Generating Natural Adversarial Hyperspectral examples with a modified Wasserstein GAN - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Generating Natural Adversarial Hyperspectral examples with a modified Wasserstein GAN

Résumé

Adversarial examples are a hot topic due to their abilities to fool a classifier's prediction. There are two strategies to create such examples, one uses the attacked classifier's gradients, while the other only requires access to the clas-sifier's prediction. This is particularly appealing when the classifier is not full known (black box model). In this paper, we present a new method which is able to generate natural adversarial examples from the true data following the second paradigm. Based on Generative Adversarial Networks (GANs) [5], it reweights the true data empirical distribution to encourage the classifier to generate ad-versarial examples. We provide a proof of concept of our method by generating adversarial hyperspectral signatures on a remote sensing dataset.
Fichier principal
Vignette du fichier
main.pdf (1010.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02447625 , version 1 (25-01-2020)

Identifiants

Citer

Jean-Christophe Burnel, Kilian Fatras, Nicolas Courty. Generating Natural Adversarial Hyperspectral examples with a modified Wasserstein GAN. C&ESAR, Nov 2019, Rennes, France. ⟨hal-02447625⟩
182 Consultations
128 Téléchargements

Altmetric

Partager

More