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Folk theorems for Bayesian
(public good) games�

Françoise Forgesy

Abstract

Two characterization results are behind the intimate relationship
between �repetition�and �cooperation�under complete information:
the standard Folk theorem for in�nitely repeated games and the �com-
mitment Folk theorem� for one-shot games. We propose extensions
of the previous characterization results in Bayesian games, with in-
dependent private values, which satisfy a further property, �uniform
punishment strategies�. Public good games fall in this class. We show
that the Nash equilibria of the Bayesian in�nitely repeated game are
payo¤ equivalent to separating (i.e., completely revealing) equilibria
and can be achieved as interim cooperative solutions of the Bayesian
game. We also show that the reverse of the latter result is not true:
unlike the set of interim cooperative solutions of the Bayesian game,
the set of Nash equilibrium payo¤s of the in�nitely repeated game can
be empty.
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1 Introduction

Under complete information, the standard Folk theorem states that the Nash
equilibrium payo¤s of an in�nitely repeated game coincide with the feasible
and individually rational payo¤s of the one-shot game. Recently, Kalai et
al. (2010) established that the latter set can be interpreted as the set of
cooperative solutions of the one-shot game, namely, as the set of all equilib-
rium payo¤s that the players can achieve when they can voluntarily commit
themselves. Kalai et al. (2010) refer to this result as the �commitment Folk
theorem�, for two reasons: it is stated in terms of the set of feasible and
individually rational payo¤s and it has been known for years, under more or
less precise versions (see, e.g., Tennenholtz (1984) and Myerson (1991)).
Put together, the previous two Folk theorems state that the noncooper-

ative solutions of the in�nitely repeated game coincide with the cooperative
solutions of the one-shot game. They thus yield more than a precise con-
tent to the idea that �repetition enables cooperation�: they also say that
�repetition does as well as cooperation�.
In these notes, I gather some results which shed some light on the possible

extension of the latter Folk theorems in Bayesian games, i.e., when the players
do not share the same information over the fundamentals of the game.
Aumann and Maschler started to study the Nash equilibrium payo¤s of

in�nitely repeated games with incomplete information in the mid-sixties (see
Aumann and Maschler (1995)). At the very same time, Harsanyi (1967) pro-
posed the formal de�nition of games with incomplete information as Bayesian
games. Building on the work of Aumann, Maschler and Stearns (1968), S.
Hart (1985) characterized the set of Nash equilibrium payo¤s of any two-
person (undiscounted) in�nitely repeated game in which only one of the
players has private information. This looks like an extremely particular class
of games but the characterization is already quite intricate: it involves a
description of the dynamic process followed by the equilibrium and so, does
not give much hope to be related to solutions of the one-shot game.
As S. Hart (1985), Koren (1992) considers two-person games but, instead

of assuming that only one player is privately informed, he assumes that every
player �knows his own payo¤�. According to a more usual terminology in
microeconomics, he makes the assumption that �values are private and in-
dependent�. In this case, he shows that the Nash equilibrium of the (undis-
counted) in�nitely repeated game can be characterized in a very tractable
way: they are payo¤ equivalent to completely revealing (also called �sepa-
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rating�) equilibria.1 Once such a tractable characterization is available, one
can ask whether it con�rms that repeating a game has the same e¤ect as
commitment in the one-shot game.
The assumption of independent, private values is satis�ed in many eco-

nomic applications, e.g., in some public good games (see Palfrey and Rosen-
thal (1994) and Fudenberg and Tirole (1991, example 6.1, p. 211). These
games typically involve more than two players but satisfy a further assump-
tion, which we call �uniform punishments�. We show (in proposition 1) that
in these public good games, and more generally, in any n�person Bayesian
game with independent, private values and uniform punishments, Koren
(1992)�s result holds true, namely, the Nash equilibrium of the (undiscounted)
in�nitely repeated game are all payo¤equivalent to completely revealing equi-
libria.
Our tractable characterization facilitates the comparison with the coop-

erative solutions of the initial Bayesian game. Furthermore, it tells us how
incentives to reveal private information can di¤er in the short and the long
run. In a �nitely repeated game, players may bene�t from hiding their type,
e.g., their willingness to contribute to a public good, at an early stage of the
game (see Fudenberg and Tirole (1991), example 8.3, p. 333). Proposition 1
tells us that, in an (undiscounted) in�nitely repeated game, players cannot
bene�t from concealing their private information.
On the other hand, in Forges (2011), I propose an extension of Kalai et

al. (2010)�s �commitment Folk theorem� to arbitrary n�person Bayesian
games. More precisely, I consider all meta-Bayesian games in which, at the
interim stage, the players give their instructions on how to play the original
game. As in Kalai et al. (2010), the meta-games are formulated in order to
avoid circular reasoning. I show that the set of all Nash equilibrium payo¤s of
all such meta-games coincides with the set of incentive compatible, interim
individually rational, feasible payo¤s identi�ed by Myerson (1991, chapter
6). In particular, all payo¤s in the latter set can be achieved as the Nash
equilibrium payo¤s of a single meta-Bayesian game. This result is recalled
below as proposition 2.
Equipped with the characterizations of propositions 1 and 2, I show that,

for any n�person Bayesian game with independent, private values and uni-
1See Shalev (1994) for a similar characterization of Nash equilibrium payo¤s in Hart

(1985)�s model with �known own payo¤s� and Forges (1992) for a survey of results on
non-zero sum in�nitely repeated games with incomplete information.
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form punishments, the set of Nash equilibrium payo¤s of the in�nitely re-
peated game is contained in the set of interim cooperative solutions of the
Bayesian game (proposition 3). In other words, the repetition of the game
enables the players to cooperate, as in the case of complete information.
However, the previous inclusion can be strict. More surprisingly, unlike the
set of interim cooperative solutions of the one-shot game, the set of Nash
equilibria of the in�nitely repeated game can be empty. This is illustrated
on a public good game (example 1).
The latter �nding, which tells us that, without discounting, the Folk the-

orem does not hold for Bayesian games in which several players have private
information, must be contrasted with the results on �reputation e¤ects�.
There is an extensive literature on this topic. Most papers concentrate on
two-person games with a single informed player, who tries to establish a
reputation, but allow for discounted payo¤s (see Mailath and Samuelson
(2006); Sorin (1999) gives a synthetic presentation of various related mod-
els, including in�nitely repeated games with known own payo¤s; as a sample
of references, let us mention Kreps et al. (1982), Fudenberg and Maskin
(1986), Schmidt (1993), Cripps and Thomas (1995, 1997, 2003), Cripps et
al. (1996), Israeli (1999), Chan (2000), Cripps et al. (2005), Atakan and
Ekmekci (2012)). An important di¤erence between the models designed to
study reputation e¤ects and the one that we consider in these notes is that,
rather than perturbing a Bayesian game with complete information, we start
with given sets of types for every player and arbitrary beliefs over these types.
Our characterizations show that, under incomplete information, the co-

operative solutions of the one-shot game and the non-cooperative solutions
of the undiscounted repeated game mostly di¤er in the individual rationality
levels of the players. Under the assumptions of independent private val-
ues and uniform punishments, the ex post individual rationality level of a
player, namely the level at which the other players can punish him when
they know his type, is relevant in the in�nitely repeated game. Interim in-
dividually rational payo¤s in the sense of Myerson (1991) are always ex post
individually rational. When there exist uniform punishment strategies, the
reverse also holds: this is the key of proposition 3. As explained in section 5,
if the assumption of uniform punishments is relaxed, individual rationality
in the in�nitely repeated game relies on Blackwell (1956)�s approachability
strategies. As a consequence, proposition 3 is no longer true, while Koren�s
characterization still holds in the two-person case. Section 5 further discusses
our underlying assumptions, in particular, the undiscounted payo¤s.
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2 Basic Bayesian game

2.1 De�nition and main assumptions

Let us �x n players and, for every player i, i = 1; :::n,

� a �nite set of types Ti

� a probability distribution qi over Ti

� a �nite set of actions Ai, with jAij � jTij

� a utility function ui : Ti � A! R, where A =
Y

1�i�n
Ai.

This de�nes a (one-shot) Bayesian game with independent, private values,
which we denote as �(q), with q = (qi)1�i�n.2 Without loss of generality, we
assume that qi(ti) > 0 for every ti 2 Ti. The interpretation is that types ti,
i = 1; :::; n, are �rst chosen in T , independently of each other, according to
q. At the interim stage, player i is only informed of his own type ti. The
players then choose simultaneously an action.
For any �nite set E, let us denote as �(E) the set of probability distrib-

utions over E. A mixed strategy3 of player i in �(q) is a mapping from Ti to
�(Ai). Similarly, a correlated strategy for players j 6= i is a mapping from
T�i =

Q
j 6=i Tj to �(A�i), where A�i =

Q
j 6=iAj. We keep the notation ui for

the (multi)linear extension of utility functions over mixed and/or correlated
strategies. Hence we write, for every i = 1; :::; n, ti 2 Ti, � 2 �(A),

ui(ti; �) =
X
a

�(a)ui(ti; a)

In particular, for every i = 1; :::; n, ti 2 Ti, �i 2 �(Ai), ��i 2 �(A�i),

ui(ti; �i; ��i) =
X
ai;a�i

�i(ai)��i(a�i)ui(ti; ai; a�i)

2We only recall the parameter q in the notation �(q) for the Bayesian game, because it
will often happen, e.g., in the examples, that the beliefs q vary while all other parameters
are �xed.

3More correctly, �behavior strategy�.

5



For every player i, i = 1; :::; n, and ti 2 Ti, let vi(ti) be the value4 of
the (complete information, zero-sum) game in which player i maximizes the
payo¤ ui(ti; �), namely

vi(ti) = min
��i2�(A�i)

max
�i2�(Ai)

ui(ti; �i; ��i) = min
��i2�(A�i)

max
ai2Ai

ui(ti; ai; ��i) (1)

Observe that, in the previous expression, the probability distribution ��i
achieving the �min�possibly depends on ti, which is �xed in the underlying
optimization problem. vi(ti) can thus be interpreted as the ex post individ-
ual rationality level of player i, namely, the best amount that player i can
guarantee to himself if the other players know his type ti.
We consider the following assumption (�uniform punishment strategies�):

8i 9��i 2
Y
j 6=i

�(Aj) s.t. 8ti 2 Ti 8ai 2 Ai ui(ti; ai; ��i) � vi(ti) (2)

When (2) holds, ��i de�nes independent5 punishment strategies which enable
players j 6= i to punish player i uniformly, i.e., whatever his type ti is, but
even more, to keep player i�s payo¤ below his ex post individual rationality
level.
Assumption (2) is quite strong but, as illustrated below, it is satis�ed in

a class of public good games (see, e.g., Palfrey and Rosenthal (1994)).6 In
these games, the independent private values assumption also holds. Peters
and Szentes (2012)�s assumption 1 (p. 397) takes exactly the form of (2) if
values are private and independent and mixed strategies are allowed. We will
make a more precise comparison in section 4. We will discuss the role of our
various assumptions in section 5.

4If we allow for correlated mixed strategies, the value exists and can be expressed as
a minmax or as a maxmin. We will nevertheless consider independent mixed strategies
below.

5Independent punishment strategies are important for proposition 1.
6As a slight weakening, vi(ti) could just be de�ned as

min
��i2

Q
j 6=i�(Aj)

max
�i2�(Ai)

ui(ti; �i; ��i):
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2.2 Application: contribution to a public good

The private information of every player i, i = 1; :::; n, is the value ti that he
attributes to his endowment of a single unit of the private good. The private
endowment values ti are chosen independently of each other, according to a
probability distribution qi. Player i has two possible actions ai: �contribute�
(c) and �do not contribute�(d). A public good is produced if, and only if, at
least m players contribute. The value of the public good is normalized to 1
for all players. For every a 2 A, letM(a) be number of contributors, namely

M(a) =M((ai)1�i�n) = j fi : ai = cg j

The utility function of player i is described by

ui(ti; ai; a�i) = 1 if ai = c and M(ai; a�i) � m
0 if ai = c and M(ai; a�i) < m

1 + ti if ai = d and M(ai; a�i) � m
ti if ai = d and M(ai; a�i) < m

We refer to the game as PG(n;m; q), 1 � m � n. For instance, in PG(2; 1; q),
the payo¤ matrix associated with the pair of types (t1; t2) is

c d
c 1; 1 1; 1 + t2
d 1 + t1; 1 t1; t2

where we always assume ti � 0 but can have ti < 1 or ti > 1. Fudenberg
and Tirole (1991, example 6.1, p. 211) propose the following interpretation:
player 1 and player 2 belong to a group (say, the �economists� of some
university) and each of them can represent the group at a committee (say,
the scienti�c board of the university). To attend the committee is time
consuming and it is enough that one player attends the committee meeting
to defend the interests of the group. The whole problem is to decide which
one of the players will go to the meeting, given that the value of time for
each player is private information.
In PG(n;m; q), a uniform punishment against player i is easily derived:

the other players just have to decide not to contribute. More precisely, let
��i = (aj)j 6=i be the (n � 1)�uple of actions in which aj = d for all players
j 6= i. Assume �rst that m > 1. Then, by playing d, player i guarantees
himself ti whatever the other players choose. By playing ��i, the players
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j 6= i guarantee that player i�s payo¤ does not exceed ti. Hence, if m > 1,
vi(ti) = ti and ��i is a uniform punishment strategy. Assume now that
m = 1. Again, by playing d, player i guarantees himself ti; but now, by
playing c, player i guarantees himself 1. Hence, by playing according to his
type, player i can guarantee himself max fti; 1g. By playing ��i, the players
j 6= i guarantee that player i�s payo¤ does not exceed max fti; 1g. Hence, if
m = 1, vi(ti) = max fti; 1g and ��i is a uniform punishment strategy.

3 In�nitely repeated Bayesian game

Nash equilibria always exist in the one-shot game �(q), but fail to re�ect the
fact that the players may care about the future consequences of their present
behavior. In a Nash equilibrium of �(q), players may reveal a lot of infor-
mation, choose an individualistic action, etc. Hence we turn to the in�nitely
repeated version of the previous game, which we denote as �1(q). Accord-
ing to Aumann and Maschler�s original model (see Aumann and Maschler
(1995)), the players� types are �xed throughout the game. More precisely,
�1(q) is played as follows:

- stage 0: the types ti, i = 1; :::; n, are chosen in T =
Y

1�i�n
Ti indepen-

dently of each other, according to q. Player i is only informed of his
own type ti.

- stage k (k = 1; 2; :::): every player i chooses an action in Ai. The choices
are made simultaneously and revealed publicly right after stage k.

Payo¤s in �1(q) are evaluated as (Banach) limits of arithmetic averages
(see Hart (1985), Forges (1992)), thus without discounting. As the other
assumptions, this one is discussed in section 5.

8



3.1 Characterization of Nash equilibrium payo¤s

By proceeding as in Koren (1992), we can characterize the Nash equilibrium
payo¤s of �1(q). We write q�i(t�i) for

Q
j 6=i qj(tj).

Proposition 1 Let �(q) be a Bayesian game with independent private values
in which uniform punishment strategies are available. Let x = (xi)1�i�n =
((xi(ti))ti2Ti)1�i�n. x is a Nash equilibrium payo¤ in �1(q) if and only if
there exist �(t) 2 �(A), t 2 T , such that for every i = 1; :::; n, ti, ri 2 Ti

xi(ti) =
X

t�i2T�i

q�i(t�i)ui(ti; �(ti; t�i)) (3)

�
X

t�i2T�i

q�i(t�i)max fui(ti; �(ri; t�i)); vi(ti)g

In the case of complete information, namely if the prior probability distri-
bution q is degenerated, proposition 1 reduces to the standard Folk theorem:
x = (xi)1�i�n 2 Rn is a Nash equilibrium payo¤ of the in�nitely repeated
game if and only if x is feasible (i.e., achieved by means of a probability dis-
tribution � 2 �(A)) and individually rational (i.e., xi is larger than player
i�s minmax level).
The interpretation of Proposition 1, under incomplete information, is that

all Nash equilibria of �1(q) are payo¤ equivalent to completely revealing
equilibria, in which

- at stage 1, every player i truthfully reveals his type ti

- at every stage k � 2, given the reported types r = (ri)1�i�n , every player
i plays according to �(r) 2 �(A) provided that �(r) has been followed
at every previous stage 2; :::; k � 1. Otherwise, if player i does not
follow �(r) at some stage k � 2, players j 6= i punish player i by
using uniform independent punishment strategies ��i holding player i
at vi(ti) at every stage k + 1, k + 2, ... whatever his type ti and action
are.

The nondeviation condition (3) expresses that, assuming that players
j 6= i follow the equilibrium strategies, player i of type ti can report a type
ri possibly di¤erent from ti. At the end of stage 1, player i learns the true
types t�i of the other players and can then either follow �(ri; t�i) or not. In
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the former case, he fully mimics the equilibrium strategy of type ri. In the
latter case, he is punished at the level vi(ti).7

Condition (3) is thus both an incentive compatibility condition and an
individual rationality condition. Even under our strong assumptions, it is not
possible to separate these two aspects of player i�s nondeviating condition.
Obviously, for ri = ti, (3) is equivalent to

For every i and t = (ti; t�i) 2 T : ui(ti; �(t)) � vi(ti)

which implies that

For every i and ti 2 Ti : xi(ti) � vi(ti) (4)

With some abuse of language, we will refer to the latter property as x is ex
post individually rational and will denote as EXPIRi [�(q)] the set of all
vector payo¤s which satisfy it for player i.
The previous equilibrium conditions are illustrated on examples 0, 1 and 2

below. Examples 0 and 1 belong to the class of public good games introduced
in section 2.2. Example 2 is a variant of the battle of the sexes already
proposed by Koren (1992) and is actually simpler.
Proposition 1 is established in an appendix.

Example 0:
Recalling section 2.2, let us consider the following symmetric two-person

game PG(2; 1; q)

t2 = ! t2 = z

c d c d
t1 = ! c 1; 1 1; 1 + ! 1; 1 1; 1 + z

d 1 + !; 1 !; ! 1 + !; 1 !; z
t1 = z c 1; 1 1; 1 + ! 1; 1 1; 1 + z

d 1 + z; 1 z; ! 1 + z; 1 z; z

Each player has two possible types: Ti = f!; zg, i = 1; 2. We assume that
0 < ! < 1 and z > 2: ! represents a �normal�type, who values the public

7Koren (1992) establishes that all Nash equilibrium payo¤s of �1(q) are completely
revealing in the case of only two players, but without assuming uniform punishments. The
latter assumption greatly facilitates the formulation of the equilibrium conditions as (3)
and the extension to n players.
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good more than his initial endowment, while z represents a �greedy�type.
We also assume that the players hold the same beliefs: qi = (p; 1�p), i = 1; 2,
with 0 < p < 1. We thus refer to the game as �1(p).
Let ! = 2

3
and z = 3. Consider the following distributions, which yield

feasible, ex post individually rational payo¤s:

t2 = 2=3
(prob: p2)

t2 = 3
(prob: 1� p2)

c d c d
t1 = 2=3
(prob: p1)

c 0 1=2 0 7=10

d 1=2 0 3=10 0
t1 = 3

(prob: 1� p1)
c 0 3=10 0 0

d 7=10 0 0 1

Conditions (3) show that these distributions induce an equilibrium if and
only if p1 � 3

5
and p2 � 3

5
.

3.2 Existence of Nash equilibrium

Let us denote as N [�1(q)] the set of all Nash equilibrium payo¤s of �1(q).
Thanks to proposition 1, the set N [�1(q)] has a tractable representation so
that it is relatively easy to check whether it is empty or not. Koren (1992)
already proposes a two-player example in which there is no Nash equilibrium.
The next example pertains to the class of public good games introduced in
section 2.2.

Example 1: A public good game in which N [�1(q)] is empty
Let us consider the game �1(p) of example 0, with the beliefs qi = (p; 1�

p), i = 1; 2, with 0 < p < 1 and let us set k = !
1�! . We will show that

If z > k + 4 and p >
2

k + 4
, N [�1(p)] = ; (5)

In other words, if the �greedy�type z is su¢ ciently high, but has an arbitrar-
ily small probability 1 � p, the in�nitely repeated game has no equilibrium.
For instance, if ! = 1

3
and z > 4:5, the in�nitely repeated game has no
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equilibrium as soon as the probability p of the �greedy�type is smaller than
5
9
.
This �nding should be contrasted with the results obtained in standard

reputation models, in which a very small probability of a �crazy� type is
enough to generate interesting equilibrium behavior in the incomplete infor-
mation game (see Kreps et al. (1982), Fudenberg and Maskin (1986), etc.).
Here, if both types are �normal�(p = 1), the in�nitely repeated game has a
plethora of equilibria, but as soon as there is an arbitrarily small doubt that
the players could be (very) �greedy�, the game has no equilibrium at all.8

Recalling again section 2.2, the individual levels in �(p) are vi(!) = 1
and vi(z) = z, i = 1; 2. According to proposition 1, the equilibrium payo¤s
of �1(p) are characterized by four probability distributions �(t) over fc; dg�
fc; dg, one for every pair of types t. If t1 = t2 = z, ex post individual
rationality implies that (d; d) must have probability 1. In order to show that
�1(p) has no equilibrium, it is enough to show that �1(p) has no symmetric
equilibrium9. We thus focus on �(t)�s of the form:

t2 = ! t2 = z

c d c d
t1 = ! c �c � �c �

d � �d � �d
t1 = z c �c � 0 0

d � �d 0 1

where all parameters are nonnegative and 2�+�c+�d = 1, �+�+�c+�d = 1.
The ex post individual rationality conditions (4) can be written as

�d � k�, �d � k� and � � (1�
1

z
)(1� �d) (6)

In the right hand sight of the equilibrium condition (3) for t1 = ! and r1 = z,

max f1 + �! � (1� !)�d; 1g = 1
8Koren (1992) shows that Nash equilibrium payo¤s may fail to exist in two-person

repeated games in which both players are privately informed. Cripps and Thomas (1995)
discuss the consequences of this phenomenon for reputation e¤ects.

9If �1(p) has an equilibrium, there exist probability distributions �(t), t 2 T , over
fc; dg� fc; dg satisfying (3). If �(t), t 2 T , satis�es (3), the probability distributions �0(t),
t 2 T , in which player 1 and player 2 are permuted, also satisfy (3). The same holds for
the symmetric distributions 1

2 (�(t) + �
0(t)), t 2 T , thanks to the linearity of u and the

convexity of �max�.
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namely, �d � k� because, from (6), �d � k� and � � 1��d� � � 1
z�1� � �.

We can thus write (3) for t1 = ! and r1 = z as

p(k� � �d) + (1� p)(k�� �d) � p(k�� �d) (7)

This condition is not compatible with (6) if p is close enough to 1. In order
to get some intuition for this, let us try �d = �d = 0, i.e., an ex post e¢ cient
equilibrium. (6) reduces to � � 1� 1

z
. (7) is p�+ (1� p)� � p�. Since � � 1

2

and � � 1� �, (7) implies that p � 2(1� �) � 2
z
, which imposes a constraint

on p if z > 2. In the appendix, we show that the same kind of argument can
be used to show (5) for arbitrary �d, �d satisfying (6).�

Remarks:

1. If p is small enough in example 1 (with respect to z, which is kept �xed,
as the other parameters), equilibria of �1(p) are easily constructed. For
instance, if p � 2

z
, an ex post e¢ cient equilibrium as above is achievable

(i.e., condition (3) for t1 = z and r1 = ! is no problem).

2. Proposition 1 tells us that, when an equilibrium exists in the in�nitely
repeated public good game of example 1, the associated payo¤ can as
well be achieved at a completely revealing equilibrium; in particular,
the players cannot bene�t from behaving as if they were �greedy�when
their type is �normal�. Such a result does not hold in a �nitely repeated
game. For instance, Fudenberg and Tirole (1991) (example 8.3, p. 333)
consider a two stage version of the public good game in which the
players� types belong to the unit interval. They show that, in any
perfect Bayesian Nash equilibrium, the players contribute less in the
�rst period than in the second one: �Each player gains by developing
a reputation for not being willing to supply the public good�.

3. If there is uncertainty on the type of only one of the players, an equi-
librium always exists (see Shalev (1994)).
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4 Bayesian game with commitment

In this section, we provide an answer to the question raised in the introduc-
tion: can we interpret the characterization in proposition 1 in the same way
as under complete information, namely, as a precise relationship between
�repetition�and �cooperation�?
We �rst give a description of the set of feasible, incentive compatible and

interim individually rational payo¤s in the (one-shot) Bayesian game �(q).
We denote this set as F [�(q)]. We use Myerson (1991, sections 6.4 and 6.6)�s
de�nitions but obtain simpler expressions in our framework of independent
private values. Proposition 2 states that F [�(q)] can be interpreted as the set
of interim cooperative solutions of �(q). Then we check whether N [�1(q)],
the set of Nash equilibrium payo¤s of the in�nitely repeated game �1(q),
coincides with F [�(q)].
A payo¤ x = (xi)1�i�n = ((xi(ti))ti2Ti)1�i�n is feasible in �(q) if there

exists a correlated strategy �(t) 2 �(A), t 2 T , achieving x, namely

xi(ti) =
X
t�i

q�i(t�i)ui(ti; �(ti; t�i)) i = 1; :::; n; ti 2 Ti (8)

A feasible payo¤ x achieved through � (as in (8)) is incentive compatible
if

xi(ti) �
X
t�i

q�i(t�i)ui(ti; �(ri; t�i)) for every i; ti; ri 2 Ti (9)

A payo¤ x is interim individually rational if, for every player i, there
exists a correlated strategy ��i 2 �(A�i) of players j 6= i such that10

xi(ti) � max
ai2Ai

ui(ti; ai; ��i) for every ti 2 Ti (10)

Let INTIRi [�(q)] be the set of all vector payo¤s satisfying the previous
property for player i. Observe that the previous de�nition describes a set of
vector payo¤s which cannot be reduced to a �corner set�(of the form xi(ti) �
wi(ti), ti 2 Ti, for some well-de�ned individually rational level wi(ti)). By
contrast, ex post individually rational payo¤s are described by a �corner
set�, since (vi(ti))ti2Ti is de�ned without ambiguity by (1).

10Literally, Myerson (1991)�s interim individual rationality condition requires that there
exists a type dependent correlated strategy of players j 6= i, ��i(t�i) 2 �(A�i), t�i 2 T�i,
such that xi(ti) � maxai2Ai

P
t�i
q�i(t�i)ui(ti; ai; ��i(t�i)) for every ti 2 Ti. But, with

independent private values, (10) is an equivalent formulation, since ui(ti; �) is linear.
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The set F [�(q)] is formally de�ned as the set of payo¤s satisfying (8),
(9) and (10). F [�(q)] contains the set of Nash equilibrium payo¤s of �(q)
and is thus not empty.

Proposition 2 F [�(q)] is the set of all �interim cooperative solutions� of
�(q), i.e., the set of all payo¤s that can be achieved when the players can
commit themselves at the interim stage of �(q), in any voluntary contract
game extending �(q).

This result extends Kalai et al. (2010)�s commitment Folk theorem and
is established in Forges (2011). It holds without independent private values,
even if the previous de�nitions (8), (9) and (10) take this assumption into
account. Uniform punishment strategies are not used.
Proposition 2 can be decomposed into two parts. To see this, let us con-

sider all meta-Bayesian games which extend �(q) by allowing the players to
voluntarily commit themselves by giving possibly conditional instructions at
the interim stage. Proposition 2 �rst states that the union, over all these
meta-Bayesian games, of the corresponding sets of all Nash equilibrium pay-
o¤s, is included in F [�(q)]. Proposition 2 further says that the reverse
inclusion also holds. To prove the latter property, Forges (2011) constructs a
single voluntary contract game extending �(q) in which all payo¤s of F [�(q)]
can be achieved as Nash equilibrium payo¤s.
Peters and Szentes (2012) argue that the set of solutions that the players

can achieve by signing a contract at the interim stage of a Bayesian game is
in general smaller than F [�(q)]. They insist on the fact that natural con-
tracts should involve two stages (loosely speaking, the players �rst publicly
announce the commitments that they are ready to sign before signing them).
However, under an assumption which is similar to our uniform punishment
strategies, Peters and Szentes (2012) recover a result similar to proposition
2 (see their proposition 1).
In the next two statements, we make use of uniform punishment strate-

gies, which were not assumed to exist earlier in this section.

Lemma 1 Let �(q) be a Bayesian game with independent private values and
let x be a feasible payo¤ in �(q). If x is interim individually rational (namely,
(10)), x is ex post individually rational (namely, (4)): INTIRi [�(q)] �
EXPIRi [�(q)] for every player i. If there exist uniform punishment strate-
gies, namely (2), then the reverse also holds: INTIRi [�(q)] = EXPIRi [�(q)]
for every player i.
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The proof of lemma 1 is straightforward and therefore omitted. The
intuition behind the �rst part is that players j 6= i can impose a harder
punishment to player i if they know player i�s type ti (i.e., ex post). For the
second part, a uniform punishment strategy of players j 6= i against player i
provides an appropriate correlated strategy ��i in (10).

Proposition 3 Let �(q) be a Bayesian game with independent private values
in which uniform punishment strategies are available: N [�1(q)] � F [�(q)].

Proof: The proposition readily follows from the characterizations ofN [�1(q)]
(in proposition 1) and F [�(q)] ((8), (9) and (10) above): the equality in (3)
is (8), the inequality in (3) implies (9) and (4), which in turn implies (10) by
lemma 1.�

As illustrated on example 1, unlike F [�(q)], N [�1(q)] can be empty.
Hence, N [�1(q)] can be strictly included in F [�(q)]. In other words, it may
happen that repetition makes some form of cooperation possible, but does
not exhaust the players�cooperation possibilities. Example 2 below, taken
from Koren (1992), further illustrates the possible strict inclusion11.

Example 2: A game in which N [�1(q)] is not empty and strictly included
in F [�(q)]
We will study a variant of the well-known battle of the sexes. Each

player has two possible types: Ti = ft; bg, i = 1; 2, and two possible actions:
Ai = fc; dg, i = 1; 2. We denote as pi 2 [0; 1] the probability that player i�s
type is t (namely, qi = (pi; 1 � pi)). Payo¤s are described by the following
matrices:

t2 = t t2 = b

c d c d
t1 = t c 3; 1 0; 0 3; 1 0; 3

d 0; 0 1; 3 0; 1 1; 3
t1 = b c 3; 1 3; 0 3; 1 3; 3

d 1; 0 1; 3 1; 1 1; 3

When t1 = t, player 1 prefers c to d, but also prefers to make the same choice
as the other player. When t1 = b, player 1 just prefers c to d, independently
11For appropriate values of q, it also happens in the public good games of example 1 that

N [�1(q)] is not empty and is strictly included in F [�(q)]. However, a full characterization
of N [�1(q)] seems much harder in example 1 than in Koren (1992)�s example.
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of the choice of the other player. The preferences of player 2 are similar. In
this game, vi(t) = 3

4
, vi(b) = 3, i = 1; 2. A uniform punishment strategy of

player 1 (resp., 2) is to play c with probability 3
4
(resp., 1

4
).

Let us consider the (ex post e¢ cient) correlated strategy �(t), t 2 T ,
de�ned by

t2 = t t2 = b

c d c d
t1 = t c 1

2
0 0 0

d 0 1
2

0 1
t1 = b c 1 0 0 1

d 0 0 0 0

(11)

It is easily checked that �(t) satis�es (9) and (10), namely, induces a payo¤
in F [�(q)], if and only if pi � 1

2
, i = 1; 2. Similarly, in order to induce

a payo¤ in N [�1(q)], �(t) must satisfy (3); in particular, player 1 of type
t1 = t cannot gain by pretending to be of type r1 = b, namely,

p2 + 1 � p2max
�
3;
3

4

�
+ (1� p2)max

�
0;
3

4

�
, p2 �

1

5

The previous condition illustrates that, as expected, player 1 has more de-
viation possibilities at a (completely revealing) Nash equilibrium of �1(q)
than at an interim cooperative solution of �(q). Imagine that player 1 is of
type t but pretends to be of type b at the �rst stage of �1(q). Then he learns
player 2�s type t2 and faces �(b; t2). If t2 = t, player 1 gets the best payo¤ 3
by playing according to �(b; t). However, if t2 = b, player 1 gets 0 by playing
according to �(b; b). In this case, he should not play according to �(b; t) but
rather play c with probability 3

4
at every stage in order to guarantee him-

self 3
4
. By checking the other equilibrium conditions in (3), we get that �(t)

induces a payo¤ in N [�1(q)] if and only if pi � 1
5
, i = 1; 2.

On the other hand, as already pointed out in Koren (1992), the correlated
strategy de�ned by

t2 = t t2 = b

c d c d
t1 = t c 0 0 0 0

d 0 1 0 1
t1 = b c 3

4
1
4

0 1
d 0 0 0 0
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induces a payo¤ in N [�1(q)] if and only if p2 � 1
6
. There are thus many

probability distributions q 2 �(T ) for which �(t) de�ned by (11) induces a
payo¤ in F [�(q)], and at the same time, N [�1(q)] is not empty but does
not contain the payo¤ de�ned by (11).�

5 Role of the assumptions

5.1 Independent private values

Independent private values are crucial in proposition 1. Without this as-
sumption, the Nash equilibria of �1(q) are no longer payo¤ equivalent to
completely revealing equilibria, even if there are two players and only one of
them has private information (see Hart (1985) and Aumann and Maschler
(1995)). As already mentioned, independent private values are not necessary
in proposition 2.

5.2 Uniform punishments

In the case of two players, if values are private and independent in �(q),
Koren (1992) proves that the Nash equilibria of �1(q) are payo¤ equivalent
to completely revealing equilibria without assuming uniform punishments
(i.e., (2)). However, in this more general case, the equilibrium conditions
can take a more complex form than (3). Examples 3 and 4 below illustrate
how the absence of uniform punishments modi�es the results.
In example 3, the conditions (3) of proposition 1 are no longer su¢ cient

for an equilibrium. Proposition 3 does not hold either: we construct an equi-
librium payo¤ in �1(q) which does not belong to F [�(q)], i.e., cannot be
achieved through commitment in �(q).
In example 4, an assumption weaker than uniform punishments holds,

which guarantees that the Nash equilibrium payo¤s of �1(q) can be char-
acterized exactly as in proposition 1, by (3). However, proposition 3 still
fails.
In both examples 3 and 4, there are two players and only player 1 has

private information (jT2j = 1, A = A1 � A2), so that the conditions in
proposition 1 reduce to: there exists �(t1) 2 �(A), t1 2 T1, such that, for
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player 1,

x1(t1) = u1(t1; �(t1))

� u1(t1; �(r1)) 8t1; r1 2 T1 i.e., incentive compatibility (12)

� v1(t1) 8t1 2 T1 i.e., ex post individual rationality (13)

and, for player 2,

x2 = u2

 X
t12T1

q1(t1)�(t1)

!
� v2 i.e., individual rationality (14)

As shown by Hart (1985), in order to characterize the equilibrium payo¤s
of �1(q), ex post individual rationality (namely, (4) or (13) above) is not
su¢ cient. A stronger condition, which makes full use of the fact that �1(q)
is an in�nitely repeated game, is needed. This condition is formally stated
below, in the current framework of lack of information on one side.12 Let
val1 [u] denote the value to player 1 of the one-shot game with payo¤ function
u.

De�nition A vector payo¤ x1 = (x1(t1))t12T1 is individually rational for
player 1 in the in�nitely repeated game �1(q) if and only if

8p1 2 �(T1),
X
t1

p1(t1)x1(t1) � val1

"X
t1

p1(t1)u1(t1; �)
#

(15)

Let INTIR1 [�1(q)] be the set of vector payo¤ that are individually
rational for player 1 in the in�nitely repeated game �1(q). The previous de-
�nition is justi�ed by Blackwell (1956)�s approachability theorem: condition
(15) is necessary and su¢ cient for player 2 to have a strategy in the in�nitely
repeated game �1(q) such that player 1�s payo¤ cannot exceed x1(t1) when
he is of type t1.
Let us compare INTIR1 [�1(q)] with the two sets of individually ratio-

nal payo¤s introduced for the one-shot game �(q), namely, EXPIR1 [�(q)]
and INTIR1 [�(q)]. First of all, player 2 can use a punishment strategy
of the one-shot game at every stage of the in�nitely repeated game: as a

12The same condition holds as well in two-person games with independent private values
(see Koren (1992)).
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consequence of Blackwell (1956)�s characterization, (10) implies (15). Fur-
thermore, (15) holds in particular at p1(t1) = 1 for every t1, so that it implies
ex post individual rationality (i.e., (13)). To sum up,

INTIR1 [�(q)] � INTIR1 [�1(q)] � EXPIR1 [�(q)]

These inclusions hold in two-person games with independent private values,
even if player 2 also has private information (see Koren (1992)). From Lemma
1, under the assumption of uniform punishments, the three sets coincide. In
examples 3 and 4 below, this assumption does not hold. In example 3,
the two inclusions are strict. In example 4, the �rst inclusion is strict but
INTIR1 [�1(q)] = EXPIR1 [�(q)].

Example 3
Let n = 2, T1 = fh; lg, jT2j = 1: only player 1 has private information.

Here, the prior probability distribution is fully described by the probability
that player 1�s type is h, which we still denote as q 2 [0; 1]. Let jA1j = jA2j =
2 and the utility functions be described by

u1(h; �) =
�
1 0
0 0

�
u1(l; �) =

�
0 0
0 1

�

u2(�) =
�
0 2
0 0

�
The assumption of uniform punishments is clearly not satis�ed: player 2 must
play right in order to hold player 1 of type h at his value level v1(h) = 0 and
must play left to hold him at v1(l) = 0. Consider the probability distribution

�(h) = �(l) = � =

�
1
4

1
2

0 1
4

�
2 �(A1 � A2)

Let us check that it de�nes an equilibrium of �1(q), for every p 2 (0; 1),
namely that the associated payo¤s, x1(h) = x1(l) =

1
4
, x2 = 1, verify the

above conditions (including (15)). Player 2�s payo¤ x2 = 1 is individually
rational since the value of player 2�s game is v2 = 0. � is clearly incen-
tive compatible since it is nonrevealing. According to (15), a vector payo¤
(x1(h); x1(l)) is individually rational for player 1 in �1(q) if and only if

8p 2 [0; 1] , px1(h) + (1� p)x1(l) � val1
�
p 0
0 1� p

�
= p(1� p)
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so that (1
4
; 1
4
) is indeed individually rational for player 1 in �1(p), for every

p 2 (0; 1). Hence ((1
4
; 1
4
); 1) 2 N [�1(q)] for every q 2 (0; 1). However,

((1
4
; 1
4
); 1) =2 F [�(q)] because (1

4
; 1
4
) is not interim individually rational in the

sense of (10): let � = (�; 1 � �); maxa1 u1(h; a1; �) = � � 1
4
is incompatible

with maxa1 u1(l; a1; �) = 1� � � 1
4
.

Consider now the probability distribution

�(h) = �(l) = � =

�
0 1
0 0

�
� satis�es the equilibrium conditions of proposition 1 (namely (12), (13) and
(14) above) but the vector payo¤ of player 1 is (0; 0) and is not individually
rational for player 1 in �1(q), namely does not satisfy (15). Hence � does
not de�ne an equilibrium of �1(q).
Example 3 illustrates that player 1 can bene�t from not revealing his

information to player 2, if player 2 intends to punish him. Of course, when
uniform punishments are available, the revelation of information does not
matter.�

Example 4
The framework is the same as in example 3 but the utility functions are

described by

u1(h; �) =
�
1 2
0 �1

�
u1(l; �) =

�
�1 0
2 1

�

u2(�) =
�
2 0
0 2

�
v1(h) = v1(l) = 1. As in the previous example, the assumption of uniform
punishments is not satis�ed. Let p 2 [0; 1].

val1 [pu1(h; �) + (1� p)u1(l; �)] = val1

�
2p� 1 2p
2� 2p 1� 2p

�
= 1� 2p if p � 1

4

=
1

2
if
1

4
� p � 3

4

= 2p� 1 if p � 3

4
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This function is convex so that a vector payo¤ (x1(h); x1(l)) is individually
rational for player 1 in the sense of (15) if and only if it is ex post individ-
ually rational (namely, (13): x1(h) � 1 and x1(l) � 1): INTIR1 [�1(q)] =
EXPIR1 [�(q)]. In particular, in this example, the equilibrium conditions
in �1(q) are correctly described in proposition 1, namely by (12), (13) and
(14).13

In spite of the previous property, proposition 3 fails. The probability
distributions

�(h) =

�
1 0
0 0

�
�(l) =

�
0 0
0 1

�
lead to an equilibrium in �1(q), with payo¤ ((1; 1); 2), but (1; 1) is not in-
terim individually rational for player 1 in the sense of (10): let � = (�; 1��);
maxa1 u1(h; a1; �) = 2 � � � 1 is incompatible with maxa1 u1(l; a1; �) =
� + 1 � 1.�

In both examples 3 and 4, interim individual rationality takes a di¤erent
form in the one-shot game and in the in�nitely repeated game. In example 3,
in order to defend himself, player 1 must play in a non-revealing way in the
repeated game. In example 4, player 1 bene�ts from revealing his information
to player 2.
The phenomena described in the previous examples were �rst identi�ed in

the study of zero-sum in�nitely repeated games with incomplete information
(see Aumann and Maschler (1995)).

5.3 Undiscounted payo¤s

Throughout this paper, as in Hart (1985) and Koren (1992), we assumed
that payo¤s in the in�nitely repeated games are evaluated as Banach limits
of the expected average payo¤s, namely, without discounting. The main jus-
ti�cation for proceeding in this way is well-known: we are looking for robust
results, which do not depend on the precise discount factor of the players.
Even more, we are interested in robust equilibrium strategies, which can be
used for a reasonable range of discount factors. Hence, it is natural to start
with the study of the equilibrium payo¤s of the undiscounted in�nitely re-
peated game, in order to �guess�how the robust equilibrium payo¤s look like.

13The simpli�cation of the equilibrium conditions in the case of convex value functions
(which give rise to a linear concavi�cation) is acknowledged in Koren (1992), remark 4. A
similar condition is considered in Forges (1988).
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This is how game theorists derived the Folk theorem for in�nitely repeated
games with complete information.
While the study of the undiscounted in�nitely repeated game seems a

mandatory �rst step, a careful analysis of the consequences of this assump-
tion is in order (see Bergin (1989) for an early reference). The phenomena
described by proposition 1 (all equilibria are payo¤ equivalent to completely
revealing ones) and example 1 (the slightest doubt on the players�types can
lead to non existence of equilibrium) are not to be expected in discounted
games, even with patient players.
As brie�y mentioned in the introduction, many papers devoted to rep-

utation e¤ects deal with repeated games with discounting. In addition, a
number of rather recent papers study discounted repeated games with spe-
ci�c forms of incomplete information. The papers that look most relevant to
these notes are Peski (2008) and Peski (2012). Peski (2008) characterizes the
Nash equilibrium payo¤s of two-person discounted repeated games with lack
of information on one side and known own payo¤s when the informed player
has two types (namely, the discounted version of Shalev (1994) in the case of
two types). Peski (2008)�s characterization results are much more complex
than Shalev (1994)�s ones but show that equilibria keep an elegant struc-
ture. Peski (2012) extends these results to the class of discounted repeated
games with known-own payo¤s which satisfy an �open thread assumption�,
namely, in which there exists an open set of belief-free equilibria in the sense
of Horner and Lovo (2009).
Wiseman (2012) establishes a partial Folk theorem in discounted repeated

games where the players have the same initial information and get private and
public signals along the play. While his model captures in particular �known
own payo¤s�, as in multisided reputation models (see his example 3), his
assumption 1 ensures �gradual public learning� which has no counterpart
in in�nitely repaeted games like the ones considered in these notes. As a
consequence, Wiseman (2012)�s Folk theorem can be formulated in terms
of feasible, ex post individually rational payo¤s, without any requirement
of incentive compatibility. By contrast, incentive compatibility is crucial in
these notes and in Peski (2008). Peski (2008) concludes by saying that the
problem of characterizing equilibrium payo¤s in discounted repeated games
with multisided incomplete information is open. As mentioned above, Peski
(2012) gives an answer in a class of such games.14

14The �rst versions of these notes were deliberately written without any attempt to
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6 Appendix

6.1 Proof of proposition 1

6.1.1 Strategies and payo¤ functions

A strategy of player i in �1(q) is a sequence of mappings �i = (�ki )k�1,
�ki : Ti � Ak�1 ! �(Ai). The n�tuple of prior probability distributions
q = (qi)1�i�n and an n�tuple of strategies � = (�i)1�i�n induce a probability
distribution over T�AN, where AN is the set of all in�nite sequence of moves.
We denote as Eq;� the corresponding expectation. Given a = (ak)k�1 2 AN,
let us de�ne

U
K

i (ti; a) =
1

K

KX
k=1

ui(ti; a
k) for every i, ti and K = 1; 2; :::

As in Hart (1985) (see also Forges (1992), Koren (1992), Shalev (1994)), we
de�ne the interim payo¤s associated with an n�tuple of strategies � as

Ui(ti;�) =L
h
Eq;�(U

K

i (ti;ea)) j tii
where L is a Banach limit and ea denotes the sequence of moves as a random
variable.

6.1.2 Su¢ cient conditions for an equilibrium

Let us assume that the conditions (3) hold. Then we can construct an
n�tuple of strategies � = (�i)1�i�n in �1(q) which achieve the interim
payo¤s xi(ti) (namely, such that xi(ti) = Ui(ti;�) for every i, ti) and which
de�ne a Nash equilibrium of �1(q). For every player i, �i is described as
follows:

at stage k = 1: choose ai so as to reveal type ti (which is possible since
jAij � jTij)

survey the literature. The current list is still likely incomplete. My initial goal was to
convey the main message of Koren (1992) in a simple model, which could be useful in
applications but did not require the use of Blackwell�s strategies.
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at every stage k � 2: given the n�tuple of reported types r, play according
to �(r) if �(r) was chosen at every previous stage; otherwise, play a
punishment strategy in order to keep the �rst player j who did not
follow �(r) below his ex post individually rational level vj(tj).

6.1.3 Necessary conditions for an equilibrium

Let us start with an arbitrary Nash equilibrium � = (�i)1�i�n in �1(q).
Let �i(ti) be the associated strategy of player i of type ti, namely, �i(ti) =
(�ki (ti))k�1, with �

k
i (ti) : A

k�1 ! �(Ai). Let xi(ti) = Ui(ti;�) be the as-
sociated interim equilibrium payo¤ of player i of type ti. Let us show that
the conditions (3) hold, namely, that the same payo¤s can be achieved by a
completely revealing equilibrium.
In order to get some intuition, let us assume that, at equilibrium, there

is a �nite, possibly very long, phase of information transmission (say, until
stage k0) and that afterwards (thus, at stages k0 + 1, k0 + 2,...), the players
play independently of their types. Since � is an equilibrium, player i of type
ti cannot bene�t from playing according to �i(ri), with ri possibly di¤erent
from ti, until stage k0 and then, from stage k0+1 on, by either continuing to
play �i(ri) or just guaranteing himself vi(ti) (i.e., by playing optimally in �his
true one-shot game�, with payo¤s ui(ti; �), at every stage k0+1, k0+2,...).15
More precisely, the equilibrium strategies �i(ti) generate probability dis-

tributions ��(� j t1; :::; tn) over the limit frequencies of moves, i.e., over �(A)
(see Hart (1985) or Koren (1992) for details). Together with the prior q,
these probability distributions generate a probability distribution Pq;�� over
T ��(A) such that

xi(ti) = Ui(ti;�) = Eq;��

�
ui(ti;e�) j ti� for every i; ti (16)

where Eq;�� is the expectation with respect to Pq;�� and
e� stands for the

frequency of move as a random variable.16

By considering the previous speci�c deviations of player i of type ti
(namely, mimic type ri and/or play optimally in the one-shot game), we

15Note that player i may reveal further information on his type by playing so as to
guarantee himself vi(ti). This typically happens out of equilibrium.
16If information transmission ends up after �nitely many stages k0, e� can be interpreted

as the frequency of moves from stage k0 + 1 on.
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obtain that

xi(ti) � Eq;��
�
max

n
ui(ti;e�); vi(ti)o j ri� for every i; ti; ri (17)

We can also rely on a variant of the revelation principle to see that (16)
and (17) must be satis�ed as soon as � is an equilibrium. Let us imagine that
a fully reliable mediator asks the players to report their types and then given
the n�tuple of reported types r 2 T , chooses a frequency of moves � 2 �(A)
according to ��(� j r) and recommends � to all players17. In other words,
when the players report r = (ri)1�i�n, the mediator selects � exactly as the
players themselves do at the equilibrium �. (16) says that by telling the
truth and following the recommendation of the mediator, the players get the
same interim payo¤ than by playing �. (17) says that if players j 6= i tell the
truth to the mediator, follow the recommendation � as long as every player
follows � and punish any deviator at his ex post minmax level, then player i
of type ti cannot bene�t from reporting type ri to the mediator and/or not
following �.
Conditions (16) and (17) di¤er from (3) in two respects. (16) and (17)

involve (type dependent) probability distributions over �(A), while (3) is
formulated in terms of deterministic distributions �(t), t 2 T . Moreover, in
(17), the probability distribution �� is not necessarily completely revealing

18.
By construction, and recalling that types are independent of each other,

for any function f over �(A), the probability Pq;�� satis�es

Eq;��

�
f(e�) j ti� =X

t�i

q�i(t�i)E��

�
f(e�) j ti; t�i� for every i, ti

Hence, for every i, ti, (16) can be rewritten as

xi(ti) =
X
t�i

q�i(t�i)E��

�
ui(ti;e�) j ti; t�i�

Recalling that ui(ti; �) is linear, we get

xi(ti) =
X
t�i

q�i(t�i)ui

�
ti; E��(

e� j ti; t�i)�
17As in the standard proof of the Folk theorem under complete information, we interpret

a distribution of moves � as a deterministic sequence of moves (in A) which achieves the
frequency of �. This interpretation is straighforward if the components of � are rational
(in Q).
18The above reliable mediator selects � as a random function of the players�reported

types but does not reveal these reported types.
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which is the �rst part of (3) if we set �(t) = E��(
e� j t).

By proceeding similarly and using in addition that �max�is convex, for
every i; ti; ri, (17) can be rewritten as

xi(ti) �
X
t�i

q�i(t�i)E��

�
max

n
ui(ti;e�); vi(ti)o j ri; t�i�

�
X
t�i

q�i(t�i)max
n
E��

�
ui(ti;e�) j ri; t�i� ; vi(ti)o

�
X
t�i

q�i(t�i)max
n
ui

�
ti; E��(

e� j ri; t�i)� ; vi(ti)o
�

X
t�i

q�i(t�i)max fui (ti; �(ri; t�i)) ; vi(ti)g

The last expression is the inequality in (3).�

6.2 Computation of example 1

Recall from section 3.2. that the ex post individual rationality conditions are
(6), namely,

�d � k�, �d � k� and � � (1�
1

z
)(1� �d).

Since � � 1� �d, we can set � = (1� �)(1� �d) with � � 1
z
.

Furthermore, � � (1��d)� � = �(1��d). Hence, �d � k� � k�(1��d),
so that �d � k�

1+k�
.

A further equilibrium condition is (7), namely,

p(k� � �d) + (1� p)(k�� �d) � p(k�� �d).
Since k� � �d � k

2
and k�� �d � k�� (k�+ 1)�d, this condition implies

p

�
(2 + k)�d �

k

2

�
� (1 + k�)�d � k�.

In the left hand side, (2+ k)�d � k
2
, because �d � k�

1+k�
and � � 1

z
< 1

k+4
. We

thus get the following condition on p

p � (1 + k�)�d � k�
(2 + k)�d � k

2

� 2� < 2

k + 4
,

where the second inequality comes from the fact that the expression is de-
creasing in �d if � <

1
k+4
.�
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