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Abstract: 

Markov history-dependent repairable systems refer to the Markov repairable systems in 

which some states are changeable and dependent on recent evolutional history of the system. In 

practice, many Markov history-dependent repairable systems are subjected to neglected failures, 

i.e., some failures do not affect system performances if they can be repaired promptly. In this 

paper, we develop a model based on the theory of aggregated stochastic processes to describe the 

history-dependent behavior and the effect of neglected failures on the Markov history-dependent 

repairable systems. Based on the developed model, instantaneous and steady-state availabilities 

are derived to characterize the reliability of the system. Four reliability-related time distributions, 

i.e., distribution for the k th working period, distribution for the k th failure period, distribution for 

the real working time in an effective working period, distribution for the neglected failure time in 

an effective working period, are also derived to provide a more comprehensive description of the 

system’s reliability. Thanks to the power of the theory of aggregated stochastic processes, 

closed-form expressions are obtained for all the reliability indexes and time distributions. Finally, 

the developed indexes and analysis methods are demonstrated by a numerical example. 

 

Keywords: Markov repairable system; Markov history-dependent repairable systems; neglected 

failure; availability; aggregated stochastic process 

 

1. Introduction 

Reliability is an important feature of repairable systems [1]-[4]. In most existing literatures, 

reliability analysis is studied by modeling the repairable system as a Markov process (e.g., see 

[5]-[7]). Most of these Markov-process-based models assume that there are clear definitions of 

normal state and failure state and the definitions are independent of the evolutional history of the 

system. In practice, however, some states in a repairable system might be changeable and depend 

on the recent evolutional history of the system (for example, see [8] [9]). This kind of special 

system was named by Cui et al. [8] as Markov Repairable System with History-Dependent up and 

down States (MRS-HDS) and reliability analysis methods were developed by them to calculate its 

availability. Based on the work of [8], Wang et al. [10] derived multi-point and multi-interval 

availabilities for the MRS-HDS. Zheng et al. [11] generalized Cui’s work in [8] to semi-Markov 

repairable systems with history-dependent up and down states. 

In many practical systems, if the repair time is shorter than a predefined threshold, the 

failures will have little influence on systems’ performances, so that the failures can be neglected 
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when evaluating the system’s availability. For example, consider a failure in a water supply system 

that cut off the water supply to the end-users. If the failure is recovered in a relatively short period, 

e.g., several minutes, the end-users are possible to tolerate or even unaware of it. This kind of 

failure, which can be promptly repaired within the tolerance of the end-users, can therefore, be 

neglected when calculating the availability of the water supply system. Such failures are regarded 

as neglected failures and are commonly encountered in repairable systems. For instance, Zheng et 

al. [12] studied a single-unit Markov repairable system with repair time omission. Bao and Cui [13] 

considered series Markov repairable systems with neglected or delayed failures. 

Neglected failures also exist in MRS-HDS, e.g. the water distributed system, the power 

distributed networks, computer networks, etc. The introduction of changeable states, as a result of 

the neglected failures, makes standard Markov-process-based models incapable to capture the 

system’s failure and repair behaviors. However, to the best of our knowledge, the effect of 

neglected failures on the reliability of MRS-HDS has not been considered before. To fill this gap, 

we develop a new model and associated reliability analysis method based on the theory of 

aggregated stochastic process and then derive some important reliability indexes for the system. 

Although a large number of literatures focused on obtaining reliability indexes for repairable 

systems (e.g. [14]-[16]), it is generally difficult to obtain close-formed expressions for these 

indexes, especially when the system’s behavior is complex, as the case of MRS-HDS with 

neglected failures. In this paper, however, with the help of the aggregated stochastic processes 

theory, close-formed expressions can be obtained for all the derived indexes. 

Aggregated stochastic processes were invented by Burke and Rosenblatt [17] in 1957. One of 

the milestones in the history of the aggregated stochastic process is Colquhoun and Hawkes’s 

successful work in developing probabilistic models to describe the behavior of ion channels (e.g., 

see [18] [19]). Since then, aggregated stochastic process has received more and more attention 

from various areas. Among them, Rubino and Sericola [20] first applied the theory to model a 

repairable system. Various models were, then, developed based on the aggregated stochastic 

processes to describe the behavior of different types of repairable systems, e.g., Hawkes et al. (e.g., 

[21]), Cui et al. (e.g. [22] and [23]), Wang et al. ([24] and [25]), Liu et al. (e.g. [26]), etc. By 

employing aggregated stochastic processes, we focus on aggregating and decomposing the states 

of the new model. To be specific, because changeable and down states can present both failure and 

operational states, these two states are duplicated and redefined, in order to describe the 

state-dependent and time-dependent behavior of the system. A new stochastic process, which is an 

aggregated stochastic process, can be constructed and the theory of aggregated processes can be 

used to achieve analytical expressions of some important reliability indexes and reliability-related 

time distributions. 

The rest of the paper is organized as follows. In Section 2, the motivation of this paper is 

fully explained with an industrial example and assumptions of the developed model are formally 

presented. In Section 3, we use aggregated stochastic processes to model the behavior of 

MRS-HDS with neglected failures. Some reliability indexes for MRS-HDS with neglected failures, 

i.e., the instantaneous availability, steady-state availability and some sojourn time distributions are 

derived in Section 4. In Section 5, the developed indexes and analysis methods are demonstrated 

by a numerical example. Finally, conclusions are given in Section 6. 
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2. Motivation and assumptions 

2.1 Motivation example 

In this section, we present an engineering example of MRS-HDS with neglected failures 

which motivates the research in this paper. Take an electrical power supply system as an example, 

which is designed to provide electricity to a factory. The electricity comes from three substations, 

each of which can contribute a maximum amount of 1 MW (Megawatt). To maintain its normal 

functions, the factory needs a total amount of 2.5 MW of electricity. Due to the advance 

technology of distributed power generations [27] [28], the factory itself can produce 0.8 MW of 

electricity since it has installed a photovoltaic generator. However, the photovoltaic generator only 

works when the factory is in normal state, since it requires power supplies and control commands 

from a control center, which is located in the factory. If the factory does not receive enough power 

from the electricity-distributed system, the control center cannot work, which in turn, ceases the 

normal functioning of the photovoltaic generator. 

The state space of the system can be defined by the numbers of the failed substations: 

 0,1,2,3 .S   It is easy to verify that when the system is in state 0 , the factory is in working 

state; when the system is in state 2  or state 3 , the factory is in failure state, regardless of the 

state of the photovoltaic generator. However, state 1 , which represents that one of the three 

substations fails and the factory receives 2MW of electricity from the electricity supply system, is 

a changeable state affected by the system’s historical dynamics: 

(1) Suppose the system transfers to state 1  from a working state, which means that before 

entering state 1 , the factory was functioning normally. Hence, the photovoltaic generator is 

working and generates additional 0.8 MW of electricity. The total amount of electricity the factory 

could receive is, then, calculated as    M2 W0 2.5 MW.8 2.8 .   Therefore, the factory can 

perform its function normally. It means state 1 of the system is a working state. 

(2) If, on the other hand, the system transfers to state 1  from a failure state (state 2  or 

state 3 ), which means that before entering state 1 , the factory was already in failure state, and 

therefore, the photovoltaic generator cannot work. The factory can, then, only receive total amount 

of 2  MW electricity, which makes it in a failure state. 

Consequently, state 1 in the above electrical power supply system is a history-dependent state. 

Besides, due to the widely application of Uninterrupted Power Supplies (UPSs) in the factory, the 

factory can withstand a temporary loss-of-power for no more than 5 minutes. Thus, failures that 

can be recovered within 5  minutes are treated as neglected failures. In this paper, we develop 

methods to analyze the reliability and availability of such MRS-HDS with neglected failures. 

 

2.2 System descriptions and assumptions 

In this section, we present a formal description of MRS-HDS with neglected failures. The 

system is based on the following assumptions: 

(1) The repairable system is described by a continuous-time Markov process { ( ), 0}X t t   with 

finite state space S . 

(2) The observation for the system has two statuses: Up and Down periods. Essentially, the state 

space S  can be divided into three sets, U , C , and D . The state in U  stands for 
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functional or Up state, which represents that the system is working. When the system stays in 

U , we say that the system is in Up period. The state in D  stands for failure or Down state, 

which represents that the system fails. When the system stays in D , we say that the system is 

in Down period. The state in C  represents changeable state. 

(3) The changeable states in C  could be observed to be either in Up or Down period, depending 

on the system’s historical state-transition trajectory: If the last non-changeable state prior to 

the changeable state is in Up period, then the changeable state is classified as an Up state, 

referred to as changeable-up states, denoted as UC . The system will be in Up period when it 

stays in UC . If, on the other hand, the last non-changeable state prior to the changeable state 

is in Down period, then the changeable state is classified as a Down state, referred to as 

changeable-down states, denoted as DC . The notations for changeable states are the same as 

that in [8], which is illustrated in Figure 1.  

(4) If the repair time in D , denoted by Rt , is longer than a predefined threshold  , Rt  is 

still regarded as in Down period; if, on the other hand, Rt  is less than  , failures in D  

is neglected: If the previous state belongs to Up period, the system is regarded as in Up 

period for the whole period of Rt ; on the other hand, if the previous state belongs to Down 

period, then the system is regarded as in Down period for the whole period of Rt . 

Therefore, the rule to judge which period the system stays in is to know what period the 

previous state belongs to. According to this rule, the illustration of MRS-HDS with neglected 

failures is shown in Figure 2. 

Here, we want to mention that the definition of neglected failure is adopted from the 

definition in [12]. According to [12], when the system comes from “up” to “down” with a duration 

longer than  , the whole duration of repair (or failure) is regarded as in “down”. Only when the 

duration of repair time for the system is no longer than  , the “down” duration will be considered 

to be “operating” (available). That is to say, when the system comes from "up state" to a long D  

state, the first   time units will be considered as part of downtime. The reason we made 

explanation is to distinguish two different understanding for the availability of the first   time 

units in a long D  state. The definition used in our model is based on model II in [23], which is 

called the neglected failure model. However, if the first   time units in a long D  state is 

regarded as available, the model will become another one which is same as model III in [23], 

called failure delayed failure model. 
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Figure 1. A illustration of changeable states 
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Figure 2. A illustration of MRS-HDS with neglected failures 

3. Modelling MRS-HDS with neglected failures using aggregated stochastic 

processes 

In this section, we use aggregated stochastic processes, a mathematical tool mainly 

developed in the theory of ion channel, to model the behaviour of MRS-HDS with neglected 

failures. First, the Markov process in which the finite number of states is partitioned into three 

sets, U , C , and D  has transition rate matrix 

UU UC UD

CU CC CD

DU DC DD

 
 

  
 
 

Q Q Q

Q Q Q Q

Q Q Q

.                        (1) 

Then, a semi-Markov process can be defined, which is imbedded at the instants when the 

system switches between the three groups. The stochastic properties of this semi-Markov process 

are governed by a transition matrix ( )tG , which can be partitioned in a similar manner to Q  as 
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( ) ( )

( ) ( ) ( )

( ) ( )

UC UD

CU CD

DU DC

t t

t t t

t t

 
 

  
 
 

0 G G

G G 0 G

G G 0

,     (2) 

where ( )= exp( )t t  G Q Q , provided   , for , U   , C , or D . 

3.1 Modelling the history-dependent behaviour 

Next, from another viewpoint, once the system enters one U  state, then the system is 

sojourn in Up period until one long D  duration (duration in D  longer than the given value) 

occurs. More specifically, no matter what transitions happening after that U  state, the system is 

always in Up period as long as no arriving in long D  duration. 

Similarly, the system is sojourn in Down period once it comes to one D  duration longer 

than the given value. And the Down period will terminate when one U  state occurs. The 

following diagram, Figure 3 can illustrate this viewpoint. 

 

U

C

D

Up

Down

time t

time t

… …

… …

… …

… … … …

… …



 

 

Figure 3. Alternative Up and Down periods path for the system 

If we use stochastic process  ( ), 0X t t   to describe the running path for the system, then 

another stochastic process  ( ), 0Y t t  , can be seen as the results of our observation. That is 

whether the system is in Up or Down period. The stochastic process  ( ), 0Y t t   is an 

aggregated stochastic process. 

If we denote the Up period as W , Down period as F , then the properties of this system 

may be described by considering a semi-Markov process. That is to say, the aggregated stochastic 

process  ( ), 0Y t t   is a semi-Markov process. 

The semi-Markov process has a density kernel, which will be denoted by 
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( )
( )

( )

e

e WF

e

FW

t
t

t

 
 
 
 

0 G
G

G 0

.                         (3) 

For some purposes, it is useful to have their Laplace transforms: 

*

*

*

( )
( )

( )

e

e WF

e

FW

s
s

s

 
 
 
 

0 G
G

G 0

.                         (4) 

If we ignore the durations of the sojourns and merely consider the sequence of states that are 

occupied at the start of each sojourn, we have an embedded Markov chain with transition 

probability matrix, 

*

0
( ) (0)

e

e e eWF

e

FW

t dt


 
   
 
 


0 G

G G G

G 0

.               (5) 

Here we use the convention of dropping the star and the argument to denote a Laplace transform 

evaluated at 0s  , which is the integral of the original function over the interval (0, ) . 

3.2 Modelling the neglected failures 

Taking neglected failure into consideration, we need to distinguish short (less than  ) and 

long (greater than  ) sojourns in D . So in the manner of Hawkes et al. [29], we break up the 

Laplace transform of 
* ( )DC sG  into two parts as follows. 

1 * *

0
exp( ) ( exp( ( ) ))( ) ( ) ( )st

DD DC DD DD DC DD DCe t dt s s s s


       Q Q I I Q I Q Q S G , 

1 * *exp( ) exp( ( ) )( ) ( ) ( )st

DD DC DD DD DC DD DCe t dt s s s s





      Q Q I Q I Q Q L G , 

where 

* ( ) exp( ( ) )DD DDs s   L I Q ,                    (6) 

* ( ) exp( ( ) )DD DDs s    S I I Q .                  (7) 

In order to get more indexes and distributions for the system, we need to make some change 

on the system states. Considering the changeability of the states in C , in the following we 

duplicate the changeable states. More specifically, according to the assumptions in Section 2.2, the 

states in C  denoted as UC  are changeable-up states. Then we duplicate the states in UC  to 

another subset, standing for the states in C  when they are changeable-down states, DC  states. 

For the state space of the system, we can analyze it via the disaggregation procedure by 

adding a subset of states. We assume  1,2,..., UU n ,  1, 2,...,U U U CC n n n n    , and 

 1, 2,...,U C U CD n n n n n     . 
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Thus, a new stochastic process  ( ), 0X t t   generated from duplicating a subset of state 

space of  ( ), 0X t t   is obtained. The state space of  ( ), 0X t t  , denoted as S , has n

( Cn n n  ) different states and U DS U C D C . 

3.3 Transition rules among states for the system 

The transitions among states in S  are shown in Figure 4 as follows. 

D

U

DC UC

 

Figure 4. The transition diagram for the new Markov process 

According to the assumptions of the model, D  can be decomposed into two parts: SD  

and LD . SD  stands for short (less than  ) sojourns in D  and LD  represents long (greater 

than  ) sojourns in D . Then we can get a decomposed trasition diagram in Figure 5. 

 

U

DC
UC

LD SD

 
Figure 5. The decomposed transition diagram for the new system 

Note that the dashed line in the transition diagram presents the difference between our new 

model and the original model. 

The new stochastic process  ( ), 0X t t   is still a Markov process. However, it no longer 

obeys Markov properties when the neglected failure is taken into consideration. We just want to 

illustrate the possible transitions among the states if we need to distinguish whether the duration in 

D  is longer than   by Figure 5, which makes the transitions rules more clearly. The transition 

rules are as follows: 
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a) Rules for U  states: The bidirectional transitions can happen between U  and other states 

except DC . Because if the system is in U  states following by a changeable state, then it 

must be a changeable-up state. Therefore, there is no transition from U  to DC . 

b) Rules for D  states shorter than  : The bidirectional transitions can happen between SD

and other states except LD . What should be mentioned here is the special transition from 

SD  to DC . It happens when the state before SD  is a Down state, then this SD  is still 

regarded as in Down period. Consequently, the following changeable state is supposed to be 

a Down state, which is DC . 

In addition, there are no transitions between SD  and LD . 

c) Rules for D  states longer than  : The transition rules of LD  are similar as that of SD . 

It is impossible that the system runs from LD  to UC  and SD . 

d) Rules for changeable states C : The transitions can occur between changeable states and 

other states, except that transitions from U  to DC , from LD  to UC , and transitions 

between UC  and DC  are not allowed. 

Then based on the new Markov process ( ), 0X t t  , a new perspective to analyze the 

system in view of the state space as S  of  ( ), 0X t t  , we define that UA U C . Thus, 

the system can be considered available during states set A . And we regard the system are “good” 

in states set A , some changeable states and short-failure states. 

The properties of this system may be described by considering a semi-Markov process 

embedded at the time points which form the start of an available state, the start of a 

changeable-down sojourn, the start of a sojourn in D  states. Denote the semi-Markov process as 

 ( ), 0Z t t  , so that  ( ), 0Z t t   is an aggregated stochastic process. 

The semi-Markov process  ( ), 0Z t t   has a density kernel, which will be denoted by 

( )

( ) ( ) ( )

( ) ( )

D

D D

AD

DA DC

C A C D

t

t t t

t t

 
 

  
 
 
 

0 G 0

G G 0 G

G G 0

.                 (8) 

For some purposes it is useful to have their Laplace transforms: 
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*

* * *

* *

( )

( ) ( ) ( )

( ) ( )

D

D D

AD

DA DC

C A C D

s

s s s

s s

 
 
 
 
 
 

0 G 0

G G 0 G

G G 0

.                   (9) 

If we ignore the durations of the sojourns and merely consider the sequence of states that are 

occupied at the start of each sojourn, we have an embedded Markov chain with transition 

probability matrix, 

*

0
( ) (0)

D

D D

AD

DA DC

C A C D

t dt


 
 

   
 
 
 



0 G 0

G G 0 G G G

G G 0

.        (10) 

Here we use the convention of dropping the star and the argument to denote a Laplace transform 

evaluated at 0s  , which is the integral of the original function over the interval (0, ) . 

 

4. Reliability indexes of MRS-HDS with neglected failures 

In this section, we use the model developed in Section 3 to derive some 

reliability-related indexes for MRS-HDS with neglected failures, i.e., the instantaneous 

availability, steady-state availability and some sojourn time distributions. 

 

4.1 Instantaneous availability for MRS-HDS with neglected failures 

According to the definition of availability, we define the availability for a system in 

traditional sense, which is based on the original model. If the system is in U  and up-changeable 

states, it is regarded available for the original model. However, taking the neglected failure into 

consideration, the definition of the availability will be extended. 

According to our new model, the system is regarded as available in Up period under several 

situations. Of course, the system is still available when it is in U  and up-changeable states. 

Besides, when the system is in D  whose duration is less than the critical value and the state the 

D  moving from is an A  state, then the system is still available. In addition, if the system is in 

C  state whose previous state is one short failure duration with an A  previous state, then it is in 

Up period. 

Therefore, we list all the scenarios that the system is available as follows. 

(1) Scenario 1: The system is in U  states 

Apparently, the new system is available when it is in U  states, which is shown in Figure 

6(1). 
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… … U

t
 

Figure 6(1). The system in U  states in Scenario 1 

We can get the availability in this situation easily, 

1

0( ) t

UA t e Q
1 ,                          (11) 

where 
1

(1, ,1,0, ,0)T

U S

U


1 . 

(2) Scenario 2: The system is in UC  states 

According to the description for the system, the changeable states are history dependent, so 

that the system is available when it is in UC  states, which is depicted in Figure 6(2). 

… … U

t

h

C

D

 

Figure 6(2). The system in UC  states in Scenario 2 

We denote the avaliability in UC  states as 
2 ( )A t , then  

2 ( )

0
0

( ) CC
t

ht h

U UC CA t e e dh  
QQ

E Q 1 ,                    (12) 

where 
U U

U

S U





 
   
 

I
E

0
, 

1
(1, ,1)T

C C
1 . Note that h  in Figure 6(2) means the duration 

of the system staying in C  before time t . 

The explanation of equation (12) is because the system is working at time t h , then 

making a transition from the set U  to set C  and staying in C , which is called UC , during 

the time length h . C1  is a column vector of C  ones to sum up all the desired probabilities. 
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(3) Scenario 3: The system is in SD  states 

Since if the repair time in D  is sufficiently short, then when the failure can be neglected the 

system is regarded as available. In order to present the availability function, denoted as 
3( )A t , 

we must figure out what the state before this short D  state is. Thus, three cases for Scenario 3 

will be considered as follows. 

a) Case 1 for Scenario 3: The previous state to SD  is a U  state 

We describe this situation by Figure 6(3a), in which the duration in D  is less than critical 

value   (i.e. the system is in SD ) and the state before D  is U . 

… … U

t

s

C

D

or



 

Figure 6(3a). The previous state to SD  is a U  state in Scenario 3 

According to the description of this situation, we can obtain the availabilty, 

3 ( )

0
0

( ) ( )DD DD
t

sa t s

U UD DA t e e e ds





 
Q QQ

E Q 1 ,    (13) 

where 
1

(1, ,1)T

D D
1 . Note that s in Figure 6.(3a) means the duration of the system staying in 

SD  before time t . 

For equation (13), because 
( )

0

t s

Ue Q
E  is a probability vector which gives the probability 

of the repairable system being in each U  state at instant time t s , and UDQ  means the 

system transfer from states U  to D . DD DDs
e e




Q Q
 keeps the system stays in SD  state which 

means the duration in D  is shorter than  . 

b) Case 2 for Scenario 3: The previous state to SD  is a UC  state 

If the states before SD  is a UC  state, it is depicted in Figure 6.(3b). 
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t
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D
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
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Figure 6(3b). The previous state to SD  is a UC  state in Scenario 3 

The availability under this situation is  

3 ( )

0
0 0

( ) ( ) .CC DD DD
t t u

v ub t u v

U UC CD DA t e e e e dv du



 

   
   

Q Q QQ
E Q Q 1         (14) 

Note that in Figure 6.(3b) u  stands for the duration of the system staying in SD  before 

time t  and v  means the duration of the system staying in UC . 

The explanation of equation (14) is: The durations that the system stays in UC  is v , in 

SD  until time t  is u . The system has a transition from U  to C  at time t u v   and then 

transfers to SD  after C . Moreover, the duration in SD  is shorter than  . 

c) Case 3 for Scenario 3: The previous state to SD  is an available DC  state  

In this case, an available DC  state refers to that the changeable-down state with a previous 

SD  state and the SD  state has been treated in Up period. Hence, we call this kind of DC  state 

as available DC  state. 

Thus, we get a transition chain that the system currently stays in an available in SD  state 

with a previous available DC  state and the available DC  state comes from another available 

SD  state. Furthermore, the second previous SD  state could come from another available DC  

with a previous SD  state, and so forth in the way SD  to conditional DC  to SD  state.  

If we denote the current SD  state the system is staying as the k th SD  state and all the 

SD  states are numbered in order as time going, then what we concern is the previous state to the 
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first SD  state. The previous state to the first SD  state could be U  or UC  states so that the 

availability for this case, denoted as 
3 ( )cA t , is again divided into two subcases. In addition, k  

could be 2 to infinity. 

 Subcase 1 of case 3 for Scenario 3: the previous state to the first SD  state is U , 

denoted as 
3 (1) ( )cA t , which is depicted as figure 6(3c)-1. 

 

Figure 6.(3c)-1. The previous state to the first SD  state is U  in Subcase 1 of case 3  

for Scenario 3 

1

1 1

1 1

1 1

( )
3 (1)

0

2
2 1

1 1 1 1

( ) ( )

[ ( )]

[ ( )] .

k k

i i

i i DD k DD

CC k DD k DD

CC DD DD

t u v
uc

U UD

k
k

v u

DC CD

v u

DC CD D k k k

A t e e e

e e e

e e e du dv du dv du











 

 

  




 

 
  

 



  
Q

Q Q

Q Q Q

Q Q Q

E Q

Q Q

Q Q 1

       (15) 

 

 Subcase 2 of case 3 for Scenario 3: the previous state to the first SD  state is UC , 

denoted as 
3 (2) ( )cA t , which is depicted as figure 6(3c)-2. 
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Figure 6.(3c)-2. The previous state to the first SD  state is UC  in Subcase 2 of case 3 

for Scenario 3 

1 1

1 1

1 1

( )
3 (2)

0

2
2

1 1 1 1

( ) ( )

[ ( )]

[ ( )] .

k k

i i

i i CC k DD k DD

CC k DD k DD

CC DD DD

t u v
v uc

U UC CD

k
k

v u

DC CD

v u

DC CD D k k k k

A t e e e e

e e e

e e e dv du dv du dv du







  

 

  



 

 
 

 



  
Q

Q Q Q

Q Q Q

Q Q Q

E Q Q

Q Q

Q Q 1

    (16) 

And, 

3 3 (1) 3 (2)( ) ( ) ( )c c cA t A t A t  .                    (17) 

Thus, 

3 3 3 3( ) ( ) ( ) ( )a b cA t A t A t A t   .                  (18) 

(4) Scenario 4: The system is in an available DC  state 

Basically, the system is not available in DC  states in the original Markov history-dependent 

model. However, the system can be regarded as available when it is in an available DC  state 

with a previous SD  state. Similar with Scenario 3, the availability of this scenario denoted as 

4 ( )A t , depends on what the state is before the previous SD  state. Also, three cases for Scenario 

4 will be considered as follows. 

a) Case 1 for Scenario 4: The previous state to SD  is a U  state 
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Figure 6.(4a). The previous state to SD  is a U  state in Scenario 4 

According to the analysis for this situation, if the previous state to SD  is a U  state, we 

can get the availability 
4 ( )aA t  as follows. This situation is illustrated in Figure 6(4a). 

( )
4 ( )

0
0 0

( ) CCDD
t t u

uva t u v

U UD DC CA t e e e dv du



 

  
   

QQQ
E Q Q 1 .          (19) 

Note that in Figure 6.(4a) u  stands for the duration of the system staying in DC  before 

time t  and v  means the duration of the system staying in SD . 

For equation (19), it is because that the system has a transition from U  to D  at time 

t u v   and then spends v  stays at D  ( v  is shorter than  ). Then, the system transfers 

from SD  to C  (it is DC ) and the duration in DC  until time t  is u . 

b) Case 2 for Scenario 4: The previous state to SD  is a UC  state 

… … U

t

u

C

D

v

w



 

Figure 6.(4b). The previous state to SD  is a UC  state in Scenario 4 

If the previous state to SD  is a UC  state, the situation is shown in Figure 6(4b). Note that 

in Figure 6.(4b) u  stands for the duration of the system staying in DC  before time t , v  
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means the duration of the system staying in SD  and w  represents the duration of the system 

staying in UC . 

Similarly, we can obtain the 
4 ( )bA t  is 

 ( )
4 ( )

0
0 0 0

( ) CC CCDD
t t u t u v

w uvb t u v w

U UC CD DC CA t e e e e dw dv du



   

   
    

Q QQQ
E Q Q Q 1 . (20) 

The explanation of equation (20) is similar to that of equation (16), adding the consideration 

of the system has a transition to UC  after U  and before SD . 

c) Case 3 for Scenario 4: The previous state to SD  is an available DC  state 

The availability for this case, denoted as 
4 ( )cA t , is handled similarly with 

3 ( )cA t . It is 

again divided into two subcases, the explanation can be reffered to that in Case 3 for Scenario 3. 

 Subcase 1 of case 3 for Scenario 4: The previous state to the first SD state is U , 

denoted as 
4 (1) ( )cA t , which is depicted as figure 6(4c)-1. 

 

Figure 6.(4c)-1. The previous state to the first SD  state is U  in  

Subcase 1 of case 3 for Scenario 4 

1 1

1 1

11

( )
4 (1)

0

2
2

1 1 1 1

( )

[ ]

[ ] .

k k

i i

i i DD k CC k

DD k CC k

CCDD

t u v
u vc

U UD DC

k
k

u v

CD DC

vu

CD DC C k k k k

A t e e e

e e

e e du dv du dv du dv

  

 

  



 

 




  
Q

Q Q

Q Q

QQ

E Q Q

Q Q

Q Q 1

         (21) 

 Subcase 2 of case 3: The previous state to the first SD  state is UC , denoted as 

4 (2) ( )cA t , which is depicted as Figure 6(4c)-2. 
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Figure 6.(4c)-2. The previous state to the first SD  state is real UC  in 

 Subcase 1 of case 3 for Scenario 4 

 

1

1 1 1

1 1

11

( )
4 (2)

0

2
2 1

1 1 1 1 1

( )

[ ]

[ ] .

k k

i i

i i CC k

DD k CC k DD k CC k

CCDD

t u v
vc

U UC

k
k

u v u v

CD DC CD DC

vu

CD DC C k k k k k

A t e e

e e e e

e e dv du dv du dv du dv





  

 

  




  

 




  
Q

Q

Q Q Q Q

QQ

E Q

Q Q Q Q

Q Q 1

  (22) 

Theoretically,  

4 4 (1) 4 (2)( ) ( ) ( ).c c cA t A t A t                         (23) 

Similar with that in Case 3 for Scenario 3, all the expressions for 
4 ( )cA t  will turn to be tiny 

when computation is done, which will be demonstrated in the numerical example. 

Thus, 

4 4 4 4( ) ( ) ( ) ( )a b cA t A t A t A t   .                     (24) 

Finally, we can get the instantaneous availability for the system as follows, 

1 2 3 4( ) ( ) ( ) ( ) ( )A t A t A t A t A t    ,                  (25) 

and the matrices in this formula have been already obtained in the previous section. 

 

4.2 Steady-state availability for MRS-HDS with neglected failures 

According to the definition, the steady-state availability can be got from the limitation of 

instantaneous availability, when time t  approaches infinity. 

We denote the steady-state availability as ( )A  , and  

( ) lim ( )
t

A A t


  .                            (26) 

Therefore, after we derive the function for instantaneous availability, we take the limit to get 

the steady-state availability for the system. It will be shown in the numerical example section later. 
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4.3 Some sojourn time distributions for MRS-HDS with neglected failures 

Based on the analysis in Section 3.1, we can present the transition matrix Q  for the new 

Markov process ( ), 0X t t  , 

U

U U U U

D D D D

D

UU UC UD

C U C C C D

C U C C C D

DU DC DD

 
 
 

  
 
 
 

Q Q 0 Q

Q Q 0 Q
Q

Q 0 Q Q

Q 0 Q Q

.                 (27) 

Since we have defined that UA U C , from matrix Q  we can get 

U

U U U

UU UC

AA

C U C C

 
  
 
 

Q Q
Q

Q Q
, 

U

UD

AD

C D

 
  
 

Q
Q

Q
,  

UDA DU DCQ Q Q , DD DDQ Q .   (28) 

And  

*
1( ) ( )AD AA ADs s  G I Q Q ,                   (29) 

*
1( ) ( )DA DD DAs s  G I Q Q .                   (30) 

According to what has been discussed in Section 3.1 about Up and Down periods for the 

system, combining with the meanings of the semi-Markov process, the elements in the density 

kernel ( )
e

tG  (in equation (3)) can be obtained. 

Firstly, the Laplace transform of ( )
e

WF tG  is given by the following equation, 

*

( ) 0 1 2 3 4 5 6
e

WF s G G G G G G G      G , 

where 

* * *0 ( ) ( ) (0)UC CD DDG s s LG G , 

* * * * * * *

0

1 ( ) ( ) ( ) ( ) (0) ( ) (0)
r

UC CU UC CD DD UD DD

r

G s s s s L s L




        G G G G G , 

* * * * * * * *

0

2 ( ) ( ) ( ) ( ) ( ) (0) ( ) (0)
r

UD DD DU UC CD DD UD DD

r

G s S s s s s L s L




        G G G G G , 

* * * *

0

3 ( ) ( ) ( ) ( )
r

UC CD DD DC

r

G s s S s s




   G G G  

 * * * * * * * *( ) ( ) ( ) (0) ( ) (0) ( ) (0)CU UC CD DD UD DD CD DDs s s L s L s L    G G G G G , 
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* * * * *

0

4 ( ) ( ) ( ) ( ) ( )
r

UC CD DD DC CU

r

G s s S s s s




    G G G G  

* * * * *( ) ( ) (0) ( ) (0)UC CD DD UD DDs s L s L   G G G , 

* * * * * * * * *

0

5 ( ) ( ) ( ) ( ) ( ) ( ) (0) ( ) (0)
r

UD DD DC CU UC CD DD UD DD

r

G s S s s s s s L s L




        G G G G G G , 

* * * * * *

0

6 ( ) ( ) ( ) ( ) ( ) ( )
r

UD DD DC CD DD DC

r

G s S s s s S s s




   G G G G

 * * * * * * * *( ) ( ) ( ) (0) ( ) (0) ( ) (0)CU UC CD DD UD DD CD DDs s s L s L s L    G G G G G . 

The Laplace transform of ( )
e

WF tG  can be presented as follows, 

*

( )
e

FW s G  

* *( ) ( )DD DUL s sG
* * * * * * *

0

( ) ( ) ( ) ( ) ( ) ( ) ( )
r

DD DC CD DC UC CD DU

r

L s s s s s s s




       G G G G G G .  

Next, some distributions for the Markov history-dependent repairable system can be obtained 

as follows. 

(1) The distribution for the k th working period from the beginning up states 

We suppose the system is in up states (U  states) at the beginning. Let 
( 1)k

W


 be the state 

occupancy probability vector at the start of the k th working period,  1,2,...k . 

Then, the probability density function for the duration of the k th working period is given by 

( 1) ( )
e

k
WFW Ft 

G 1 ,                          (31) 

where 
( ) ( 1) ( ) ( )

e e
k k

WF FWW W    G G , and 
(0)

W W  , which can be got from the initial 

probability vector  0 ,W F   . F1 is a column vector of F  ones. 

From eqution (25), we can know the Laplace transform of ( )
e

WF tG . 

Therefore, we can get the probability density function for the duration of the k th working 

period by computation of inverse Laplace transform and normalazition. 

 

(2) The distribution for the k th failure period 

Correspondingly, if we focus on the failure period (Down period of the system) instead of 

working period (Up period of the system), the probability density function for the duration of the 

k th failure period is given by 
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( 1) ( )
e

k
FWF Wt 

G 1 ,                          (32) 

where 
( ) ( 1) ( ) ( )

e e
k k

FW WFF F    G G , and 
(0)

F F  , which can be got from the initial 

probability vector  0 ,W F   . W1  is a column vector of W  ones. 

Similarly, we have got the Laplace transform of ( )
e

WF tG  by equation (26). Consequently, 

the probability density function for the duration of the k th failure period can be obtained. 

 

(3) The distribution for the real working time in an effective working period 

In fact, there is some time the system is not at working as the short failure is neglected for the 

Markov history-dependent repairable system. Thus, we can consider the real working time in a 

working period. 

The Laplace transform of the probability density function for the real working time in the k

th working period is 

* * *
( 1) * *

0

( ) (0) (0) ( ) (0)
r

k
AD DA ADA DD DD D

r

s S s L






 
   G G G 1 ,            (33) 

Where
( 1)k

A


 can be got from the k th working probability vector  ( 1) ( 1) ( 1),k k k

W A W A    

 . D1  

is a column vector of D  ones. 

Hence, the probability density function can be obtained after doing inverse Laplace transform 

and normalazition. 

 

(4) The distribution for the neglected failure time in an effective working period 

Since the short failure in a working period is neglected, we also concern the distribution for 

the neglected failure time in the k th working period. 

The Laplace transform of the probability density function for the neglected failure time in the 

k th working period is 

* * *
( 1) * *

0

(0) ( ) ( ) (0) (0)
r

k
AD DA ADA DD DD D

r

S s s L






 
   G G G 1 . 

Finally, Inverse Laplace transform and normalazition are needed to do as well. 

 

5. Numerical example 

A numerical example is presented in this section to demonstrate the methods developed in 

previous sections. For simplicity, we assume that there is only one state in each set U , C , and 

D . Assume the transition rate matrix for the original Markov process describing the repairable 

system is 
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3 1 2

4 6 2

3 2 5

 
 

  
  

Q , 

and we assume that 0.1   and that the initial state of the system is an Up state, so that the initial 

probability vector is  0 1,0,0  . 

Next, we duplicate the changeable state to yield the transition rate matrix for the aggregated 

Markov process  ( ), 0X t t  : 

3 1 0 2

3 4 0 1

1 0 2 1

3 0 2 5

 
 

 
 
 

 

Q .       (34) 

To calculate the instantaneous availability, we first calculate the expressions for ( )iA t , 

1,2,3,4i  , based on the equations obtained in Section 4.1. It should be noted that we only 

consider the first two terms in the expressions for  3A t  (Eq. (18)) and  4A t  (Eq. (24)), 

respectively. This is because both  3cA t  and  4cA t  involve the continuous and repeated 

transitions between specific states, whose probability, compared to other terms in (18) and (24), is 

negligible. The results are presented by the solid line in Figure 7. Monte Carlo simulations are 

conducted to verify the derived analytical expressions. We equally divide  0,3  into 500  

sub-intervals and use 410  random samples to calculate the availability at each sub-interval. The 

results are also given in Figure 7. From the comparisons, it can be seen clearly that the derived 

equations accurately describe the availability of the system.  

 

Figure 7. The instantaneous availability for the MRS-HDS with neglected failures  

compared with the result of simulation 
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Steady-state availability can, then, be obtained through calculating: 

( ) 0.6739.A    

Next, we calculate the distribution of some sojourn times. For illustration purposes, we only 

calculate the distribution of the real working times in an effective working period. Other 

distributions discussed in Section 4.3 can be achieved in a similar way. From the values of matrix 

Q  in equation (34), we can get matrices in equation (28), 

3 1

3 4
AA

 
  

 
Q , 

2

1
AD

 
  
 

Q ,  3 0DA Q ,  5DD  Q . 

Therefore, equations (28) and (29) become, 

2*

2

2 9

7 9
( )

9

7 9

AD

s

s s
s

s

s s

 
  

  
 

 
  

G , 
* 3

( ) 0
5

DA s
s

 
  

 
G . 

Assume the predefined critical value is 1  . From equations (6) and (7), we can get the 

expression of 
* ( )DDL s , 

* ( )DDS s ,
* (0)DDL  and 

* (0)DDS . Based on equation (29-n33), we 

calculate the real working times in the first working period with 1k  ,  (0) 1 0A  , as shown 

in Figure 8. 

 

Figure 8. The probability density function for the real working times in the first working period 

 

6. Conclusions 

In this paper, the theory of aggregated stochastic processes is employed to develop reliability 

analysis methods for Markov Repairable System with History-Dependent up and down States 

(MRS-HDS) considering the effect of neglected failures. A new model for MRS-HDS with 
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neglected failures is developed first, based on the theory of aggregated stochastic processes, which 

allows for the explicit consideration of both history-dependent states and neglected failures in 

repairable system models. Based on the developed model, the instantaneous and steady-state 

availabilities of MRS-HDS with neglected failures are derived. Also, some reliability-related time 

distributions are obtained, including, distribution for the k th working period, distribution for the 

k th failure period, distribution for the real working time in an effective working period, 

distribution for the neglected failure time in an effective working period. All the derived reliability 

indexes can be expressed in closed-form, which provides an effective and comprehensive way to 

describe the reliability of MRS-HDS with neglected failures. 

In the future, more versatile reliability indexes might be defined and derived so that the 

behavior of system reliability from different aspects could be better captured. Moreover, 

considering the influence of system configuration, more system structures can be investigated to 

achieve a more comprehensive understanding of reliability analysis of MRS-HDS, e.g., series 

systems, parallel systems, coherent systems and so on. 
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