N

N

Machine Learning design of Volume of Fluid schemes for
compressible flows

Bruno Després, Hervé Jourdren

» To cite this version:

Bruno Després, Hervé Jourdren. Machine Learning design of Volume of Fluid schemes for compressible
flows. Journal of Computational Physics, 2020. hal-02447631v2

HAL Id: hal-02447631
https://hal.science/hal-02447631v2

Submitted on 22 Jan 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02447631v2
https://hal.archives-ouvertes.fr

Machine Learning design of
Volume of Fluid schemes for compressible flows

Bruno Després
Sorbonne-Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France,
Institut Universitaire de France,
and
Hervé Jourdren
CEA, DAM, DIF, F-91297 Arpajon, France
Université Paris-Saclay, CEA DAM DIF, Laboratoire en Informatique Haute Performance pour le Calcul et la simulation,
F-91297 Arpajon , France

Abstract

Our aim is to establish the feasibility of Machine-Learning-designed Volume of Fluid algorithms for compressible flows. We
detail the incremental steps of the construction of a new family of Volume of Fluid-Machine Learning (VOF-ML) schemes
adapted to bi-material compressible Euler calculations on Cartesian grids. An additivity principle is formulated for the Machine
Learning datasets. We explain a key feature of this approach which is how to adapt the compressible solver to the preservation
of natural symmetries. The VOF-ML schemes show good accuracy for advection of a variety of interfaces, including regular
interfaces (straight lines and arcs of circle), Lipschitz interfaces (corners) and non Lipschitz triple point (the Trifolium test
problem). Basic comparisons with a SLIC/Downwind scheme are presented together with elementary bi-material calculations
with shocks.

Keywords: VOF, CFD, ML

1. Introduction

Machine Learning (ML) [[19] for the construction of numerical fluxes adapted to Finite Volume (FV) discretizations is be-
coming a research subject of its own, see recent contributions for the discretization of hyperbolic equations by Hesthaven et al
[30,134]. For viscous incompressible flows, like bubble flows where the curvature of the interface controls the dynamics, it seems
that ML techniques are established techniques now [37]: we refer to Zaleski et al. [28, [2] for the reconstruction of the curvature
of interfaces and to [[L6] for an extension to compressible effects. The exact curvature is function of the second derivative of the
function that defines the interface, and a comprehensive review centered on incompressible flows with surface tension is [17].
More general references can be found in [29]. On the contrary, for compressible non viscous flows, the interfaces are more
related to contact discontinuities and material discontinuities: the dynamics of interfaces is more similar to the one of passive
scalars; so it is needed to address interfaces with low regularity. In this context, we refer to [10, 36] for historical references on
VOF methods (KRAKEN code, YOUNGS method) for compressible flows and [31,127] for a more comprehensive presentation
of the topic (algorithms LVIRA, ELVIRA and GRAD). Another name in the field is the PLIC method (Piecewise linear interface
calculation) [32], the Youngs algorithm being an example. Recent developments on the MOF method which adresses high order
extensions with different ideas are described in [1]. The objective of this work is to explain that an avenue completely different
from PLIC, YOUNGS, LVIRA, ELVIRA, GRAD or MOF can be walked through for compressible solvers, which is the devel-
opment of a ML strategy. ML techniques have their own philosophy and techniques [19, 6] since they are not based on analytical
formulas, but on the construction of large datasets and on algorithmic learning of essential features encoded in these datasets.
This class of methods has proved to be efficient for image identification and image comparison, so we believe it makes sense to
consider that interface reconstruction and VOF procedures can also be addressed within the ML paradigm. Also it is reasonable
to state that the performances of standard VOF methods for triple point problems often encountered for multi-material problems
(3 phases and more, 2 phases near a wall, 2 materials sliding on a 3rd one, ...) suffer restrictions, with the notable exception of
the new family of MOF methods [[1]]. This class of problems, which is our longterm objective, is another reason why the desire
to establish the feasibility of ML techniques in the context of VOF. In this work, we do not make an extensive comparison of
the quality of our new solvers with respect to the literature, even if some simple comparisons will be proposed with the SLIC

Preprint submitted to Elsevier January 22, 2020



method of Noh and Woodward [26] implemented as the anti-diffusive scheme of Lagoutiere [23] (it will be referred to as the
SLIC/Downwind scheme in the core of this article). We concentrate hereafter on the feasibility of this new family of methods.

The kind of ML algorithms that we use corresponds to supervised training. We refer to [[19, |6] for a state of art description
of this approach. In more numerical words, it corresponds to the construction of an approximate/interpolated function defined
through given points, the ensemble of these points is the dataset. The two main steps are the construction of one (or more)
dedicated dataset(s), then the construction of the approximate function (this is called the training session). Both steps are crucial
for the quality of the final results. This methodology is very classical, however the recent progresses of publicly available
dedicated softwares make this task easy and powerful in terms of the size of the dataset which can be large and in terms of the
quality of the training which is based in our case on dense Convolution Neural Network with many layers. A recent observation is
that Neural Networks with high number of layers are quite efficient (we reach the same conclusion) and that the ReLU activation
function provides enough accuracy (this is confirmed by the recent theoretical works [9]). It explains why we do not base our
training session on any high order activation functions within a 2-layer structure (contrary to [28]), but as already mentioned on
the ReLU function within a higher number of layers (up to 5 in our case).

Another key ingredient in our approach is the use of the Lagrange+remap strategy [4] on a Cartesian grid for the compressible
flow solver (our implementation is based on [23, [14]). The main virtue of Lagrange+remap schemes is the natural decoupling
between a Lagrange step where the acoustic part is treated and the interfaces are considered as fixed, and a remap (or projection)
step where only the transport part of the equations is treated and the interfaces move. Lagrange+remap schemes are usually
deployed as Finite Volume schemes, so there are naturally conservative in masses, total momentum and total energy: this is a
valuable property for an accurate calculation of shocks. Also it has been proved in [23] that the stability of the first order scheme
(in terms of the preservation of the bounds for the volume fractions and of the entropy inequality) is independent of the flux for
the volume fractions in the remap stage. The Cartesian grid provides a simplification of the data structure which is amenable to
reduce the computational burden for the description of the local geometry of the mesh. In practice the quality of the numerical
treatment of the interfaces depends of the interface reconstruction technique in the remap stage, ultimately only the flux of mass
fractions or volume fractions matters. These features are very specific to Lagrange+remap compressible schemes.

This brief tour of ML features and Lagrange+remap features motivates the development of a ML flux function which aims
at an accurate transport/remap of a reconstructed interface. Following Hesthaven’s approach [30,134], we focus on the numerical
construction of a flux function where the inputs contain the local volume fractions and output is the flux. That is the reconstruction
of the interface features (in terms of curvature, angle at the corners, .. .) is not the main goal, only the remap Finite Volume flux.
One advantage of this approach is that it is versatile with respect to the type of different interfaces: we will consider straight lines,
arcs of circle, corners with different angles (right angles, acute angles, ...) and even a non Lipschitz profile to emulate a simple
triple point geometry. The new VOF-ML schemes are restricted to the dimension d = 2 on uniform Cartesian grids, however the
proposed methodology can be used a priori for the reconstruction of internal boundaries in many fields, like in references [3, 3]
and references therein.

In summary, the main steps of the development of our VOF-ML schemes are firstly the design of good datasets and accurate
training, and secondly the incorporation of new fluxes in Lagrange+remap schemes. We will adopt an incremental presentation
of our methods. The contributions of this work can be summarized as follows.

o We construct new VOF-ML schemes adapted to bi-material compressible Euler calculations and describe the calculation chain
which is made of (1) construction of good datasets, (2) training session and (3) modification of a Lagrange+remap solver. The
accuracy of the critical steps is controlled uniformly over the chain (here around 1%). In the training, we used up to 5 layers of
neurons (4 dense hidden layers of neurons).

o We show that VOF-ML has a good ability to recover regular interfaces, details of Lipschitz interfaces, such as the corners of the
Zalezak test problem [27], and even non Lipschitz interfaces (a new Trifolium test problem is proposed). Since the methodology
is quite general in terms of the features of the interface, it is an improvement with respect to curvature reconstruction only [28§]
and to straight line interface reconstruction only [27].

o The implementation proposed in this work preserves the natural symmetries on a Cartesian mesh.

o The cost of the new VOF-ML schemes scales as

ML
interface ( 1 )

Nip

where Tgoer is the cost of the Finite Volume solver, Cmt'-e face 18 @ constant which depends of the geometry of the interface and of

the new VOF-ML schemes and Nyp is the number of cells in one direction. This feature was expected and it is not an original
one with respect to the literature. A proof is provided in 2D at the end of this work, the same scaling holds in 3D. Numerical
measurements show that CM[LS cface €aN be high with respect to the unit cost of the FV solver. However, asymptotically for large
Nip, the cost of the new VOF-ML schemes is negligible. Our contribution is the numerical observation that, for Lagrange+remap

calculations, CMt is bounded uniformly with respect to the mesh size.
interface

Ttotal = Tsolver +



The organization is as follows. Section [2| explains the algorithmic structure. We introduce the key ideas of our approach
for straight line interfaces in Section[3l In next Sectiond] we generalize the material to other types of interfaces and construct
a dimensionless flux. Section [3]is dedicated to technical details about the inference in a C++ code and Section | presents an
implementation of dimensionless flux which respects natural symmetries and the maximum principle for the mass and volume
fractions. The bi-material compressible model which serves in the numerical section is given in Section[Z] The numerical results
are presented and discussed in Section[8l We end with a conclusion and perspectives. More mathematical comments are in the
appendix section, with the description of a new Trifolium test problem and a test problem with vorticity beyond pure solid body
rotation.

Notation. Depending on the context, the volume fraction (which is between 0 and 1) will be denoted as « or a,;. For similar
reasons, the interpretation of the indices will be provided by the context. This abuse of notation has the advantage of never using
the heavy notation (a;);; which is the value of the volume fraction a; in cell (i, j).

2. Description of the calculation chain

As stated in the introduction, this work is based on an incremental calculation chain where one step is performed after the
other. Since this incremental algorithmic structure has a great influence on the organization of the calculations, we describe
below some details and the software stack. A software may change without changing the chain structure.

o First step is the description of the geometry and construction of datasets. These datasets contain vectors of inputs of size less
or equal to 26 in our case in 2D. In some of our tests, the number of vectors for the training dataset runs up to 1.4 10 and up to
3.5 10° for the validation dataset. The numerical values which determine the vectors are obtained by computing simple integrals
which correspond to areas. We use Python code to perform these calculations.

e Second step is the training session which is performed with the Keras-Tensorflow suite in this work. It consists in the
construction with a stochastic gradient algorithm of a function which interpolates the training dataset at best. The structure of
this function depends on the number of layers and neurons per layer. The validation dataset is used to assess that the level of
overfitting or underfitting is under control (which is the case in our calculations).

e Third step consists in passing the function to a C++ code for the inference (which means calling the function). Various
possibilities exist so far. One can built an API but it has been considered as too heavy so far. Fortunately simple softwares exist,
for example frugally-deep [13], kerasify [21] and keras2cpp [20], which all three can be used to call the function from C++.
Preliminary tests show that frugally-deep is a possibility, but the unitary cost of calling the function is too high (= 0.03 s). Since
itis needed to call the function in all cells near the interface and at all time steps, the CPU cost in a C++ code has been considered
too heavy with frugally-deep. The software keras2cpp is used here.

o Fourth step. It concerns the implementation of the new VOF-ML scheme in our finite volume Lagrange+remap solver. In
particular, attention is paid to the preservation of natural symmetries since it is not immediate with a VOF-ML scheme (here with
accuracy around 1%).

3. Straight lines: a case of study

Straight-line interfaces serve as a case of study to present the basic features of the construction of the datasets and of the
training session. It is generalized to more general types of interfaces in the next sections.

3.1. Parametrization of the geometry

For our CFD calculations, we use a Two Dimensional (2D) Cartesian mesh with a mesh size Ax > 0. As required in Learning
textbooks [19, 6], it is better to normalize the data. Normalization is also a standard technique in CFD, so we believe it is a good
idea to systematically use normalized data in our ML procedure. This is why we consider a normalized Cartesian mesh

1 1 1 1
C,-j={X=(x1,x2)e]R2|—§+i<x1<§+iand—§+j<xz<§+j}.

By construction the area of all square cells is 1. The numeration is such that the central point is the center of mass of the central
square Cqp. To have notations compatible with the ones needed for the description of ML algorithms, the description of the local
geometry needed for VOF methods starts from the data of two functions

D :RPY —, R"and E : RPY — RO

where
e par € N* is the dimension of the space of parameters which describe the interfaces between the fluids,



e in € N* is the dimension of the space of inputs,
e out € N* is the dimension of the space of outputs.
The goal is to construct with ML algorithms a third function

F - Rin _ ROUI (2)
such that
F(D(z)) ~ E(z) forall z € RP?", (3)

If the function D has a left inverse D~! : R" — RP2" then the best solution is to take F = EoD~! (the situation can be thought
as similar to the one of auto-encoders, in ML language [19]). In what follows, we will use a ML software to construct a function
F which realizes (3) to the best, without even questioning about the invertibility of D. We detail hereafter the functions D and E
used in this work.

3.2. Straight lines

The first and main example directly comes from the VOF literature [10, 36,131,127]. For small mesh sizes, regular interfaces
between fluids are asymptotically straight lines: that is why we consider only the latter limit case in this section. This example
has a pedagogical virtue, and other cases will be variations around this theme. Straight lines

Ip(x1,x2) = cosOx; + sinfx; —r, 4)

are described by 2 parameters (6, r) € [0,2r) x R¥, as illustrated in Figure[Il

Figure 1: Description of the parameters (6, r) for straight lines.

The straight line delimits two half planes
P = {Ig,,(xl,)Q) < 0} and PT = {Ig,,(xl,)Q) > 0} .

The intersection of square cells C; ; with the first half plane {,,(x1, x2)} < 0 yields the volume fractions

jj = J dxldxz
CijnP~

which depend on the parameters 6 and r. By definition the volume fractions are normalized between 0 and 1, that is «;; € [0, 1].
Considering the other half plane P™ would result in calculating 1 — «;; instead of a;;. To construct the inputs, we decide of a
certain block (2N + 1) x (2N + 1) of cells, symmetric with respect to the central cell, and gather the volume fractions in one
vector

a = (aisj)—Ngi,jgN c [O, 1](2N+1)2 - R(2N+l)z.

With these notations, the function D is
D(0,r) = a. (%)



Then one has to decide the output which might be the periodic angle 8 € [0, 27) in this example. However forcing periodicity
is not in the default implementation in Keras-TensorFlow. Therefore it is better for implementation purposes to work with 2
outputs which are the components (cos 6, sin §) of the direction, because the 27 periodicity of the angle is naturally taken into
account and this procedure is easy to generalize in 3D. So our function E is

E(8,r) = (cosb,sin6) . (6)
By construction the outputs are also normalized. For this example (par, in, out) = (2, (2N + 1)2,2).

3.3. Basic properties of ML methods

To have a self-contained presentation, we summarize hereafter the basic mathematical features which are used to construct
the function F defined in (2H3). More theoretical material is proposed in the appendix to explain the good properties of ML
algorithms for our purposes.

3.3.1. Functions

ML frameworks make use of high level recursive numerical functions, and three basic functions are sufficient to construct the
function F.

Linear algebra. Functions like y = WX + b are implemented for X € R”, W € R"*" and b € R™.

Non linearity. Some non linear functions are implemented for x € R, such as the sigmoid o(x) = (1 + exp(—x))~! or the
rectified linear unit (ReLU) function R(x) = 1 (x + |x|) = max(0, x).

Recursivity. Recursive calculations like W?R(W'X + b') + b? or R (W2R(W'X + b') + b*) are implemented.

These functions can be used to construct other functions like max(a,b) = a + R(b — a) and min(a, b) = — max(—a, —b) =
a — R(a — b). Many more linear and non linear functions (convolution neural network, maxpool, ...) are also implemented
in Keras-TensorFlow [6,33]. Once a combination is chosen, the structure of the function F is known. For example a func-
tion with one hidden layer (parameters W', b') is F(X) = W?R(W'X + b') + b?, a function with two hidden layers is
F(X) = W3R (W?*R(W'X +b") + b*) + b*, and so on and so forth. A key feature of modern ML software is the calcula-
tion of the coefficients W!,b!,... of a function F which is represented or approximated within the above structure. This is
performed by optimization of a functional which encodes (23). This optimization uses stochastic gradient descent with auto-
matic differentiation for the calculation of the gradient. The ReLU function R is piecewise differentiable, its derivative is the
Heaviside function almost everywhere: it allows symbolic differentiation with the chain rule to calculate the first gradient of
functions defined recursively. Comprehensive references can be found in [6,[33].

3.4. Elementary VOF advection and ML

We detail in this Section two simple reasons why the non linear ReLU function R is one of the best, better than a sigmoid o,
for application to VOF reconstruction on Cartesian grids.
The first reason is that many Finite Volume schemes with second-order accuracy use limiters as

0 forab < 0,

minmod(a, b) = { min(|al, |b|)sign(a) for ab > 0.

One has the formula minmod(a, ) = R(a — R(a — b)) — R(—a — R(b — a)) which shows that limiting techniques are also prone
to be rewritten recursively with the ReLU function R. In view of the mathematical theory of hyperbolic equations [[18], it is also
instructing to remark that the ReLU function R is deeply connected to Kruzkov entropies n¢ (x) = |[x—k| = R(x—k) + R(k — x).
The second reason is based on the following geometric observation. Consider Figure [2l where, on the left and central parts,
an interface splits a 2D cell with area Ax? in 2 pieces. In terms of a reconstructed volume fraction, it corresponds to a function

1 for0<x<yAx, O0<y<lI,
0 for yAx < x < Ax.

alx) - |

Consider that a velocity u* > 0 is given and compute the flux at the right boundary during a time 0 < At < f—;‘

Ax Ax *A
f(Ar) = J J a(x,y)dxdy, B = - t.
y=0 Jx=(1-8)Ax

Ax



Ax

Ax

Ax

Figure 2: Description in a square cell of the swept region delimited by a moving interface. The swept region (in dashed) depends on the time 7. In gray the value
Ax

of the indicatrix function is 1, in white the value is 0. On the left part, the time is #; = TeE the flux is fi = 0 and the mean volume fraction is %2‘/4 = 0. On
the center part, t, = i‘%: the flux is o = ATXZ and the mean volume fraction is 3 AJ:ZZ A= %
An exact calculation yields f(At) = Ax*R(B — ) that is

f(Ar) = AxR (u™At — yAx) . 7

One recognizes the SLIC method [26, [27] or the antidiffusive scheme [23]. The formula shows that the rectified linear unit
function has the ability to be exact for some elementary VOF procedure. On the right part of the Figure, the interface has an angle
and a reasonable approximation is f(Af) ~ Axa R (u*At — yAx) — AxayR (u* At — y,Ax) with @, @z, and y; conveniently
chosen.

More arguments in favor of using the function R are in the recent works [9,/35]. These basic observations are the reason why
we use only the ReLU function R in our tests, because we believe it is more adapted.

3.5. Application to ML angle reconstruction for straight lines

We address the interpolation features of Keras-TensorFlow and measure its ability to construct the function F for the recon-
struction of the angle. A reference, but with a completely different method, is the ELVIRA algorithm [27] which is exact for the
reconstruction of the angle for straight line interfaces.

This section is a continuation of the pedagogical example Section The vectors in the ML dataset B are constructed as
follows. The distance to the origin, parameter r, is sampled uniformly in the range (—0.5v/2,0.5v/2) (here 41 values): so the
central cell is always crossed by the interface (even if at a corner of the cell in the extreme case). We sample the angle 6 uniformly
in [0, 27r) every degree (that is 360 values). It yields ny x n, vectors in R® for 3 x 3 blocks, or in R? for 5 x 5 blocks. The volume
fractions are calculated with numerical integration in 2D (Ngyadra X Nquadra points with Nquadra = 100). The parameter Nquadra 18
the number of integration point per dimension and it yields a quadrature error

~ % 8
€quadra ~ Nquadra = 1%. (®)
It produces card(B) vectors z; € RP". Then we apply the function D in (3) which calculates volume fractions: it yields card(8B)
vectors

(Xi)léiSCard(B) 5 Xi = D(Zi) € Rin, in = (ZN + 1)2

We also apply the function E in (@) which calculates the normal to the interface: it yields card(B) vectors

1)1 <i<card(s) » yi = E(z;) e R, par = 2.

Systematically, 80% of the data belongs to the training dataset while 20% of the data belongs to the test dataset: this choice is
made at random. At the end of this stage we have a dataset for training

. 4card(B
Birain = {(X[,yi), 1<i< #}

5



and a dataset for testing

A

. card(B
Brest = {(Xi,)’i),l <1 A} .

5

We use a dense two-layer ML reconstruction: the number of neurons of the dense hidden layer is systematically equal to the
size of the inputs (parameter in), for example in=9 neurons for the first line of Table [l Theoretically we postulate that an

approximation formula (see holds for the function

F: RM_— RPa
X —y=F(X)

and we let Keras-TensorFlow find weights such that the least square error is quasi-minimized, in the context of implementation
with batches,
card(Byin)

1
i — F(X3)]”. ©9)

card(Biain)

i=1
In all our tests, we use the default parameters. The stochastic gradient descent runs with the Adam-optimizer [22]. Here the batch
size is 128. The number of epochs is 200.

It yields Table[T] where the third column is the number of training/validation data. The loss error defined by (9) is in column
5. The validation error (equal to (@) but with the dataset for testing instead of the dataset for training) is in column 6. We observe
that they are of the same order. Actually in all training sessions, we have observed that the loss error and the validation error are
systematically of the same order, which is hopefully the sign that no overfitting or underfitting is attached to the ML treatment of
our data. We will not report anymore on this feature in the rest of the paper, since it is not a restriction.

The last column is the mean value of the L? error on the test data (equal to the square root of the error-validation). Clearly,
the direction vector is recovered with an error around 2%. The results are promising.

[dim [ par in  out | Buuin/Bes | loss val | mean L* error |

2 2 9 2 11807/2953 | 5.4e-4 55e-4 23e-2
2 2 25 2 11869/2891 | 1.8e-5 1.7e-5 4.2e-3

Table 1: Accuracy of the direction vector (cos 6, sin ) for straight lines in 2D.

Many tests have been performed with the 2D datdl: it has been observed that the L? error can be decreased by increasing
the number of dense hidden layers (that is by increasing the quality of the interpolator). But here the gain is marginal. Indeed
making the additional hypothesis that the predicted direction has norm equal to one, the mean L? error, when it is small, scales
like

COS Byrye

2
COS Opredi 2
predic 1 0 _
. - . R - ic) = €.
$in Gyrye sin epredic ) \/ Card(Bm.) Z ( true pl’CdlC) 6

mean L2 error ~ 4| —L—
card(Bis)

In 2D, it means ¢ is around 1% in relative unit
&~ 1%. (10)

Considering that the numerical integration (8] has itself a maximal error €gaara of the same order, it is probably meaningless to
increase the accuracy, without increasing the accuracy of the ML dataset (by increasing the accuracy of the numerical integration).

TA similar test has been performed in 3D. It is a confirmation in our framework of the 3D results in [28]. Now blocks are 27 cells or 125 cells, and the angles
(,0) € [0,27) x [0, x] which determine the planes are sampled quasi-uniformly to avoid over sampling near the poles. The numerical integration is uniform
(Nguadra X Nguadra % Nguadra points with Nguagra = 50). The results for the recovery of the direction vector (sin @ cos ¢, sin@sin ¢, cos ) for planes in 3D are
displayed below and they are quantitatively the same as in 2D.

| dim | par in out | Birain/Brest | loss val | mean LZ error |
3 4 27 3 11313/2781 l.e-3 l.e-3 3.2e-2
3 4 125 3 11272/2822 | 1.3e-4  2.9e-4 1.7e-2




4. More general geometries and definition of a dimensionless VOF-ML flux

In the following, we parametrize the geometry by arcs of circle and corners which are assembled to describe interfaces more
general than just straight lines, even if the principles are exactly the same. We also explain how to define and train the normalized
original VOF-ML flux which will be used in the remap stage of the compressible solver.

4.1. Arcs of circle

We refer in [28] for the ML modeling of interfaces between incompressible fluids. Our implementation is slightly different
because we ask that the modeling of curved lines degenerates to the one of straight lines if applied to a mesh with smaller and
smaller mesh size (it allows natural mesh convergence tests).

\
\h

Figure 3: Description of the parameters (6, r,d, L) for arcs of circle.

Consider the circle of Figure[3} the center is
A = r(cos 6,sin6) + d(— sin 6, cos §) — L(cos 6, sin 6),

the radius is L > 0 and the offset in the direction perpendicular to (cos 6, sin §) is d € R. Take a point x = (x1, x2) € R? inside
the disk of radius L, that is |x — A|* < L. The expansion is

(x1 — rcos@ + dsinf + Lcos6)” + (xp — rsind — dcos6 + Lsin6)* < L2

Cancellation of some terms yields 2L (cos x| + sinfx; — r) + (x; — rcosé + d sin 9)2 + (xp — rsin@ — dcos 9)2 < 0, that is

1
Ipr(x1,x2) + 3L [(xl — rcosf +dsin6)’ + (x, — rsing — dcos@)z] < 0.

Using a rescaling of all lengths xy, x;, r, d, L by a factor which corresponds to the mesh size Ax, one gets
1
Io, (x1,x2) + i [(xl — rcosf + dsin 9)2 + (xp — rsin@ — d cos 9)2] <0, (11

where the factor is v = % > 0. For small mesh size Ax, the continuous limit v — 0 recovers the equation (4)) of straight linedd.
Taking par = 4 and in = (2N + 1)? as before, the function D : RP¥ — RI" is defined by D(6, r,d, R) = a. The function E will
be described in Section [4.3]in formula (12)).

2If one desires to capture instead the small radius limit, that is L — 0%, it is better to rescale the equations. Then take o = % = ﬁ and the parametrization

20Ty (x1,%2) + (x1 — rcos @ + dsin6)> + (x, — rsind — dcos 6) < 0.



4.2. Corners

The interfaces described above are smooth and so are not satisfactory for the local modeling of interfaces which are not C'
but only Lipschitz, such as the cross test problem and the Zalezak test problem which will be considered in the numerical section.
For such test problems, normal vectors at the interfaces have points of discontinuities: these points are called corners or corner
points in this work. Consider the illustration in Figure[dl Straight lines correspond to u = 7 (it is a degenerate case), right angles
correspond to u = 7 and u = 37 and acute angles correspond to the other values of u. The corner is denoted as A = (xf, xg‘)
Actually this modeling of corners allows also to model straight line interfaces, it is sufficient either to take u = 7 or to sample A
outside of the block with an additional condition on the aperture of the corner.

A= (x, %)

Figure 4: Description of the parameters (6, u, x’I‘, x’;‘) for corners.

With these notations, one has par = 4 and in = (2N + 1)2. The function D : RP¥" — R™ is defined by D(6, 1, x{, x3) = a.
The function E is described in the next Section [4.3]in formula (12).

4.3. Definition of a dimensionless VOF flux and adapted inputs

The function f in () used for the pedagogical case of straight lines is not normalized. For normalization reasons, it is better
to consider the average flux which is the flux divided by the area of the swept region

f(A1)

0 = T—pae

12)
This quantity is normalized in the sense that, on the one hand g(A7) can be evaluated in function of the normalized quantities
B € [0,1] and y € [0, 1], and on the other hand g(Ar) € [0, 1] under the CFL condition % € [0, 1]. Other tests performed for
the ML reconstruction of f(Af) show a loss of accuracy for small velocity or for small Courant number: it was expected because
f(Ar) € [0, Axu*Ar] is systematically small for small Az; on the contrary g(At) is much less sensitive to small Az. For all these
reasons, we advocate using g instead of f as output for VOF flux reconstruction. This gives the function E = g(Ar) that will be
used from now on with out = 1.

The reconstruction of the parameters of the different types of interfaces is not sufficient for the remap stage of CFD calcula-
tions. Indeed, even with an accurate reconstruction of these values, one must still construct the flux at the cell face. Therefore,
to have a satisfactory ML modeling of the flux, we enlarge by one the size of the inputs. The new input is the rescaled velocity
which scales like a non dimensional Courant number

B =u*At/Ax € [0,1].
We add it to the volume fractions, so the function D maps the parameters to a vector made of the volume fractions plus g
D(interface parameters) = (e, 8) € RONTD* 1, (13)

For example for a 3 x 3 block, the size of the inputs is now in = 1 + 9 = 10. The output size is out = 1: the output is the
dimensionless outgoing flux

8= lf r a(x,y)dxdy € [0,1] (1
BJypl-y



where « is the indicatrix function, as described in (I12)). It yields the function £

E (interface parameters) = g € R. (15)

4.4. Validation of the VOF-ML flux for straight lines

Redoing the tests of Table[[Ifor N = 3 and N = 5, the dimensions are now par = 2,in = 1 + (2N + 1)2 and out = 1. The
size of the ML dataset is 100 x 360 x 41. The batch size is 16 x 1028. The number of epochs is still 200. We use 2 dense hidden
layers: a first one with 4 x in neurons, a second one with 2 x in neurons. The results are in Table2l One observes that the results
in the last column are even slightly better than in Table[T] It validates the use of the mean flux as the output.

[dim[par in out |  Buin/Bes | loss val | mean L* error |
2 2 10 1 1192451/298309 | 7e-5 7.1e-5 9.8e-3
2 2 26 1 1193738/297022 | 8.8e-5 9.4e-5 6.5e-3

Table 2: Accuracy of the VOF-ML flux for straight lines.

At the end of this procedure, all the geometry (interface reconstruction, numerical integration of indicatrix functions in
normalized cells, numerical integration of the flux) is offline. That is, it is considered only in the Python-Keras-TensorFlow
stage of the calculation chain.

4.5. Construction of ML datasets and accuracy of the VOF-ML flux for general geometries

The construction of the ML datasets relies so far on uniform sampling of all parameters. This was possible because the
number of parameters was small, equal to 2 in this example.

But we need more parameters to describe complex interfaces like arcs of circles and corners, so uniform sampling is no more
possible because the number of configurations would blow up. That is why we decided, quite arbitrarily, to keep the uniform
sampling of the angle 8 and of the rescaled velocity 3, and to take random values for all other parameters. Now the size of the
ML dataset is ny x ng x 2 x P: the factor 2 is because we systematically take the contrasted values (@ = 1 — @) and the extra
factor P guarantees that the same value of the parameters 6 and 8 are used P times while the other parameters are randomized.
The sampling of the rescaled velocity 8 is equal to the sampling for the numerical integration, because it is convenient for
implementation purposes, that is 7g = Nquadra-

The result for the reconstruction of the flux for arcs of circle (Section4.1)) are in Table[3] where ny = 8 x 360, ng = Nquadra =

100, P = 3 and we randomize the parameters r < 2 V2,d < A/N + % and L < 2+/2. The error (last column) is still considered
small enough.

[dim [ par in out |  Buin/Bes | loss val | mean L* error |
2 5 10 1 1395790/349490 | 4.2e-5 4e-5 6.3e-3
2 5 26 1 1395422/349858 | 3.1e-5 4.2e-5 6.5e-3

Table 3: Accuracy of the VOF-ML flux for arcs of circle.

Finally we consider the corner configuration of Section 4.2l We take ny = 24 x 360 uniformly distributed angles. We take
ng = 100 values of 8 which are uniformly distributed. We double the results (taking the negative value @ «<— 1 —a and § < 1—p).
The parameters x4, y4 are taken random in the square [—3/4,3/4] for in = 10 and in the square [—5/4,5/4] for in = 26 . The
parameter u takes two different values 3 and 37” at random, it models only right angles. The results are displayed in Table
It seems the 3 x 3 block has more difficulty to recover the solution, even if the accuracy is still of the same order as previous
accuracies. It is probably related to some lack of invertibility of the function D for 3 x 3 blocks (a topic already evoked at the

end of Section[3.1)). It is also probably related to the lower regularity of this type of Lipschitz interfaces.

5. Inference of the model in a C++ code

Now that ML datasets are built with various parameters, and that the training and testing are performed, it remains to pass
the model to a C++ code for the inference, i.e. the F function call.

10



| dim | par in out | Birain/Brest | loss val | mean L? error |
2 5 10 1 1396604/348676 | 1.9e-3 2.1e-3 4.5e-2
2 5 26 1 1396744/348536 | 1.6e-4 2.2e-4 1.5e-2

Table 4: Accuracy of the VOF-ML flux for corners (right angles).

The software keras2cpp offers the ability of calling the function many times on tensors (which are arrays)
Tinput € RMereor ™, (16)

The size of the rectangular tensor 7 is Niensor X iN Where Niensor 1 the