 2q q , the continuous 
state  x t  always equals to zero, in (15) we only 
concern the zero-order conditional moment at state 

2q , i.e. the probability that the system fails due to a 
hard failure. It’s clear that 

   

1 2

0 0
1,q q    (16) 

since the system must belong to one of the two dis-
crete modes. By (15), we can obtain the following 
set of differential equations: 
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 (17) 

By solving (16) and (17), we are able to find out (i) 
the probability of the SHS residing in each discrete 
mode, and (ii) the first-order and second-order mo-
ments of  x t  conditioned on  q t . 

 

 
Figure 2. State-transition diagram for the SHS 

4 RELIABILITY CALCULATION 

Based on the conditional moments of  x t  obtained 
in Sect. 3, the reliability of the DCFP can be approx-
imated using FOSM method. Assume that at any 
time t , the conditional probability distribution of 
the degradation level  x t  given 1q q  is a normal 

distribution with mean  
1x q q

t


 and standard vari-
ance  

1x q q
t


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calculated by 
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Therefore, the reliability of the DCFP is 
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The lower bound of reliability can also be esti-
mated using Markov’s inequality. According to 
Markov’s inequality (Pishro-Nik, 2014), if X  is an 
nonnegative random variable and 0a  , then 

 
 

Pr .
E X

X a
a

   (20) 

For the system we consider in this paper, the degra-
dation level  x t  is a nonnegative random variable 
when time t  is determined, and the threshold of 
soft failure 0H  , then we have 

  
  

Pr .
E x t

x t H
H

   (21) 

This inequality could be easily extended to the fol-
lowing inequality with respect to the conditional 
probability case: 

  
  1

1Pr .
E x t q q

x t H q q
H


    (22) 

Therefore, the lower bound of reliability is estimated 
by 
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 

 
   
 
 

 

 (23) 



5 NUMERICAL EXAMPLE 

A numerical example is carried out using the param-
eters listed in Table 1. To demonstrate the developed 
model, analytic solutions obtained by solving the dif-
ferential equations in (17) are compared with re-
sults of Monte Carlo simulation, as shown in Figures 
3-6. Results show that the dynamics of  1Pr q q , 

 E x t    and  2E x t    are very accurately predict-
ed by the SHS model. The estimated reliability by 
moment method is consistent with results by Monte 
Carlo simulation. The estimated lower bound pro-
vide a relatively conservative reliability estimation. 
Besides, the running time of Monte Carlo simulation 
is 2796.3 times more than that of the developed ana-
lytic approach (By Monte Carlo simulation: 548.08s, 
by analytic approach: 0.196s). 
 
Table 1.  Parameter values ______________________________________________ 
Parameter        Value  ______________________________________________ 
H           0.00125μm3 

β           8.4823∙10-9μm3 
b           6.0016∙10-10μm3 
d           1.5GPa 
λ           5∙10-3 
μw           1.2GPa 
σw           0.2GPa 
d           1∙10-4μm3 _____________________________________________ 
 

 
Figure 3. Results of  1Pr q q  

 

 
Figure 4. Results of  E x t    

 

 
Figure 5. Results of  2E x t    

 

 
Figure 6.  R t by MC simulation, the exact estimation of reli-
ability: eR , and the estimated lower boundary of reliability: lR  

6 CONCLUSIONS 

In this paper a stochastic hybrid system characteriz-
ing systems subject to dependent competing failure 
processes are developed. The dependence is modeled 
by assuming the arrival of a random shock would 
lead to an abrupt increment of the degradation pro-
cess. By solving the SHS-based DCFP model, dy-
namics of the conditional moments of degradation 
are obtained. Based on that, the lower boundary of 
system’s reliability is estimated by Markov’s ine-
quality, and the exact reliability is approximated by 
moment method. Results show that the developed 
method provides accurate predictions of system’s 
evolution with better computational performance. 
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