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Two characterization results are behind the intimate relationship between "repetition" and "cooperation" under complete information: the standard Folk theorem for in…nitely repeated games and the "commitment Folk theorem" for one-shot games. We propose extensions of the previous characterization results in Bayesian games, with independent private values, which satisfy a further property, "uniform punishment strategies". Public good games fall in this class. We show that the Nash equilibria of the Bayesian in…nitely repeated game are payo¤ equivalent to separating (i.e., completely revealing) equilibria and can be achieved as interim cooperative solutions of the Bayesian game. We also show that the reverse of the latter result is not true: unlike the set of interim cooperative solutions of the Bayesian game, the set of Nash equilibrium payo¤s of the in…nitely repeated game can be empty.

Introduction

Under complete information, the standard Folk theorem states that the Nash equilibrium payo¤s of an in…nitely repeated game coincide with the feasible and individually rational payo¤s of the one-shot game. Recently, [START_REF] Kalai | A commitment Folk theorem[END_REF] established that the latter set can be interpreted as the set of cooperative solutions of the one-shot game, namely, as the set of all equilibrium payo¤s that the players can achieve when they can voluntarily commit themselves. [START_REF] Kalai | A commitment Folk theorem[END_REF] refer to this result as the "commitment Folk theorem", for two reasons: it is stated in terms of the set of feasible and individually rational payo¤s and it has been known for years, under more or less precise versions (see, e.g., Tennenholtz (1984) and [START_REF] Myerson | Game theory: analysis of con ‡ict[END_REF]).

Put together, the previous two Folk theorems state that the noncooperative solutions of the in…nitely repeated game coincide with the cooperative solutions of the one-shot game. They thus yield more than a precise content to the idea that "repetition enables cooperation": they also say that "repetition does as well as cooperation".

In these notes, I gather some results which shed some light on the possible extension of the latter Folk theorems in Bayesian games, i.e., when the players do not share the same information over the fundamentals of the game.

Aumann and Maschler started to study the Nash equilibrium payo¤s of in…nitely repeated games with incomplete information in the mid-sixties (see [START_REF] Aumann | Repeated Games of Incomplete Information[END_REF]). At the very same time, Harsanyi (1967) proposed the formal de…nition of games with incomplete information as Bayesian games. Building on the work of Aumann, Maschler and Stearns (1968), S. [START_REF] Hart | Nonzero-sum two-person repeated games with incomplete information[END_REF] characterized the set of Nash equilibrium payo¤s of any twoperson (undiscounted) in…nitely repeated game in which only one of the players has private information. This looks like an extremely particular class of games but the characterization is already quite intricate: it involves a description of the dynamic process followed by the equilibrium and so, does not give much hope to be related to solutions of the one-shot game.

As S. [START_REF] Hart | Nonzero-sum two-person repeated games with incomplete information[END_REF], [START_REF] Koren | Two-person repeated games where players know their own payo¤s[END_REF] considers two-person games but, instead of assuming that only one player is privately informed, he assumes that every player "knows his own payo¤". According to a more usual terminology in microeconomics, he makes the assumption that "values are private and independent". In this case, he shows that the Nash equilibrium of the (undiscounted) in…nitely repeated game can be characterized in a very tractable way: they are payo¤ equivalent to completely revealing (also called "sepa-rating") equilibria. 1 Once such a tractable characterization is available, one can ask whether it con…rms that repeating a game has the same e¤ect as commitment in the one-shot game.

The assumption of independent, private values is satis…ed in many economic applications, e.g., in some public good games (see [START_REF] Palfrey | Repeated play, cooperation and coordination: an experimental study[END_REF] and Fudenberg and Tirole (1991, example 6.1, p. 211). These games typically involve more than two players but satisfy a further assumption, which we call "uniform punishments". We show (in proposition 1) that in these public good games, and more generally, in any n person Bayesian game with independent, private values and uniform punishments, Koren (1992)'s result holds true, namely, the Nash equilibrium of the (undiscounted) in…nitely repeated game are all payo¤ equivalent to completely revealing equilibria.

Our tractable characterization facilitates the comparison with the cooperative solutions of the initial Bayesian game. Furthermore, it tells us how incentives to reveal private information can di¤er in the short and the long run. In a …nitely repeated game, players may bene…t from hiding their type, e.g., their willingness to contribute to a public good, at an early stage of the game (see [START_REF] Fudenberg | Game theory[END_REF], example 8.3, p. 333). Proposition 1 tells us that, in an (undiscounted) in…nitely repeated game, players cannot bene…t from concealing their private information.

On the other hand, in [START_REF] Forges | A Folk theorem for Bayesian games with commitment[END_REF], I propose an extension of Kalai et al. (2010)'s "commitment Folk theorem" to arbitrary n person Bayesian games. More precisely, I consider all meta-Bayesian games in which, at the interim stage, the players give their instructions on how to play the original game. As in [START_REF] Kalai | A commitment Folk theorem[END_REF], the meta-games are formulated in order to avoid circular reasoning. I show that the set of all Nash equilibrium payo¤s of all such meta-games coincides with the set of incentive compatible, interim individually rational, feasible payo¤s identi…ed by Myerson (1991, chapter 6). In particular, all payo¤s in the latter set can be achieved as the Nash equilibrium payo¤s of a single meta-Bayesian game. This result is recalled below as proposition 2.

Equipped with the characterizations of propositions 1 and 2, I show that, for any n person Bayesian game with independent, private values and uni-form punishments, the set of Nash equilibrium payo¤s of the in…nitely repeated game is contained in the set of interim cooperative solutions of the Bayesian game (proposition 3). In other words, the repetition of the game enables the players to cooperate, as in the case of complete information. However, the previous inclusion can be strict. More surprisingly, unlike the set of interim cooperative solutions of the one-shot game, the set of Nash equilibria of the in…nitely repeated game can be empty. This is illustrated on a public good game (example 1).

The latter …nding, which tells us that, without discounting, the Folk theorem does not hold for Bayesian games in which several players have private information, must be contrasted with the results on "reputation e¤ects".

There is an extensive literature on this topic. Most papers concentrate on two-person games with a single informed player, who tries to establish a reputation, but allow for discounted payo¤s (see [START_REF] Mailath | Repeated Games and Reputations[END_REF]; [START_REF] Sorin | Merging, reputation, and repeated games with incomplete information[END_REF] gives a synthetic presentation of various related models, including in…nitely repeated games with known own payo¤s; as a sample of references, let us mention [START_REF] Kreps | Rational cooperation in the …nitely repeated prisoners dilemma[END_REF], [START_REF] Fudenberg | The Folk theorem in repeated games with discounting or with incomplete information[END_REF], [START_REF] Schmidt | Reputation and equilibrium characterization in repeated games with con ‡icting interests[END_REF], [START_REF] Cripps | Reputation and commitment in twoperson repeated games without discounting[END_REF][START_REF] Cripps | Reputation and perfection in repeated common interest games[END_REF], 2003), [START_REF] Cripps | Reputation in perturbed repeated games[END_REF], [START_REF] Israeli | Sowing doubt optimally in two-person repeated games[END_REF], [START_REF] Chan | On the non-existence of reputation e¤ects in twoperson in…nitely repaeted games[END_REF], Cripps et al. (2005), [START_REF] Atakan | Reputation in long-run relationships[END_REF]). An important di¤erence between the models designed to study reputation e¤ects and the one that we consider in these notes is that, rather than perturbing a Bayesian game with complete information, we start with given sets of types for every player and arbitrary beliefs over these types.

Our characterizations show that, under incomplete information, the cooperative solutions of the one-shot game and the non-cooperative solutions of the undiscounted repeated game mostly di¤er in the individual rationality levels of the players. Under the assumptions of independent private values and uniform punishments, the ex post individual rationality level of a player, namely the level at which the other players can punish him when they know his type, is relevant in the in…nitely repeated game. Interim individually rational payo¤s in the sense of [START_REF] Myerson | Game theory: analysis of con ‡ict[END_REF] are always ex post individually rational. When there exist uniform punishment strategies, the reverse also holds: this is the key of proposition 3. As explained in section 5, if the assumption of uniform punishments is relaxed, individual rationality in the in…nitely repeated game relies on Blackwell (1956)'s approachability strategies. As a consequence, proposition 3 is no longer true, while Koren's characterization still holds in the two-person case. Section 5 further discusses our underlying assumptions, in particular, the undiscounted payo¤s.

2 Basic Bayesian game

De…nition and main assumptions

Let us …x n players and, for every player i, i = 1; :::n, a …nite set of types T i a probability distribution q i over T i a …nite set of actions A i , with jA i j jT i j a utility function u i :

T i A ! R, where A = Y 1 i n A i .
This de…nes a (one-shot) Bayesian game with independent, private values, which we denote as (q), with q = (q i ) 1 i n . 2 Without loss of generality, we assume that q i (t i ) > 0 for every t i 2 T i . The interpretation is that types t i , i = 1; :::; n, are …rst chosen in T , independently of each other, according to q. At the interim stage, player i is only informed of his own type t i . The players then choose simultaneously an action.

For any …nite set E, let us denote as (E) the set of probability distributions over E. A mixed strategy3 of player i in (q) is a mapping from T i to (A i ). Similarly, a correlated strategy for players j 6 = i is a mapping from

T i = Q j6 =i T j to (A i ), where A i = Q j6 =i A j .
We keep the notation u i for the (multi)linear extension of utility functions over mixed and/or correlated strategies. Hence we write, for every i = 1; :::; n, t i 2 T i , 2 (A),

u i (t i ; ) = X a (a)u i (t i ; a)
In particular, for every i = 1; :::

; n, t i 2 T i , i 2 (A i ), i 2 (A i ), u i (t i ; i ; i ) = X a i ;a i i (a i ) i (a i )u i (t i ; a i ; a i )
For every player i, i = 1; :::; n, and t i 2 T i , let v i (t i ) be the value 4 of the (complete information, zero-sum) game in which player i maximizes the payo¤ u i (t i ; ), namely

v i (t i ) = min i 2 (A i ) max i 2 (A i ) u i (t i ; i ; i ) = min i 2 (A i ) max a i 2A i u i (t i ; a i ; i ) (1)
Observe that, in the previous expression, the probability distribution i achieving the "min"possibly depends on t i , which is …xed in the underlying optimization problem. v i (t i ) can thus be interpreted as the ex post individual rationality level of player i, namely, the best amount that player i can guarantee to himself if the other players know his type t i .

We consider the following assumption ("uniform punishment strategies"):

8i 9 i 2 Y j6 =i (A j ) s.t. 8t i 2 T i 8a i 2 A i u i (t i ; a i ; i ) v i (t i ) (2) 
When (2) holds, i de…nes independent 5 punishment strategies which enable players j 6 = i to punish player i uniformly, i.e., whatever his type t i is, but even more, to keep player i's payo¤ below his ex post individual rationality level. Assumption (2) is quite strong but, as illustrated below, it is satis…ed in a class of public good games (see, e.g., [START_REF] Palfrey | Repeated play, cooperation and coordination: an experimental study[END_REF]). 6 In these games, the independent private values assumption also holds. Peters and Szentes (2012)'s assumption 1 (p. 397) takes exactly the form of (2) if values are private and independent and mixed strategies are allowed. We will make a more precise comparison in section 4. We will discuss the role of our various assumptions in section 5.

min i2 Q j6 =i (Aj ) max i2 (Ai) u i (t i ; i ; i ):

Application: contribution to a public good

The private information of every player i, i = 1; :::; n, is the value t i that he attributes to his endowment of a single unit of the private good. The private endowment values t i are chosen independently of each other, according to a probability distribution q i . Player i has two possible actions a i : "contribute" (c) and "do not contribute"(d). A public good is produced if, and only if, at least m players contribute. The value of the public good is normalized to 1 for all players. For every a 2 A, let M (a) be number of contributors, namely

M (a) = M ((a i ) 1 i n ) = j fi : a i = cg j
The utility function of player i is described by

u i (t i ; a i ; a i ) = 1 if a i = c and M (a i ; a i ) m 0 if a i = c and M (a i ; a i ) < m 1 + t i if a i = d and M (a i ; a i ) m t i if a i = d and M (a i ; a i ) < m
We refer to the game as P G(n; m; q), 1 m n. For instance, in P G(2; 1; q), the payo¤ matrix associated with the pair of types

(t 1 ; t 2 ) is c d c 1; 1 1; 1 + t 2 d 1 + t 1 ; 1 t 1 ; t 2
where we always assume t i 0 but can have t i < 1 or t i > 1. Fudenberg and Tirole (1991, example 6.1, p. 211) propose the following interpretation: player 1 and player 2 belong to a group (say, the "economists" of some university) and each of them can represent the group at a committee (say, the scienti…c board of the university). To attend the committee is time consuming and it is enough that one player attends the committee meeting to defend the interests of the group. The whole problem is to decide which one of the players will go to the meeting, given that the value of time for each player is private information.

In P G(n; m; q), a uniform punishment against player i is easily derived: the other players just have to decide not to contribute. More precisely, let i = (a j ) j6 =i be the (n 1) uple of actions in which a j = d for all players j 6 = i. Assume …rst that m > 1. Then, by playing d, player i guarantees himself t i whatever the other players choose. By playing i , the players j 6 = i guarantee that player i's payo¤ does not exceed t i . Hence, if m > 1, v i (t i ) = t i and i is a uniform punishment strategy. Assume now that m = 1. Again, by playing d, player i guarantees himself t i ; but now, by playing c, player i guarantees himself 1. Hence, by playing according to his type, player i can guarantee himself max ft i ; 1g. By playing i , the players j 6 = i guarantee that player i's payo¤ does not exceed max ft i ; 1g. Hence, if m = 1, v i (t i ) = max ft i ; 1g and i is a uniform punishment strategy.

In…nitely repeated Bayesian game

Nash equilibria always exist in the one-shot game (q), but fail to re ‡ect the fact that the players may care about the future consequences of their present behavior. In a Nash equilibrium of (q), players may reveal a lot of information, choose an individualistic action, etc. Hence we turn to the in…nitely repeated version of the previous game, which we denote as 1 (q). According to Aumann and Maschler's original model (see [START_REF] Aumann | Repeated Games of Incomplete Information[END_REF]), the players' types are …xed throughout the game. More precisely, 1 (q) is played as follows:

stage 0: the types t i , i = 1; :::; n, are chosen in T = Y 1 i n T i independently of each other, according to q. Player i is only informed of his own type t i .

stage k (k = 1; 2; :::): every player i chooses an action in A i . The choices are made simultaneously and revealed publicly right after stage k.

Payo¤s in 1 (q) are evaluated as (Banach) limits of arithmetic averages (see [START_REF] Hart | Nonzero-sum two-person repeated games with incomplete information[END_REF], Forges (1992)), thus without discounting. As the other assumptions, this one is discussed in section 5.

Characterization of Nash equilibrium payo¤s

By proceeding as in [START_REF] Koren | Two-person repeated games where players know their own payo¤s[END_REF], we can characterize the Nash equilibrium payo¤s of 1 (q). We write q i (t i ) for Q j6 =i q j (t j ).

Proposition 1 Let (q) be a Bayesian game with independent private values in which uniform punishment strategies are available. Let x = (x i )

1 i n = ((x i (t i )) t i 2T i ) 1 i n .
x is a Nash equilibrium payo¤ in 1 (q) if and only if there exist (t) 2 (A), t 2 T , such that for every i = 1; ::

:; n, t i , r i 2 T i x i (t i ) = X t i 2T i q i (t i )u i (t i ; (t i ; t i )) (3) 
X t i 2T i q i (t i ) max fu i (t i ; (r i ; t i )); v i (t i )g
In the case of complete information, namely if the prior probability distribution q is degenerated, proposition 1 reduces to the standard Folk theorem: x = (x i ) 1 i n 2 R n is a Nash equilibrium payo¤ of the in…nitely repeated game if and only if x is feasible (i.e., achieved by means of a probability distribution 2 (A)) and individually rational (i.e., x i is larger than player i's minmax level).

The interpretation of Proposition 1, under incomplete information, is that all Nash equilibria of 1 (q) are payo¤ equivalent to completely revealing equilibria, in which at stage 1, every player i truthfully reveals his type t i at every stage k 2, given the reported types r = (r i ) 1 i n , every player i plays according to (r) 2 (A) provided that (r) has been followed at every previous stage 2; :::; k 1. Otherwise, if player i does not follow (r) at some stage k 2, players j 6 = i punish player i by using uniform independent punishment strategies i holding player i at v i (t i ) at every stage k + 1, k + 2, ... whatever his type t i and action are.

The nondeviation condition (3) expresses that, assuming that players j 6 = i follow the equilibrium strategies, player i of type t i can report a type r i possibly di¤erent from t i . At the end of stage 1, player i learns the true types t i of the other players and can then either follow (r i ; t i ) or not. In the former case, he fully mimics the equilibrium strategy of type r i . In the latter case, he is punished at the level v i (t i ). 7Condition (3) is thus both an incentive compatibility condition and an individual rationality condition. Even under our strong assumptions, it is not possible to separate these two aspects of player i's nondeviating condition. Obviously, for r i = t i , (3) is equivalent to For every i and t = (

t i ; t i ) 2 T : u i (t i ; (t)) v i (t i )
which implies that For every i and t i 2 T i :

x i (t i ) v i (t i ) (4) 
With some abuse of language, we will refer to the latter property as x is ex post individually rational and will denote as EXP IR i [ (q)] the set of all vector payo¤s which satisfy it for player i.

The previous equilibrium conditions are illustrated on examples 0, 1 and 2 below. Examples 0 and 1 belong to the class of public good games introduced in section 2.2. Example 2 is a variant of the battle of the sexes already proposed by [START_REF] Koren | Two-person repeated games where players know their own payo¤s[END_REF] and is actually simpler.

Proposition 1 is established in an appendix.

Example 0: Recalling section 2.2, let us consider the following symmetric two-person game P G(2; 1; q)

t 2 = ! t 2 = z c d c d t 1 = ! c 1; 1 1; 1 + ! 1; 1 1; 1 + z d 1 + !; 1 !; ! 1 + !; 1 !; z t 1 = z c 1; 1 1; 1 + ! 1; 1 1; 1 + z d 1 + z; 1 z; ! 1 + z; 1 z; z
Each player has two possible types:

T i = f!; zg, i = 1; 2.
We assume that 0 < ! < 1 and z > 2: ! represents a "normal" type, who values the public good more than his initial endowment, while z represents a "greedy" type. We also assume that the players hold the same beliefs: q i = (p; 1 p), i = 1; 2, with 0 < p < 1. We thus refer to the game as 1 (p). Let ! = 2 3 and z = 3. Consider the following distributions, which yield feasible, ex post individually rational payo¤s:

t 2 = 2=3 (prob: p 2 ) t 2 = 3 (prob: 1 p 2 ) c d c d t 1 = 2=3 (prob: p 1 ) c 0 1=2 0 7=10 d 1=2 0 3=10 0 t 1 = 3 (prob: 1 p 1 ) c 0 3=10 0 0 d 7=10 0 0 1 Conditions (3)
show that these distributions induce an equilibrium if and only if p 1 

Existence of Nash equilibrium

Let us denote as N [ 1 (q)] the set of all Nash equilibrium payo¤s of 1 (q). Thanks to proposition 1, the set N [ 1 (q)] has a tractable representation so that it is relatively easy to check whether it is empty or not. [START_REF] Koren | Two-person repeated games where players know their own payo¤s[END_REF] already proposes a two-player example in which there is no Nash equilibrium. The next example pertains to the class of public good games introduced in section 2.2.

Example 1: A public good game in which N [ 1 (q)] is empty Let us consider the game 1 (p) of example 0, with the beliefs q i = (p; 1 p), i = 1; 2, with 0 < p < 1 and let us set k = ! 1 ! . We will show that

If z > k + 4 and p > 2 k + 4 , N [ 1 (p)] = ; (5) 
In other words, if the "greedy"type z is su¢ ciently high, but has an arbitrarily small probability 1 p, the in…nitely repeated game has no equilibrium.

For instance, if ! = 1 3 and z > 4:5, the in…nitely repeated game has no equilibrium as soon as the probability p of the "greedy"type is smaller than

5 9 .
This …nding should be contrasted with the results obtained in standard reputation models, in which a very small probability of a "crazy" type is enough to generate interesting equilibrium behavior in the incomplete information game (see [START_REF] Kreps | Rational cooperation in the …nitely repeated prisoners dilemma[END_REF], [START_REF] Fudenberg | The Folk theorem in repeated games with discounting or with incomplete information[END_REF], etc.).

Here, if both types are "normal"(p = 1), the in…nitely repeated game has a plethora of equilibria, but as soon as there is an arbitrarily small doubt that the players could be (very) "greedy", the game has no equilibrium at all. 8Recalling again section 2.2, the individual levels in (p) are v i (!) = 1 and v i (z) = z, i = 1; 2. According to proposition 1, the equilibrium payo¤s of 1 (p) are characterized by four probability distributions (t) over fc; dg fc; dg, one for every pair of types t. If t 1 = t 2 = z, ex post individual rationality implies that (d; d) must have probability 1. In order to show that 1 (p) has no equilibrium, it is enough to show that 1 (p) has no symmetric equilibrium 9 . We thus focus on (t)'s of the form:

t 2 = ! t 2 = z c d c d t 1 = ! c c c d d d t 1 = z c c 0 0 d d 0 1
where all parameters are nonnegative and 2

+ c + d = 1, + + c + d = 1.
The ex post individual rationality conditions (4) can be written as

d k , d k and (1 1 z )(1 d ) (6) 
In the right hand sight of the equilibrium condition (3) for t 1 = ! and r 1 = z,

max f1 + ! (1 !) d ; 1g = 1
namely, d k because, from (6), d k and

1 d 1 z 1 .
We can thus write (3) for t 1 = ! and r 1 = z as

p(k d ) + (1 p)(k d ) p(k d ) (7) 
This condition is not compatible with (6) if p is close enough to 1. In order to get some intuition for this, let us try d = d = 0, i.e., an ex post e¢ cient equilibrium. ( 6) reduces to

1 1 z . (7) is p + (1 p) p . Since 1 2
and 1 , (7) implies that p 2(1 ) 2 z , which imposes a constraint on p if z > 2. In the appendix, we show that the same kind of argument can be used to show [START_REF] Blackwell | An analog of the minimax theorem for vector payo¤s[END_REF] for arbitrary d , d satisfying (6).

Remarks:

1. If p is small enough in example 1 (with respect to z, which is kept …xed, as the other parameters), equilibria of 1 (p) are easily constructed. For instance, if p 2 z , an ex post e¢ cient equilibrium as above is achievable (i.e., condition (3) for t 1 = z and r 1 = ! is no problem).

2. Proposition 1 tells us that, when an equilibrium exists in the in…nitely repeated public good game of example 1, the associated payo¤ can as well be achieved at a completely revealing equilibrium; in particular, the players cannot bene…t from behaving as if they were "greedy"when their type is "normal". Such a result does not hold in a …nitely repeated game. For instance, Fudenberg and Tirole (1991) (example 8.3, p. 333) consider a two stage version of the public good game in which the players' types belong to the unit interval. They show that, in any perfect Bayesian Nash equilibrium, the players contribute less in the …rst period than in the second one: "Each player gains by developing a reputation for not being willing to supply the public good".

3. If there is uncertainty on the type of only one of the players, an equilibrium always exists (see [START_REF] Shalev | Nonzero-sum two-person repeated games with incomplete information and known-own payo¤s[END_REF]).

4

Bayesian game with commitment

In this section, we provide an answer to the question raised in the introduction: can we interpret the characterization in proposition 1 in the same way as under complete information, namely, as a precise relationship between "repetition"and "cooperation"?

We …rst give a description of the set of feasible, incentive compatible and interim individually rational payo¤s in the (one-shot) Bayesian game (q). We denote this set as F [ (q)]. We use Myerson (1991, sections 6.4 and 6.6)'s de…nitions but obtain simpler expressions in our framework of independent private values. Proposition 2 states that F [ (q)] can be interpreted as the set of interim cooperative solutions of (q). Then we check whether N [ 1 (q)], the set of Nash equilibrium payo¤s of the in…nitely repeated game 1 (q), coincides with F [ (q)].

A payo¤ x = (x i )

1 i n = ((x i (t i )) t i 2T i ) 1 i n is feasible in (q)
if there exists a correlated strategy (t) 2 (A), t 2 T , achieving x, namely

x i (t i ) = X t i q i (t i )u i (t i ; (t i ; t i )) i = 1; :::; n; t i 2 T i (8) 
A feasible payo¤ x achieved through (as in ( 8)) is incentive compatible

if x i (t i ) X t i q i (t i )u i (t i ; (r i ; t i )) for every i; t i ; r i 2 T i (9) 
A payo¤ x is interim individually rational if, for every player i, there exists a correlated strategy i 2 (A i ) of players j 6 = i such that 10 x i (t i ) max

a i 2A i u i (t i ; a i ; i ) for every t i 2 T i (10) 
Let IN T IR i [ (q)] be the set of all vector payo¤s satisfying the previous property for player i. Observe that the previous de…nition describes a set of vector payo¤s which cannot be reduced to a "corner set"(of the form x i (t i ) w i (t i ), t i 2 T i , for some well-de…ned individually rational level w i (t i )). By contrast, ex post individually rational payo¤s are described by a "corner set", since (v i (t i )) t i 2T i is de…ned without ambiguity by (1). 10 Literally, Myerson (1991)'s interim individual rationality condition requires that there exists a type dependent correlated strategy of players j 6 = i, i (t i ) 2 (A i ), t i 2 T i , such that x i (t i ) max ai2Ai P t i q i (t i )u i (t i ; a i ; i (t i )) for every t i 2 T i . But, with independent private values, ( 10) is an equivalent formulation, since u i (t i ; ) is linear.

The set F [ (q)] is formally de…ned as the set of payo¤s satisfying (8), ( 9) and [START_REF] Cripps | Reputation in perturbed repeated games[END_REF]. F [ (q)] contains the set of Nash equilibrium payo¤s of (q) and is thus not empty.

Proposition 2 F [ (q)] is the set of all "interim cooperative solutions" of (q), i.e., the set of all payo¤s that can be achieved when the players can commit themselves at the interim stage of (q), in any voluntary contract game extending (q). This result extends Kalai et al. (2010)'s commitment Folk theorem and is established in [START_REF] Forges | A Folk theorem for Bayesian games with commitment[END_REF]. It holds without independent private values, even if the previous de…nitions ( 8), ( 9) and ( 10) take this assumption into account. Uniform punishment strategies are not used.

Proposition 2 can be decomposed into two parts. To see this, let us consider all meta-Bayesian games which extend (q) by allowing the players to voluntarily commit themselves by giving possibly conditional instructions at the interim stage. Proposition 2 …rst states that the union, over all these meta-Bayesian games, of the corresponding sets of all Nash equilibrium pay-o¤s, is included in F [ (q)]. Proposition 2 further says that the reverse inclusion also holds. To prove the latter property, Forges (2011) constructs a single voluntary contract game extending (q) in which all payo¤s of F [ (q)] can be achieved as Nash equilibrium payo¤s.

Peters and Szentes (2012) argue that the set of solutions that the players can achieve by signing a contract at the interim stage of a Bayesian game is in general smaller than F [ (q)]. They insist on the fact that natural contracts should involve two stages (loosely speaking, the players …rst publicly announce the commitments that they are ready to sign before signing them). However, under an assumption which is similar to our uniform punishment strategies, Peters and Szentes (2012) recover a result similar to proposition 2 (see their proposition 1).

In the next two statements, we make use of uniform punishment strategies, which were not assumed to exist earlier in this section.

Lemma 1 Let (q) be a Bayesian game with independent private values and let x be a feasible payo¤ in (q). If x is interim individually rational (namely, (10)), x is ex post individually rational (namely, (4)): IN T IR i [ (q)] EXP IR i [ (q)] for every player i. If there exist uniform punishment strategies, namely (2), then the reverse also holds:

IN T IR i [ (q)] = EXP IR i [ (q)]
for every player i.

The proof of lemma 1 is straightforward and therefore omitted. The intuition behind the …rst part is that players j 6 = i can impose a harder punishment to player i if they know player i's type t i (i.e., ex post). For the second part, a uniform punishment strategy of players j 6 = i against player i provides an appropriate correlated strategy i in [START_REF] Cripps | Reputation in perturbed repeated games[END_REF].

Proposition 3 Let (q) be a Bayesian game with independent private values in which uniform punishment strategies are available:

N [ 1 (q)] F [ (q)].
Proof: The proposition readily follows from the characterizations of N [ 1 (q)] (in proposition 1) and F [ (q)] (( 8), ( 9) and ( 10) above): the equality in ( 3) is ( 8), the inequality in (3) implies ( 9) and ( 4), which in turn implies (10) by lemma 1.

As illustrated on example 1, unlike F [ (q)], N [ 1 (q)] can be empty. Hence, N [ 1 (q)] can be strictly included in F [ (q)]. In other words, it may happen that repetition makes some form of cooperation possible, but does not exhaust the players' cooperation possibilities. Example 2 below, taken from [START_REF] Koren | Two-person repeated games where players know their own payo¤s[END_REF], further illustrates the possible strict inclusion 11 .

Example 2: A game in which N [ 1 (q)] is not empty and strictly included in F [ (q)]

We will study a variant of the well-known battle of the sexes. Each player has two possible types: T i = ft; bg, i = 1; 2, and two possible actions: A i = fc; dg, i = 1; 2. We denote as p i 2 [0; 1] the probability that player i's type is t (namely, q i = (p i ; 1 p i )). Payo¤s are described by the following matrices:

t 2 = t t 2 = b c d c d t 1 = t c 3; 1 0; 0 3; 1 0; 3 d 0; 0 1; 3 0; 1 1; 3 t 1 = b c 3; 1 3; 0 3; 1 3; 3 d 1; 0 1; 3 1; 1 1; 3
When t 1 = t, player 1 prefers c to d, but also prefers to make the same choice as the other player. When t 1 = b, player 1 just prefers c to d, independently of the choice of the other player. The preferences of player 2 are similar. In this game,

v i (t) = 3 4 , v i (b) = 3, i = 1; 2.
A uniform punishment strategy of player 1 (resp., 2) is to play c with probability 3 4 (resp., 1 4 ). Let us consider the (ex post e¢ cient) correlated strategy (t), t 2 T , de…ned by

t 2 = t t 2 = b c d c d t 1 = t c 1 2 0 0 0 d 0 1 2 0 1 t 1 = b c 1 0 0 1 d 0 0 0 0 (11) 
It is easily checked that (t) satis…es ( 9) and ( 10), namely, induces a payo¤ in F [ (q)], if and only if p i 1 2 , i = 1; 2. Similarly, in order to induce a payo¤ in N [ 1 (q)], (t) must satisfy (3); in particular, player 1 of type t 1 = t cannot gain by pretending to be of type r 1 = b, namely,

p 2 + 1 p 2 max 3; 3 4 + (1 p 2 ) max 0; 3 4 , p 2 1 5
The previous condition illustrates that, as expected, player 1 has more deviation possibilities at a (completely revealing) Nash equilibrium of 1 (q) than at an interim cooperative solution of (q). Imagine that player 1 is of type t but pretends to be of type b at the …rst stage of 1 (q). Then he learns player 2's type t 2 and faces (b; t 2 ). If t 2 = t, player 1 gets the best payo¤ 3 by playing according to (b; t). However, if t 2 = b, player 1 gets 0 by playing according to (b; b). In this case, he should not play according to (b; t) but rather play c with probability 3 4 at every stage in order to guarantee himself 3 4 . By checking the other equilibrium conditions in (3), we get that (t) induces a payo¤ in N [ 1 (q)] if and only if p i 1 5 , i = 1; 2. On the other hand, as already pointed out in [START_REF] Koren | Two-person repeated games where players know their own payo¤s[END_REF], the correlated strategy de…ned by

t 2 = t t 2 = b c d c d t 1 = t c 0 0 0 0 d 0 1 0 1 t 1 = b c 3 4 1 4 0 1 d 0 0 0 0 induces a payo¤ in N [ 1 (q)] if and only if p 2 1 6
. There are thus many probability distributions q 2 (T ) for which (t) de…ned by [START_REF] Cripps | Reputation with equal discounting in repeated games with strictly con ‡icting interests[END_REF] induces a payo¤ in F [ (q)], and at the same time, N [ 1 (q)] is not empty but does not contain the payo¤ de…ned by [START_REF] Cripps | Reputation with equal discounting in repeated games with strictly con ‡icting interests[END_REF].

5 Role of the assumptions

Independent private values

Independent private values are crucial in proposition 1. Without this assumption, the Nash equilibria of 1 (q) are no longer payo¤ equivalent to completely revealing equilibria, even if there are two players and only one of them has private information (see [START_REF] Hart | Nonzero-sum two-person repeated games with incomplete information[END_REF] and [START_REF] Aumann | Repeated Games of Incomplete Information[END_REF]). As already mentioned, independent private values are not necessary in proposition 2.

Uniform punishments

In the case of two players, if values are private and independent in (q), Koren (1992) proves that the Nash equilibria of 1 (q) are payo¤ equivalent to completely revealing equilibria without assuming uniform punishments (i.e., (2)). However, in this more general case, the equilibrium conditions can take a more complex form than (3). Examples 3 and 4 below illustrate how the absence of uniform punishments modi…es the results.

In example 3, the conditions (3) of proposition 1 are no longer su¢ cient for an equilibrium. Proposition 3 does not hold either: we construct an equilibrium payo¤ in 1 (q) which does not belong to F [ (q)], i.e., cannot be achieved through commitment in (q).

In example 4, an assumption weaker than uniform punishments holds, which guarantees that the Nash equilibrium payo¤s of 1 (q) can be characterized exactly as in proposition 1, by (3). However, proposition 3 still fails.

In both examples 3 and 4, there are two players and only player 1 has private information (jT 2 j = 1, A = A 1 A 2 ), so that the conditions in proposition 1 reduce to: there exists (t 1 ) 2 (A), t 1 2 T 1 , such that, for player 1,

x 1 (t 1 ) = u 1 (t 1 ; (t 1 )) u 1 (t 1 ; (r 1 )) 8t 1 ; r 1 2 T 1 i.e.
, incentive compatibility (12) v 1 (t 1 ) 8t 1 2 T 1 i.e., ex post individual rationality [START_REF] Forges | Repeated games of incomplete information : nonzero-sum[END_REF] and, for player 2,

x 2 = u 2 X t 1 2T 1 q 1 (t 1 ) (t 1 ) ! v 2 i.e., individual rationality (14) 
As shown by [START_REF] Hart | Nonzero-sum two-person repeated games with incomplete information[END_REF], in order to characterize the equilibrium payo¤s of 1 (q), ex post individual rationality (namely, (4) or (13) above) is not su¢ cient. A stronger condition, which makes full use of the fact that 1 (q) is an in…nitely repeated game, is needed. This condition is formally stated below, in the current framework of lack of information on one side. 12 Let val 1 [u] denote the value to player 1 of the one-shot game with payo¤ function u.

De…nition A vector payo¤ x 1 = (x 1 (t 1 )) t 1 2T 1 is individually rational for player 1 in the in…nitely repeated game 1 (q) if and only if

8p 1 2 (T 1 ), X t 1 p 1 (t 1 )x 1 (t 1 ) val 1 " X t 1 p 1 (t 1 )u 1 (t 1 ; ) # (15) 
Let IN T IR 1 [ 1 (q)] be the set of vector payo¤ that are individually rational for player 1 in the in…nitely repeated game 1 (q). The previous de-…nition is justi…ed by Blackwell (1956)'s approachability theorem: condition ( 15) is necessary and su¢ cient for player 2 to have a strategy in the in…nitely repeated game 1 (q) such that player 1's payo¤ cannot exceed x 1 (t 1 ) when he is of type t 1 .

Let us compare IN T IR 1 [ 1 (q)] with the two sets of individually rational payo¤s introduced for the one-shot game (q), namely, EXP IR 1 [ (q)] and IN T IR 1 [ (q)]. First of all, player 2 can use a punishment strategy of the one-shot game at every stage of the in…nitely repeated game: as a This function is convex so that a vector payo¤ (x 1 (h); x 1 (l)) is individually rational for player 1 in the sense of [START_REF] Fudenberg | The Folk theorem in repeated games with discounting or with incomplete information[END_REF] if and only if it is ex post individually rational (namely, (13): x 1 (h) 1 and x 1 (l) 1):

IN T IR 1 [ 1 (q)] = EXP IR 1 [ (q)].
In particular, in this example, the equilibrium conditions in 1 (q) are correctly described in proposition 1, namely by ( 12), ( 13) and [START_REF] Forges | A Folk theorem for Bayesian games with commitment[END_REF]. 13In spite of the previous property, proposition 3 fails. The probability distributions

(h) = 1 0 0 0 (l) = 0 0 0 1
lead to an equilibrium in 1 (q), with payo¤ ((1; 1); 2), but (1; 1) is not interim individually rational for player 1 in the sense of ( 10): let = ( ; 1 ); max a 1 u 1 (h; a 1 ; ) = 2 1 is incompatible with max a 1 u 1 (l; a 1 ; ) = + 1 1.

In both examples 3 and 4, interim individual rationality takes a di¤erent form in the one-shot game and in the in…nitely repeated game. In example 3, in order to defend himself, player 1 must play in a non-revealing way in the repeated game. In example 4, player 1 bene…ts from revealing his information to player 2.

The phenomena described in the previous examples were …rst identi…ed in the study of zero-sum in…nitely repeated games with incomplete information (see [START_REF] Aumann | Repeated Games of Incomplete Information[END_REF]).

Undiscounted payo¤s

Throughout this paper, as in [START_REF] Hart | Nonzero-sum two-person repeated games with incomplete information[END_REF] and [START_REF] Koren | Two-person repeated games where players know their own payo¤s[END_REF], we assumed that payo¤s in the in…nitely repeated games are evaluated as Banach limits of the expected average payo¤s, namely, without discounting. The main jus-ti…cation for proceeding in this way is well-known: we are looking for robust results, which do not depend on the precise discount factor of the players. Even more, we are interested in robust equilibrium strategies, which can be used for a reasonable range of discount factors. Hence, it is natural to start with the study of the equilibrium payo¤s of the undiscounted in…nitely repeated game, in order to "guess"how the robust equilibrium payo¤s look like. This is how game theorists derived the Folk theorem for in…nitely repeated games with complete information.

While the study of the undiscounted in…nitely repeated game seems a mandatory …rst step, a careful analysis of the consequences of this assumption is in order (see [START_REF] Bergin | A characterization of sequential equilibrium strategies in in…nitely repeated incomplete information games[END_REF] for an early reference). The phenomena described by proposition 1 (all equilibria are payo¤ equivalent to completely revealing ones) and example 1 (the slightest doubt on the players'types can lead to non existence of equilibrium) are not to be expected in discounted games, even with patient players.

As brie ‡y mentioned in the introduction, many papers devoted to reputation e¤ects deal with repeated games with discounting. In addition, a number of rather recent papers study discounted repeated games with spe-ci…c forms of incomplete information. The papers that look most relevant to these notes are [START_REF] Peski | Repeated games with incomplete information on one side[END_REF] and [START_REF] Peski | Repeated games with incomplete information and discounting[END_REF]. [START_REF] Peski | Repeated games with incomplete information on one side[END_REF] characterizes the Nash equilibrium payo¤s of two-person discounted repeated games with lack of information on one side and known own payo¤s when the informed player has two types (namely, the discounted version of [START_REF] Shalev | Nonzero-sum two-person repeated games with incomplete information and known-own payo¤s[END_REF] in the case of two types). Peski (2008)'s characterization results are much more complex than Shalev (1994)'s ones but show that equilibria keep an elegant structure. [START_REF] Peski | Repeated games with incomplete information and discounting[END_REF] extends these results to the class of discounted repeated games with known-own payo¤s which satisfy an "open thread assumption", namely, in which there exists an open set of belief-free equilibria in the sense of [START_REF] Horner | Belief-free equilibria in games with incomplete information[END_REF].

Wiseman (2012) establishes a partial Folk theorem in discounted repeated games where the players have the same initial information and get private and public signals along the play. While his model captures in particular "known own payo¤s", as in multisided reputation models (see his example 3), his assumption 1 ensures "gradual public learning" which has no counterpart in in…nitely repaeted games like the ones considered in these notes. As a consequence, Wiseman (2012)'s Folk theorem can be formulated in terms of feasible, ex post individually rational payo¤s, without any requirement of incentive compatibility. By contrast, incentive compatibility is crucial in these notes and in [START_REF] Peski | Repeated games with incomplete information on one side[END_REF]. [START_REF] Peski | Repeated games with incomplete information on one side[END_REF] concludes by saying that the problem of characterizing equilibrium payo¤s in discounted repeated games with multisided incomplete information is open. As mentioned above, Peski (2012) gives an answer in a class of such games. 

A strategy of player i in 1 (q) is a sequence of mappings i = ( k i ) k 1 , k i : T i A k 1 ! (A i ).
The n tuple of prior probability distributions q = (q i ) 1 i n and an n tuple of strategies = ( i ) 1 i n induce a probability distribution over T A N , where A N is the set of all in…nite sequence of moves. We denote as E q; the corresponding expectation. Given a = (a k ) k 1 2 A N , let us de…ne

U K i (t i ; a) = 1 K K X k=1
u i (t i ; a k ) for every i, t i and K = 1; 2; ::: As in [START_REF] Hart | Nonzero-sum two-person repeated games with incomplete information[END_REF] (see also [START_REF] Forges | Repeated games of incomplete information : nonzero-sum[END_REF], [START_REF] Koren | Two-person repeated games where players know their own payo¤s[END_REF], Shalev (1994)), we de…ne the interim payo¤s associated with an n tuple of strategies as

U i (t i ; ) =L h E q; (U K i (t i ; e a)) j t i i
where L is a Banach limit and e a denotes the sequence of moves as a random variable.

Su¢ cient conditions for an equilibrium

Let us assume that the conditions (3) hold. Then we can construct an n tuple of strategies = ( i ) 1 i n in 1 (q) which achieve the interim payo¤s x i (t i ) (namely, such that x i (t i ) = U i (t i ; ) for every i, t i ) and which de…ne a Nash equilibrium of 1 (q). For every player i, i is described as follows:

at stage k = 1: choose a i so as to reveal type t i (which is possible since jA i j jT i j)

survey the literature. The current list is still likely incomplete. My initial goal was to convey the main message of Koren (1992) in a simple model, which could be useful in applications but did not require the use of Blackwell's strategies.

at every stage k 2: given the n tuple of reported types r, play according to (r) if (r) was chosen at every previous stage; otherwise, play a punishment strategy in order to keep the …rst player j who did not follow (r) below his ex post individually rational level v j (t j ).

Necessary conditions for an equilibrium

Let us start with an arbitrary Nash equilibrium = ( i ) 1 i n in 1 (q). Let i (t i ) be the associated strategy of player i of type t i , namely, i (t

i ) = ( k i (t i )) k 1 , with k i (t i ) : A k 1 ! (A i ). Let x i (t i ) = U i (t i ;
) be the associated interim equilibrium payo¤ of player i of type t i . Let us show that the conditions (3) hold, namely, that the same payo¤s can be achieved by a completely revealing equilibrium.

In order to get some intuition, let us assume that, at equilibrium, there is a …nite, possibly very long, phase of information transmission (say, until stage k 0 ) and that afterwards (thus, at stages k 0 + 1, k 0 + 2,...), the players play independently of their types. Since is an equilibrium, player i of type t i cannot bene…t from playing according to i (r i ), with r i possibly di¤erent from t i , until stage k 0 and then, from stage k 0 + 1 on, by either continuing to play i (r i ) or just guaranteing himself v i (t i ) (i.e., by playing optimally in "his true one-shot game", with payo¤s u i (t i ; ), at every stage k 0 + 1, k 0 + 2,...). 15More precisely, the equilibrium strategies i (t i ) generate probability distributions ( j t 1 ; :::; t n ) over the limit frequencies of moves, i.e., over (A) (see [START_REF] Hart | Nonzero-sum two-person repeated games with incomplete information[END_REF] or [START_REF] Koren | Two-person repeated games where players know their own payo¤s[END_REF] for details). Together with the prior q, these probability distributions generate a probability distribution P q; over T (A) such that

x i (t i ) = U i (t i ; ) = E q; u i (t i ; e ) j t i for every i; t i [START_REF] Fudenberg | Game theory[END_REF] where E q; is the expectation with respect to P q; and e stands for the frequency of move as a random variable. 16By considering the previous speci…c deviations of player i of type t i (namely, mimic type r i and/or play optimally in the one-shot game), we obtain that x i (t i ) E q; max n u i (t i ; e ); v i (t i ) o j r i for every i; t i ; r i

We can also rely on a variant of the revelation principle to see that ( 16) and ( 17) must be satis…ed as soon as is an equilibrium. Let us imagine that a fully reliable mediator asks the players to report their types and then given the n tuple of reported types r 2 T , chooses a frequency of moves 2 (A) according to ( j r) and recommends to all players 17 . In other words, when the players report r = (r i ) 1 i n , the mediator selects exactly as the players themselves do at the equilibrium . [START_REF] Fudenberg | Game theory[END_REF] says that by telling the truth and following the recommendation of the mediator, the players get the same interim payo¤ than by playing . [START_REF] Hart | Nonzero-sum two-person repeated games with incomplete information[END_REF] says that if players j 6 = i tell the truth to the mediator, follow the recommendation as long as every player follows and punish any deviator at his ex post minmax level, then player i of type t i cannot bene…t from reporting type r i to the mediator and/or not following .

Conditions ( 16) and ( 17) di¤er from (3) in two respects. ( 16) and ( 17) involve (type dependent) probability distributions over (A), while (3) is formulated in terms of deterministic distributions (t), t 2 T . Moreover, in [START_REF] Hart | Nonzero-sum two-person repeated games with incomplete information[END_REF], the probability distribution is not necessarily completely revealing 18 . By construction, and recalling that types are independent of each other, for any function f over (A), the probability P q; satis…es E q;

f ( e ) j t i = X t i q i (t i )E f ( e ) j t i ; t i for every i, t i Hence, for every i, t i , ( 16) can be rewritten as

x i (t i ) = X t i q i (t i )E u i (t i ; e ) j t i ; t i

Recalling that u i (t i ; ) is linear, we get

x i (t i ) = X t i q i (t i )u i t i ; E ( e j t i ; t i ) which is the …rst part of (3) if we set (t) = E ( e j t).

By proceeding similarly and using in addition that "max" is convex, for every i; t i ; r i , [START_REF] Hart | Nonzero-sum two-person repeated games with incomplete information[END_REF] The last expression is the inequality in (3).

Computation of example 1

Recall from section 3.2. that the ex post individual rationality conditions are [START_REF] Chan | On the non-existence of reputation e¤ects in twoperson in…nitely repaeted games[END_REF] 
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  can be rewritten asx i (t i ) X (t i ; e ) j r i ; t i ; v i (t i ) i (t i ) max n u i t i ; E ( e j r i ; t i ) ; v i (t i )

	t i X	q i (t i )E q i (t i ) max	max n E	n u i (t i ; e ); v i (t i ) o u i o j r i ; t i
	t i X			o
	t i X	q		
	t i			

q i (t i ) max fu i (t i ; (r i ; t i )) ; v i (t i )g

  , namely, , where the second inequality comes from the fact that the expression is decreasing in d if < 1 k+4 .

			d	k , d k and		(1	1 z	)(1	d ).
	Since	1	d , we can set = (1	)(1	d ) with	1 z .
	Furthermore, so that d k 1+k .	(1	d )	= (1	d ). Hence, d k	k (1	d ),
	A further equilibrium condition is (7), namely,
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d ) + (1 p)(k d ) p(k d ).

See Shalev (1994) for a similar characterization of Nash equilibrium payo¤s in Hart (1985)'s model with "known own payo¤s" and Forges (1992) for a survey of results on non-zero sum in…nitely repeated games with incomplete information.

We only recall the parameter q in the notation (q) for the Bayesian game, because it will often happen, e.g., in the examples, that the beliefs q vary while all other parameters are …xed.

More correctly, "behavior strategy".

If we allow for correlated mixed strategies, the value exists and can be expressed as a minmax or as a maxmin. We will nevertheless consider independent mixed strategies below.

Independent punishment strategies are important for proposition 1.

As a slight weakening, v i (t i ) could just be de…ned as

[START_REF] Koren | Two-person repeated games where players know their own payo¤s[END_REF] establishes that all Nash equilibrium payo¤s of 1 (q) are completely revealing in the case of only two players, but without assuming uniform punishments. The latter assumption greatly facilitates the formulation of the equilibrium conditions as (3) and the extension to n players.

[START_REF] Koren | Two-person repeated games where players know their own payo¤s[END_REF] shows that Nash equilibrium payo¤s may fail to exist in two-person repeated games in which both players are privately informed.[START_REF] Cripps | Reputation and commitment in twoperson repeated games without discounting[END_REF] discuss the consequences of this phenomenon for reputation e¤ects.

If 1 (p) has an equilibrium, there exist probability distributions (t), t 2 T , over fc; dg fc; dg satisfying (3). If (t), t 2 T , satis…es (3), the probability distributions 0 (t), t 2 T , in which player 1 and player 2 are permuted, also satisfy (3). The same holds for the symmetric distributions[START_REF] Atakan | Reputation in long-run relationships[END_REF] 2 ( (t) + 0 (t)), t 2 T , thanks to the linearity of u and the convexity of "max".

For appropriate values of q, it also happens in the public good games of example 1 that N [ 1 (q)] is not empty and is strictly included in F [ (q)]. However, a full characterization of N [ 1 (q)] seems much harder in example 1 than in Koren (1992)'s example.

The same condition holds as well in two-person games with independent private values (see[START_REF] Koren | Two-person repeated games where players know their own payo¤s[END_REF]).

The simpli…cation of the equilibrium conditions in the case of convex value functions (which give rise to a linear concavi…cation) is acknowledged in[START_REF] Koren | Two-person repeated games where players know their own payo¤s[END_REF], remark 4. A similar condition is considered in[START_REF] Forges | Communication equilibria in repeated games with incomplete information[END_REF].

The …rst versions of these notes were deliberately written without any attempt to

Note that player i may reveal further information on his type by playing so as to guarantee himself v i (t i ). This typically happens out of equilibrium.

If information transmission ends up after …nitely many stages k 0 , e can be interpreted as the frequency of moves from stage k 0 + 1 on.

As in the standard proof of the Folk theorem under complete information, we interpret a distribution of moves as a deterministic sequence of moves (in A) which achieves the frequency of . This interpretation is straighforward if the components of are rational (in Q).

The above reliable mediator selects as a random function of the players' reported types but does not reveal these reported types.

consequence of [START_REF] Blackwell | An analog of the minimax theorem for vector payo¤s[END_REF]'s characterization, [START_REF] Cripps | Reputation in perturbed repeated games[END_REF] implies [START_REF] Fudenberg | The Folk theorem in repeated games with discounting or with incomplete information[END_REF]. Furthermore, [START_REF] Fudenberg | The Folk theorem in repeated games with discounting or with incomplete information[END_REF] holds in particular at p 1 (t 1 ) = 1 for every t 1 , so that it implies ex post individual rationality (i.e., [START_REF] Forges | Repeated games of incomplete information : nonzero-sum[END_REF]). To sum up,

These inclusions hold in two-person games with independent private values, even if player 2 also has private information (see [START_REF] Koren | Two-person repeated games where players know their own payo¤s[END_REF]). From Lemma 1, under the assumption of uniform punishments, the three sets coincide. In examples 3 and 4 below, this assumption does not hold. In example 3, the two inclusions are strict. In example 4, the …rst inclusion is strict but

Example 3

Let n = 2, T 1 = fh; lg, jT 2 j = 1: only player 1 has private information. Here, the prior probability distribution is fully described by the probability that player 1's type is h, which we still denote as q 2 [0; 1]. Let jA 1 j = jA 2 j = 2 and the utility functions be described by

The assumption of uniform punishments is clearly not satis…ed: player 2 must play right in order to hold player 1 of type h at his value level v 1 (h) = 0 and must play left to hold him at v 1 (l) = 0. Consider the probability distribution

Let us check that it de…nes an equilibrium of 1 (q), for every p 2 (0; 1), namely that the associated payo¤s, x 1 (h) = x 1 (l) = 1 4 , x 2 = 1, verify the above conditions (including (15)). Player 2's payo¤ x 2 = 1 is individually rational since the value of player 2's game is v 2 = 0.

is clearly incentive compatible since it is nonrevealing. According to (15), a vector payo¤ (x 1 (h); x 1 (l)) is individually rational for player 1 in 1 (q) if and only if

) is indeed individually rational for player 1 in 1 (p), for every p 2 (0; 1). Hence (( 14 ; 1 4 ); 1) 2 N [ 1 (q)] for every q 2 (0; 1). However, (( 14

) is not interim individually rational in the sense of ( 10): let = ( ; 1 ); max a 1 u 1 (h;

Consider now the probability distribution

satis…es the equilibrium conditions of proposition 1 (namely ( 12), ( 13) and ( 14) above) but the vector payo¤ of player 1 is (0; 0) and is not individually rational for player 1 in 1 (q), namely does not satisfy [START_REF] Fudenberg | The Folk theorem in repeated games with discounting or with incomplete information[END_REF]. Hence does not de…ne an equilibrium of 1 (q).

Example 3 illustrates that player 1 can bene…t from not revealing his information to player 2, if player 2 intends to punish him. Of course, when uniform punishments are available, the revelation of information does not matter.

Example 4

The framework is the same as in example 3 but the utility functions are described by