Shijia Du 
  
Zhiguo Zeng 
email: zengzhiguo@buaa.edu.cn
  
Lirong Cui 
  
Rui Kang 
  
Reliability analysis of Markov history-dependent repairable systems with neglected failures

Keywords: Markov repairable system, Markov history-dependent repairable systems, neglected failure, availability, aggregated stochastic process

Markov history-dependent repairable systems refer to the Markov repairable systems in which some states are changeable and dependent on recent evolutional history of the system. In practice, many Markov history-dependent repairable systems are subjected to neglected failures, i.e., some failures do not affect system performances if they can be repaired promptly. In this paper, we develop a model based on the theory of aggregated stochastic processes to describe the history-dependent behavior and the effect of neglected failures on the Markov history-dependent repairable systems. Based on the developed model, instantaneous and steady-state availabilities are derived to characterize the reliability of the system. Four reliability-related time distributions, i.e., distribution for the k th working period, distribution for the k th failure period, distribution for the real working time in an effective working period, distribution for the neglected failure time in an effective working period, are also derived to provide a more comprehensive description of the system's reliability. Thanks to the power of the theory of aggregated stochastic processes, closed-form expressions are obtained for all the reliability indexes and time distributions. Finally, the developed indexes and analysis methods are demonstrated by a numerical example.

Introduction

Reliability is an important feature of repairable systems [START_REF] Liu | A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process[END_REF]- [START_REF] Montoro-Cazorla | A reliability system under different types of shock governed by a Markovian arrival process and maintenance policy K[END_REF]. In most existing literatures, reliability analysis is studied by modeling the repairable system as a Markov process (e.g., see [START_REF] Csenki | Joint interval reliability for Markov systems with an application in transmission line reliability[END_REF]- [START_REF] Liu | Interval reliability for aggregated Markov repairable system with repair time omission[END_REF]). Most of these Markov-process-based models assume that there are clear definitions of normal state and failure state and the definitions are independent of the evolutional history of the system. In practice, however, some states in a repairable system might be changeable and depend on the recent evolutional history of the system (for example, see [START_REF] Cui | Markov repairable systems with history-dependent up and down states[END_REF] [START_REF] Wang | Aggregated semi-Markov repairable systems with history-dependent up and down states[END_REF]). This kind of special system was named by Cui et al. [START_REF] Cui | Markov repairable systems with history-dependent up and down states[END_REF] as Markov Repairable System with History-Dependent up and down States (MRS-HDS) and reliability analysis methods were developed by them to calculate its availability. Based on the work of [START_REF] Cui | Markov repairable systems with history-dependent up and down states[END_REF], Wang et al. [START_REF] Wang | Multi-Point and Multi-Interval Availabilities for Markov Repairable Systems with History-Dependent Up and Down States[END_REF] derived multi-point and multi-interval availabilities for the MRS-HDS. Zheng et al. [START_REF] Zheng | Availability of semi-Markov repairable systems with history-dependent up and down states[END_REF] generalized Cui's work in [START_REF] Cui | Markov repairable systems with history-dependent up and down states[END_REF] to semi-Markov repairable systems with history-dependent up and down states.

In many practical systems, if the repair time is shorter than a predefined threshold, the failures will have little influence on systems' performances, so that the failures can be neglected when evaluating the system's availability. For example, consider a failure in a water supply system that cut off the water supply to the end-users. If the failure is recovered in a relatively short period, e.g., several minutes, the end-users are possible to tolerate or even unaware of it. This kind of failure, which can be promptly repaired within the tolerance of the end-users, can therefore, be neglected when calculating the availability of the water supply system. Such failures are regarded as neglected failures and are commonly encountered in repairable systems. For instance, Zheng et al. [START_REF] Zheng | A study on a single-unit Markov repairable system with repair time omission[END_REF] studied a single-unit Markov repairable system with repair time omission. Bao and Cui [START_REF] Bao | An analysis of availability for series Markov repairable system with neglected or delayed failures[END_REF] considered series Markov repairable systems with neglected or delayed failures.

Neglected failures also exist in MRS-HDS, e.g. the water distributed system, the power distributed networks, computer networks, etc. The introduction of changeable states, as a result of the neglected failures, makes standard Markov-process-based models incapable to capture the system's failure and repair behaviors. However, to the best of our knowledge, the effect of neglected failures on the reliability of MRS-HDS has not been considered before. To fill this gap, we develop a new model and associated reliability analysis method based on the theory of aggregated stochastic process and then derive some important reliability indexes for the system. Although a large number of literatures focused on obtaining reliability indexes for repairable systems (e.g. [START_REF] Du | A study on joint availability for k out of n and consecutive k out of n points and intervals[END_REF]- [START_REF] Du | Reliabilities of a single-unit system with multi-phased missions[END_REF]), it is generally difficult to obtain close-formed expressions for these indexes, especially when the system's behavior is complex, as the case of MRS-HDS with neglected failures. In this paper, however, with the help of the aggregated stochastic processes theory, close-formed expressions can be obtained for all the derived indexes.

Aggregated stochastic processes were invented by Burke and Rosenblatt [START_REF] Burke | A Markovian function of a Markovchain[END_REF] in 1957. One of the milestones in the history of the aggregated stochastic process is Colquhoun and Hawkes's successful work in developing probabilistic models to describe the behavior of ion channels (e.g., see [START_REF] Colquhoun | Relaxation and fluctuations of membrane currents that flow through drug-operated ion channels[END_REF] [START_REF] Colquhoun | On the stochastic properties of bursts of single Ion Channel openings and of clusters of bursts[END_REF]). Since then, aggregated stochastic process has received more and more attention from various areas. Among them, Rubino and Sericola [START_REF] Rubino | Sojourn times in finite Markov processes[END_REF] first applied the theory to model a repairable system. Various models were, then, developed based on the aggregated stochastic processes to describe the behavior of different types of repairable systems, e.g., Hawkes et al. (e.g., [START_REF] Hawkes | Modeling the evolution of system reliability performance under alternative environments[END_REF]), Cui et al. (e.g. [START_REF] Cui | A study on a single-unit repairable system with state aggregations[END_REF] and [START_REF] Cui | Reliability measures for two-part partition of states for aggregated Markov repairable systems[END_REF]), Wang et al. ([24] and [START_REF] Wang | Reliability Evaluation for Multi-State Markov Repairable Systems with Redundant Dependencies[END_REF]), Liu et al. (e.g. [START_REF] Liu | A performance measure for Markov system with stochastic supply patterns and stochastic demand patterns[END_REF]), etc. By employing aggregated stochastic processes, we focus on aggregating and decomposing the states of the new model. To be specific, because changeable and down states can present both failure and operational states, these two states are duplicated and redefined, in order to describe the state-dependent and time-dependent behavior of the system. A new stochastic process, which is an aggregated stochastic process, can be constructed and the theory of aggregated processes can be used to achieve analytical expressions of some important reliability indexes and reliability-related time distributions.

The rest of the paper is organized as follows. In Section 2, the motivation of this paper is fully explained with an industrial example and assumptions of the developed model are formally presented. In Section 3, we use aggregated stochastic processes to model the behavior of MRS-HDS with neglected failures. Some reliability indexes for MRS-HDS with neglected failures, i.e., the instantaneous availability, steady-state availability and some sojourn time distributions are derived in Section 4. In Section 5, the developed indexes and analysis methods are demonstrated by a numerical example. Finally, conclusions are given in Section 6.

Motivation and assumptions

Motivation example

In this section, we present an engineering example of MRS-HDS with neglected failures which motivates the research in this paper. Take an electrical power supply system as an example, which is designed to provide electricity to a factory. The electricity comes from three substations, each of which can contribute a maximum amount of 1 MW (Megawatt). To maintain its normal functions, the factory needs a total amount of 2.5 MW of electricity. Due to the advance technology of distributed power generations [START_REF] Ackermann | Distributed generation: a definition[END_REF] [START_REF] Blaabjerg | Overview of control and grid synchronization for distributed power generation systems[END_REF], the factory itself can produce 0.8 MW of electricity since it has installed a photovoltaic generator. However, the photovoltaic generator only works when the factory is in normal state, since it requires power supplies and control commands from a control center, which is located in the factory. If the factory does not receive enough power from the electricity-distributed system, the control center cannot work, which in turn, ceases the normal functioning of the photovoltaic generator.

The state space of the system can be defined by the numbers of the failed substations:

  0,1, 2,3 . S 
It is easy to verify that when the system is in state 0 , the factory is in working state; when the system is in state 2 or state 3 , the factory is in failure state, regardless of the state of the photovoltaic generator. However, state 1 , which represents that one of the three substations fails and the factory receives 2MW of electricity from the electricity supply system, is a changeable state affected by the system's historical dynamics:

(1) Suppose the system transfers to state 1 from a working state, which means that before entering state 1 , the factory was functioning normally. Hence, the photovoltaic generator is working and generates additional 0.8 MW of electricity. The total amount of electricity the factory could receive is, then, calculated as

    M 2 W 0 2.5 MW .8 2.8 .  
Therefore, the factory can perform its function normally. It means state 1 of the system is a working state.

(2) If, on the other hand, the system transfers to state 1 from a failure state (state 2 or state 3 ), which means that before entering state 1 , the factory was already in failure state, and therefore, the photovoltaic generator cannot work. The factory can, then, only receive total amount of 2 MW electricity, which makes it in a failure state.

Consequently, state 1 in the above electrical power supply system is a history-dependent state. Besides, due to the widely application of Uninterrupted Power Supplies (UPSs) in the factory, the factory can withstand a temporary loss-of-power for no more than 5 minutes. Thus, failures that can be recovered within 5 minutes are treated as neglected failures. In this paper, we develop methods to analyze the reliability and availability of such MRS-HDS with neglected failures.

System descriptions and assumptions

In this section, we present a formal description of MRS-HDS with neglected failures. The system is based on the following assumptions:

(1) The repairable system is described by a continuous-time Markov process { ( ), 0} X t t  with finite state space S .

(2) The observation for the system has two statuses: Up and Down periods. Essentially, the state space S can be divided into three sets, U , C , and D . The state in U stands for functional or Up state, which represents that the system is working. When the system stays in U , we say that the system is in Up period. The state in D stands for failure or Down state, which represents that the system fails. When the system stays in D , we say that the system is in Down period. is neglected: If the previous state belongs to Up period, the system is regarded as in Up period for the whole period of R t ; on the other hand, if the previous state belongs to Down period, then the system is regarded as in Down period for the whole period of R t . Therefore, the rule to judge which period the system stays in is to know what period the previous state belongs to. According to this rule, the illustration of MRS-HDS with neglected failures is shown in Figure 2.

Here, we want to mention that the definition of neglected failure is adopted from the definition in [START_REF] Zheng | A study on a single-unit Markov repairable system with repair time omission[END_REF]. According to [START_REF] Zheng | A study on a single-unit Markov repairable system with repair time omission[END_REF], when the system comes from "up" to "down" with a duration longer than  , the whole duration of repair (or failure) is regarded as in "down". Only when the duration of repair time for the system is no longer than  , the "down" duration will be considered to be "operating" (available). That is to say, when the system comes from "up state" to a long D state, the first  time units will be considered as part of downtime. The reason we made explanation is to distinguish two different understanding for the availability of the first  time units in a long D state. The definition used in our model is based on model II in [START_REF] Cui | Reliability measures for two-part partition of states for aggregated Markov repairable systems[END_REF], which is called the neglected failure model. However, if the first  time units in a long D state is regarded as available, the model will become another one which is same as model III in [START_REF] Cui | Reliability measures for two-part partition of states for aggregated Markov repairable systems[END_REF], called failure delayed failure model. 

Modelling MRS-HDS with neglected failures using aggregated stochastic processes

In this section, we use aggregated stochastic processes, a mathematical tool mainly developed in the theory of ion channel, to model the behaviour of MRS-HDS with neglected failures. First, the Markov process in which the finite number of states is partitioned into three sets, U , C , and D has transition rate matrix

UU UC UD CU CC CD DU DC DD       Q Q Q Q Q Q Q Q Q Q . ( 1 
)
Then, a semi-Markov process can be defined, which is imbedded at the instants when the system switches between the three groups. The stochastic properties of this semi-Markov process are governed by a transition matrix () t G , which can be partitioned in a similar manner to

Q as ( ) ( ) ( ) ( ) ( ) ( ) ( ) UC UD CU CD DU DC tt t t t tt       0 G G G G 0 G G G 0 , (2) 
where

( )= exp( ) tt    G Q Q , provided   , for , U  , C , or D .

Modelling the history-dependent behaviour

Next, from another viewpoint, once the system enters one U state, then the system is sojourn in Up period until one long D duration (duration in D longer than the given value) occurs. More specifically, no matter what transitions happening after that U state, the system is always in Up period as long as no arriving in long D duration.

Similarly, the system is sojourn in Down period once it comes to one D duration longer than the given value. And the Down period will terminate when one U state occurs. The following diagram, Figure 3 can illustrate this viewpoint.

U C D Up Down time t time t … … … … … … … … … … … …  Figure 3
. Alternative Up and Down periods path for the system If we use stochastic process   ( ), 0 X t t  to describe the running path for the system, then another stochastic process   ( ), 0 Y t t  , can be seen as the results of our observation. That is whether the system is in Up or Down period. The stochastic process  

( ), 0 Y t t  is an aggregated stochastic process.
If we denote the Up period as W , Down period as F , then the properties of this system may be described by considering a semi-Markov process. That is to say, the aggregated stochastic process  

( ), 0 Y t t  is a semi-Markov process.
The semi-Markov process has a density kernel, which will be denoted by

() () () e e WF e FW t t t      0G G G0 . ( 3 
)
For some purposes, it is useful to have their Laplace transforms:

* * * () () () e e WF e FW s s s      0G G G0 . ( 4 
)
If we ignore the durations of the sojourns and merely consider the sequence of states that are occupied at the start of each sojourn, we have an embedded Markov chain with transition probability matrix, 

         0G G G G G0 . ( 5 
)
Here we use the convention of dropping the star and the argument to denote a Laplace transform evaluated at 0 s  , which is the integral of the original function over the interval (0, )

 .

Modelling the neglected failures

Taking neglected failure into consideration, we need to distinguish short (less than  ) and long (greater than  ) sojourns in D . So in the manner of Hawkes et al. [29], we break up the Laplace transform of 

         Q Q I I Q I Q Q S G , 1 * * exp( ) exp( ( ) )( ) ( ) ( ) st DD DC DD DD DC DD DC e t dt s s s s           Q Q I Q I Q Q L G
, where * ( ) exp( ( ) )

DD DD ss     L I Q , ( 6 
) * ( ) exp( ( ) ) DD DD ss      S I I Q . ( 7 
)
In order to get more indexes and distributions for the system, we need to make some change ( ), 0 X t t  is still a Markov process. However, it no longer obeys Markov properties when the neglected failure is taken into consideration. We just want to illustrate the possible transitions among the states if we need to distinguish whether the duration in D is longer than  by Figure 5, which makes the transitions rules more clearly. The transition rules are as follows: a) Rules for U states: The bidirectional transitions can happen between U and other states except D C . Because if the system is in U states following by a changeable state, then it must be a changeable-up state. Therefore, there is no transition from U to . Thus, the system can be considered available during states set A . And we regard the system are "good" in states set A , some changeable states and short-failure states.

The properties of this system may be described by considering a semi-Markov process embedded at the time points which form the start of an available state, the start of a changeable-down sojourn, the start of a sojourn in D states. Denote the semi-Markov process as  

( ), 0

Z t t  , so that   ( ), 0 Z t t  is an aggregated stochastic process.
The semi-Markov process   ( ), 0 Z t t  has a density kernel, which will be denoted by ()

( ) ( ) ( ) ( ) ( ) D DD AD DA DC C A C D t t t t tt        0 G 0 G G 0 G G G 0 . ( 8 
)
For some purposes it is useful to have their Laplace transforms:

10 * * * * ** () ( ) ( ) ( ) ( ) ( ) D DD AD DA DC C A C D s s s s ss        0 G 0 G G 0 G G G 0 . ( 9 
)
If we ignore the durations of the sojourns and merely consider the sequence of states that are occupied at the start of each sojourn, we have an embedded Markov chain with transition probability matrix, * 0 ( ) (0)

D DD AD DA DC C A C D t dt            0 G 0 G G 0 G G G G G 0 . ( 10 
)
Here we use the convention of dropping the star and the argument to denote a Laplace transform evaluated at 0 s  , which is the integral of the original function over the interval (0, )

 .

Reliability indexes of MRS-HDS with neglected failures

In this section, we use the model developed in Section 3 to derive some reliability-related indexes for MRS-HDS with neglected failures, i.e., the instantaneous availability, steady-state availability and some sojourn time distributions.

Instantaneous availability for MRS-HDS with neglected failures

According to the definition of availability, we define the availability for a system in traditional sense, which is based on the original model. If the system is in U and up-changeable states, it is regarded available for the original model. However, taking the neglected failure into consideration, the definition of the availability will be extended.

According to our new model, the system is regarded as available in Up period under several situations. Of course, the system is still available when it is in U and up-changeable states. Besides, when the system is in D whose duration is less than the critical value and the state the D moving from is an A state, then the system is still available. In addition, if the system is in C state whose previous state is one short failure duration with an A previous state, then it is in Up period. Therefore, we list all the scenarios that the system is available as follows.

(1) Scenario 1: The system is in U states Apparently, the new system is available when it is in U states, which is shown in Figure 6(1).

… …

U t

Figure 6(1). The system in U states in Scenario 1

We can get the availability in this situation easily, 1 0 ()

t U A t e   Q 1 , (11) where 1 
(1, ,1, 0, , 0)

T U S U   1 .
(2) Scenario 2: The system is in U C states According to the description for the system, the changeable states are history dependent, so that the system is available when it is in U C states, which is depicted in Figure 6(2). We denote the avaliability in

U C states as 2 () At, then 2 ( ) 0 0 () CC t h th U UC C A t e e dh     Q Q E Q 1 , ( 12 
)
where

UU U SU        I E 0 , 1 (1, ,1) T C C   1
. Note that h in Figure 6(2) means the duration of the system staying in C before time t . The explanation of equation ( 12) is because the system is working at time th  , then making a transition from the set U to set C and staying in C , which is called U C , during the time length h .

C 1 is a column vector of C ones to sum up all the desired probabilities.

(3) Scenario 3: The system is in

S D states

Since if the repair time in D is sufficiently short, then when the failure can be neglected the system is regarded as available. In order to present the availability function, denoted as 

 QQ Q E Q 1 , (13) where 1 
(1, ,1)

T D D   1
. Note that s in Figure 6.(3a) means the duration of the system staying in S D before time t . For equation [START_REF] Bao | An analysis of availability for series Markov repairable system with neglected or delayed failures[END_REF] 

Q QQ Q E Q Q 1 (14)
Note that in Figure 6.(3b)

u stands for the duration of the system staying in S D before time t and v means the duration of the system staying in U C .

The explanation of equation ( 14) is: The durations that the system stays in 

U C is v , in S D until
Q Q Q QQ Q Q QQ EQ QQ Q Q 1 ( 15 
)
 Subcase 2 of case 3 for Scenario 3: the previous state to the first

S D state is U C , denoted as 3 (2) () c
At , which is depicted as figure 6(3c)-2. 

() 3 (2) 0 2 2 1 1 1 1 ( ) ( ) [ ( )] [ ( )]
. 

kk ii i i CC k DD k DD CC k DD k DD CC DD DD t u v vu c U UC CD k k vu DC CD v u DC CD D k k k k A t
Q QQ Q QQ Q Q QQ E Q Q QQ Q Q 1 (16)
And,

3 3 (1) 3 (2) ( ) ( ) ( ) c c c A t A t A t . (17) 
Thus, 

3 3 3 3 ( ) ( ) ( ) ( ) a b c A t A t A t A t    . ( 18 
Q Q Q E Q Q 1 . ( 19 
)
Note that in Figure 6.(4a)

u stands for the duration of the system staying in D C before time t and v means the duration of the system staying in S D . For equation [START_REF] Colquhoun | On the stochastic properties of bursts of single Ion Channel openings and of clusters of bursts[END_REF], it is because that the system has a transition from U to D at time t u v  and then spends v stays at D ( v is shorter than  ). Then, the system transfers from 

CC CC DD t t u t u v wu v b t u v w U UC CD DC C
A t e e e e dw dv du

                QQ Q Q E Q Q Q 1 . (20) 
The explanation of equation ( 20) is similar to that of equation ( 16), adding the consideration of the system has a transition to 

() 4 (1) 0 2 2 1 1 1 1 () [] [ ] . kk ii i i DD k CC k DD k CC k CC DD t u v uv c U UD DC k k uv CD DC v u CD DC C k k k k A t e e e
ee e e du dv du dv du dv 

            Q QQ QQ Q Q E Q Q QQ Q Q 1 (21) 
() 4 (2) 0 2 21 1 1 1 1 1 () [] [ ] 
. 

kk ii i i CC k DD k CC k DD k CC k CC DD t u v v c U UC k k u v u v CD DC CD DC v u CD DC C k k k k k A t
                  Q Q Q Q Q Q Q Q EQ Q Q Q Q Q Q 1 (22) Theoretically, 4 4 (1) 4 (2) ( ) ( ) ( ). 
c c c A t A t A t  (23) 
Similar with that in Case 3 for Scenario 3, all the expressions for 4 () c At will turn to be tiny when computation is done, which will be demonstrated in the numerical example. Thus,

a b c A t A t A t A t    . 4 4 4 4 ( ) ( ) ( ) ( ) 
Finally, we can get the instantaneous availability for the system as follows,

1 2 3 4 ( ) ( ) ( ) ( ) 
( ) A t A t A t A t A t     , (25) 
and the matrices in this formula have been already obtained in the previous section.

Steady-state availability for MRS-HDS with neglected failures

According to the definition, the steady-state availability can be got from the limitation of instantaneous availability, when time t approaches infinity.

We denote the steady-state availability as () A  , and ( ) lim ( )

t A A t   . ( 26 
)
Therefore, after we derive the function for instantaneous availability, we take the limit to get the steady-state availability for the system. It will be shown in the numerical example section later.

Some sojourn time distributions for MRS-HDS with neglected failures

Based on the analysis in Section 3.1, we can present the transition matrix Q for the new Markov process   ( ), 0

X t t  , U U U U U D D D D D UU UC UD C U C C C D C U C C C D DU DC DD         Q Q 0 Q Q Q 0 Q Q Q 0 Q Q Q 0 Q Q . ( 27 
)
Since we have defined that

U A U C  , from matrix Q we can get U U U U UU UC AA C U C C      QQ Q QQ , U UD AD CD     Q Q Q ,   U DA DU DC  Q Q Q , DD DD  QQ . (28) And * 1 ( ) ( ) AD AA AD ss   G I Q Q , (29) * 1 ( ) ( ) 
DA DD DA ss   G I Q Q . ( 30 
)
According to what has been discussed in Section 3.1 about Up and Down periods for the system, combining with the meanings of the semi-Markov process, the elements in the density 

e WF s G G G G G G G        G , where * * * 0 ( ) ( ) (0) UC CD DD G s s L  GG , * * * * * * * 0 1 ( ) ( ) ( ) ( ) (0) ( ) (0) r UC CU UC CD DD UD DD r G s s s s L s L             G G G G G , * * * * * * * * 0 2 ( ) ( ) ( ) ( ) ( ) (0) ( ) (0) r UD DD DU UC CD DD UD DD r G s S s s s s L s L             G G G G G , * * * * 0 3 ( ) ( ) ( ) ( ) r UC CD DD DC r G s s S s s       G G G   * * * * * * * * ( ) ( ) ( ) (0) ( ) (0) ( ) (0) CU UC CD DD UD DD CD DD s s s L s L s L      G G G G G , 20
r DD DC CD DC UC CD DU r L s s s s s s s             G G G G G G . ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
Next, some distributions for the Markov history-dependent repairable system can be obtained as follows.

(1) The distribution for the k th working period from the beginning up states We suppose the system is in up states (U states) at the beginning. Let ( 1) k W   be the state occupancy probability vector at the start of the k th working period,

  1, 2,... k  .
Then, the probability density function for the duration of the k th working period is given by [START_REF] Liu | A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process[END_REF] () (2) The distribution for the k th failure period Correspondingly, if we focus on the failure period (Down period of the system) instead of working period (Up period of the system), the probability density function for the duration of the k th failure period is given by [START_REF] Liu | A performance measure for Markov system with stochastic supply patterns and stochastic demand patterns[END_REF]. Consequently, the probability density function for the duration of the k th failure period can be obtained.

e k WF WF t   G1 , (31) where 
( ) ( 1) 
(3) The distribution for the real working time in an effective working period

In fact, there is some time the system is not at working as the short failure is neglected for the Markov history-dependent repairable system. Thus, we can consider the real working time in a working period.

The Laplace transform of the probability density function for the real working time in the k th working period is

* * * ( 1) * * 0 ( ) (0) (0) ( ) (0) r k AD DA AD A DD DD D r s S s L         G G G 1 , (33) Where ( 1) k A 
  can be got from the k th working probability vector  

,

k k k W A W A         . D 1 is a column vector of D ones.
Hence, the probability density function can be obtained after doing inverse Laplace transform and normalazition.

(4) The distribution for the neglected failure time in an effective working period Since the short failure in a working period is neglected, we also concern the distribution for the neglected failure time in the k th working period.

The Laplace transform of the probability density function for the neglected failure time in the k th working period is

* * * ( 1) * * 0 (0) ( ) ( ) (0) (0) r k AD DA AD A DD DD D r S s s L         G G G 1 .
Finally, Inverse Laplace transform and normalazition are needed to do as well. 

Numerical example

  ( ), 0 X t t  : 3 1 0 2 3 4 0 1 1 0 2 1 3 0 2 5            Q . ( 34 
)
To calculate the instantaneous availability, we first calculate the expressions for At involve the continuous and repeated transitions between specific states, whose probability, compared to other terms in ( 18) and ( 24), is negligible. The results are presented by the solid line in Figure 7. Monte Carlo simulations are conducted to verify the derived analytical expressions. We equally divide   into 500 sub-intervals and use 4 10 random samples to calculate the availability at each sub-interval. The results are also given in Figure 7. From the comparisons, it can be seen clearly that the derived equations accurately describe the availability of the system. ( ) 0.6739.

A 

Next, we calculate the distribution of some sojourn times. For illustration purposes, we only calculate the distribution of the real working times in an effective working period. Other distributions discussed in Section 4.3 can be achieved in a similar way. From the values of matrix Q in equation (34), we can get matrices in equation ( 28 

Conclusions

In this paper, the theory of aggregated stochastic processes is employed to develop reliability analysis methods for Markov Repairable System with History-Dependent up and down States (MRS-HDS) considering the effect of neglected failures. A new model for MRS-HDS with neglected failures is developed first, based on the theory of aggregated stochastic processes, which allows for the explicit consideration of both history-dependent states and neglected failures in repairable system models. Based on the developed model, the instantaneous and steady-state availabilities of MRS-HDS with neglected failures are derived. Also, some reliability-related time distributions are obtained, including, distribution for the k th working period, distribution for the k th failure period, distribution for the real working time in an effective working period, distribution for the neglected failure time in an effective working period. All the derived reliability indexes can be expressed in closed-form, which provides an effective and comprehensive way to describe the reliability of MRS-HDS with neglected failures.

In the future, more versatile reliability indexes might be defined and derived so that the behavior of system reliability from different aspects could be better captured. Moreover, considering the influence of system configuration, more system structures can be investigated to achieve a more comprehensive understanding of reliability analysis of MRS-HDS, e.g., series systems, parallel systems, coherent systems and so on.

Figure 2 .

 2 Figure 1. A illustration of changeable states
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 334 Figure 4. The transition diagram for the new Markov process According to the assumptions of the model, D can be decomposed into two parts:
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 5 Figure 5. The decomposed transition diagram for the new system Note that the dashed line in the transition diagram presents the difference between our new model and the original model. The new stochastic process  

C

  for D states shorter than  : The bidirectional transitions can happen between S D and other states except L D . What should be mentioned here is the special transition from S D to D C . It happens when the state before S D is a Down state, then this S D is still regarded as in Down period. Consequently, the following changeable state is supposed to be a Down state, which is D C . In addition, there are no transitions between S D and L D . c) Rules for D states longer than  : The transition rules of L D are similar as that of S D .It is impossible that the system runs from for changeable states C : The transitions can occur between changeable states and other states, except that transitions from U to are not allowed.Then based on the new Markov process   ( ), 0 X t t  , a new perspective to analyze the system in view of the state space as S of   ( ), 0 X t t  , we define that U A U C 
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 62 Figure 6(2). The system in
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

  Subcase 1 of case 3 for Scenario 3: the previous state to the first S D state is U , denoted as 3 (1) () c At , which is depicted as figure 6(3c)-1.
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 6 Figure 6.(3c)-1. The previous state to the first
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 6 Figure 6.(3c)-2. The previous state to the first S D state is
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 6 Figure 6.(4b). The previous state to

  handled similarly with 3 () c At . It is again divided into two subcases, the explanation can be reffered to that in Case 3 for Scenario 3.  Subcase 1 of case 3 for Scenario 4: The previous state to the first S D state is U , denoted as 4 (1) () c At , which is depicted as figure 6(4c)-1.
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 6 Figure 6.(4c)-1. The previous state to the first



  Subcase 2 of case 3: The previous state to the first S D state is U C , denoted as 4 (2) () c At , which is depicted as Figure 6(4c)-2.
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 6 Figure 6.(4c)-2. The previous state to the first

F 1

 1 is a column vector of F ones.From eqution[START_REF] Wang | Reliability Evaluation for Multi-State Markov Repairable Systems with Redundant Dependencies[END_REF], we can know the Laplace transform of () can get the probability density function for the duration of the k th working period by computation of inverse Laplace transform and normalazition.

  the equations obtained in Section 4.1. It should be noted that we only consider the first two terms in the expressions for

Figure 7 .

 7 Figure 7. The instantaneous availability for the MRS-HDS with neglected failures compared with the result of simulation

.

  critical value is 1   . From equations (6) and (7), we can get the expression Based on equation (29-n33), we calculate the real working times in the first working period with 1 k  ,

Figure 8 .

 8 Figure 8. The probability density function for the real working times in the first working period

  The state in C represents changeable state.(3) The changeable states in C could be observed to be either in Up or Down period, depending on the system's historical state-transition trajectory: If the last non-changeable state prior to the changeable state is in Up period, then the changeable state is classified as an Up state,

	referred to as changeable-up states, denoted as	C . The system will be in Up period when it
				U
	stays in	C . If, on the other hand, the last non-changeable state prior to the changeable state
		U	
	is in Down period, then the changeable state is classified as a Down state, referred to as
	changeable-down states, denoted as	C . The notations for changeable states are the same as
				D
	that in [8], which is illustrated in Figure 1.
	(4) If the repair time in D , denoted by	R t , is longer than a predefined threshold  ,	R t is
	still regarded as in Down period; if, on the other hand,	R t is less than  , failures in D

  A numerical example is presented in this section to demonstrate the methods developed in previous sections. For simplicity, we assume that there is only one state in each set U , C , and D . Assume the transition rate matrix for the original Markov process describing the repairable

						3 1 2  
						Q	4 3 2 6 2 5      	,
	and we assume that	 	0.1	and that the initial state of the system is an Up state, so that the initial
	probability vector is	0  	 1, 0, 0		.
	Next, we duplicate the changeable state to yield the transition rate matrix for the aggregated
	Markov process				
	system is				
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