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Abstract 
 
Network connectivity fingerprints are among today’s best choices to obtain a faithful 
sampling of an individual’s brain and cognition. Widely available MRI scanners can 
provide rich information tapping into network recruitment and reconfiguration that 
now scales to hundreds and thousands of humans. Here we contemplate 
advantages of analyzing such connectome profiles using Bayesian strategies. These 
analysis techniques afford full probability estimates of the studied network coupling 
phenomena; provide analytical machinery to separate epistemological uncertainty 
and biological variability in a coherent manner; usher towards avenues to go beyond 
binary statements on existence vs. non-existence of an effect; and afford credibility 
estimates around all model parameters at play, which thus enable single-subject 
subjects predictions with rigorous uncertainty intervals. We illustrate the brittle 
boundary between healthy and diseased brain circuits by autism spectrum disorder 
as a recurring theme where, we argue, network-based approaches in neuroscience 
will require careful probabilistic answers. 
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Introduction 
  
In network-centered research, as well as many other fields of neuroscience, drawing 

statistical conclusions from brain data is essential to understand the measurements 

of the studied phenomenon despite the presence of noise. Typical examples include 

inferring whether a given functional brain connection is strengthened or weakened by 

administering a certain environmental stimulus or predicting a clinical diagnosis of a 

given individual on the basis of neuroimaging data. In this article, we argue that 

adopting a Bayesian perspective on network-based explanation and modelling offers 

several benefits, which arise from the ability to coherently handle uncertainty in 

developing model predictions about phenomena observed in network circuits.  

 

Bayesian analysis and conceptualization has a long history, with origins in the 18th 

century (Bayes, 1763). In essence, the Bayesian framework treats all parameters in 

a given model as random variables and quantifies their uncertainty using Bayes rule. 

For a model   with parameters   this principle indicates that the prior belief in the 

probability of the parameters        should be updated in light of observed data,  , 

to derive the posterior distribution over the entire set of model parameters, 

        . 

 

         
              

      
 

 

The term          denotes the likelihood and specifies a generative model that 

describes how the data may have come about. The denominator is referred to as the 

marginal likelihood and is obtained by integrating out the parameters        

                 . Posterior computation is typically intractable for all but the 
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simplest models. This is why posterior parameter estimation often invites the use of 

numerical approximations or sampling methods (Gelman et al., 2014; MacKay, 

2003). Ready computability is probably the major hurdle for more widespread 

adoption of the Bayesian framework in network-based approaches. 

 

It is important to recognise that the Bayesian philosophy of data analysis operates 

with a deeper and more universal concept of probability than is assumed by most of 

the quantitative frameworks commonly used in many areas of brain network 

analysis. In particular, under the frequentist paradigm (Cox, 2006), probability 

reflects long run frequencies of repeatable events (e.g. ‘the probability of rolling a 6 

on this dice is 1/6’). Under the Bayesian paradigm, probabilities reflect degrees of 

belief in a given proposition (e.g. ‘there is a low probability that the amygdala will 

increase functional connectivity 100 times more (or less) in autism vs. health’), which 

may not be repeatable. In a network modelling context, investigators routinely resort 

to frequentist notions, especially for hypothesis testing against a null distribution, for 

example to define the probability that a given brain region shows more neural 

coupling strengths than would be expected under the null hypothesis of baseline 

activity.  

 

According to the frequentist philosophy, the data-generating mechanism underlying 

observed network dynamics is fixed and only the observed measurements from 

biological networks have a probabilistic component. Inference about the model is 

therefore indirect, quantifying the agreement between the observed biological data 

and the data generated by a putative model (for example, the null hypothesis). In the 

Bayesian philosophy, instead, inference quantifies the uncertainty about the data-

generating mechanism by the prior distribution and updates it with the data observed 

from biological networks to obtain the posterior distribution (Figure 1). Inference 
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about the model is therefore obtained directly as a probability statement provided by 

the derived posterior parameter distributions. 

 

Over the past decade, the alternative to sampling-based approaches, namely, 

variational Bayes approaches, dominates in neuroimaging analyses of (effective) 

connectivity. One example of this approach  dynamic causal modelling (DCM) and is 

a prominent Bayesian method for  characterizing imaging time series (Friston et al., 

2003; Friston et al., 2014). Crucially, variational approaches avoid the computational 

cost of sampling by assuming a particular form for the posterior density (Beal, 2003; 

Fox and Roberts, 2012; Friston et al., 2007; Zhang et al., 2018). This leads to 

analytic update equations that allow people to perform efficient and quick Bayesian 

inference on the parameters of their models. Furthermore, variational Bayes 

considerably finesses the problems of Bayesian model comparison, selection and 

reduction, to which we will return below. 

 

Direct quantification of uncertainty is the central motif of the Bayesian framework 

(Gelman et al., 2013). Bayesian modelling aims to coherently incorporate uncertainty 

throughout the analysis such that uncertainty in the parameter estimation is carefully 

propagated through the generative model to form predictions about the biological 

system under study. Mathematical proofs show that probability theory is a unique 

way that this can be achieved; on the basis of a simple and common-sense set of 

axioms (Cox, 1946; Jaynes, 2003). In short, any system of reasoning that coherently 

manages uncertainty for complex biological systems must be consistent with the 

rules of probability. As such, when carrying out Bayesian analysis of biological 

networks, the analyst naturally goes beyond point estimates of parameters, such as 

a value indicating the network connectivity strength between the amygdala and the 

prefrontal cortex. Rather than a single number (e.g. one Pearson correlation value of 

rho=+0.27), full probability distributions are placed over all quantities in network 

modelling which are updated in the light of the brain data at hand. Based on the build 

Bayesian model, new predictions can be formed for incoming data points by 

averaging (i.e. integrating over) the joint posterior distribution over all model 

variables on the table.  
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A defining characteristic of the Bayesian philosophy is that this modelling regime 

requires the specification of a prior distribution, reflecting the beliefs about the model 

parameters before observing any data on brain networks. Thus, each model 

parameter enters with a fully specified probability distribution, whether or not 

biological observations have already been brought into play or not. If prior 

information is available (e.g. the topology of structural connectivity constraining 

functional connections, which functional connections describe intra-network versus 

between-network connections or whether connections between subcortical areas 

may be harder to measure than those between cortical areas), this can be 

incorporated in the model. This helps guide the parameter updates to biologically 

plausible ranges in the face of new observations from brain networks, while still 

permitting solutions that exceed the pre-set ranges to the extent supported by the 

data. Even in the absence of definite strong, biologically grounded a-priori 

information, generic priors can be employed to exert a regularizing or smoothing 

effect on the parameter estimation (e.g. to prevent overfitting connectomic profiles of 

a subject sample that may not extrapolate well to the broader population). However, 

the specification of the priors over model parameters is often a point of criticism for 

Bayesian methods. This is because it can often be difficult to specify informative 

priors if the number of variables are large or the dependencies between them are 

complex such as in many biological systems (Woolrich et al., 2009). Moreover, it is 

often not straightforward to specify priors that convey a lack of prior knowledge (Cox, 

2006; Jeffreys, 1946). Nevertheless, it is important to recognise that any network 

modelling framework is predicated on certain assumptions. The fact that the 

Bayesian approach forces these to be made explicit by the investigator can be 

viewed as a strength. 
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Notions of probability: Methodological uncertainty and biological variability 

 

The type of probability that is actually being modelled is an important epistemological 

distinction that is often under-appreciated across biological sciences and in network-

based research on the brain in particular. Under the Bayesian conceptualization, 

probabilities can service multiple different purposes in network modelling (Cox, 

2006): probability may be treated in a ‘phenomenological’ manner to quantify natural 

biological variation in the brain data (e.g. how different are amygdala-prefrontal 

connections across subjects in the population). However, probability can also be 

framed in an ‘epistemological’ manner to quantify modelling uncertainty in estimating 

parameter values (e.g. how unsure are we about different amygdala-prefrontal 

connections due to finite sampling from biological networks). 

 

This consideration reflects the distinction in statistical machine learning (Gal, 2016; 

Kendall and Gal, 2017) between ‘aleatoric’ uncertainty which reflects inherent 

variation in the measured phenomenon in biology that cannot be reduced with 

acquiring more observations of the biological system and ‘epistemic’ uncertainty 

which reflects uncertainty in our knowledge of model parameters and data densities 

can be reduced by adding more observations. Unfortunately, this nomenclature 

confounds the notions of variability and uncertainty described above. To simplify the 

discussion, we henceforth distinguish between (biological) variability and 

(methodological) uncertainty. For completeness, we note that in some cases it may 
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be desirable to further decompose epistemic uncertainty (e.g. due to scanner noise 

or interpolation error). 

 

Importantly, most dominant frequentist approaches currently used for brain network 

modelling conflate variability and uncertainty to a certain degree. Frequentist 

approaches – at best – provide post-hoc estimates of model uncertainty using 

supplementary techniques such as bootstrapping (Efron, 1979). For most network-

focused applications, accurately quantifying variability is of primary explanatory 

interest, while minimizing or properly accounting for uncertainty. Indeed, in the 

physical and life sciences, uncertainty quantification is now regarded as one of the 

most important estimation challenges (e.g. Lima et al., 2016; Mann et al., 2017; 

Matta and Massa, 2017). This is especially the case in weather prediction and 

climate change (Nikam and Meshram, 2013). It is also an important aspect of 

Bayesian model comparison and the way research hypotheses are tested within a 

Bayesian framework. 

 

To provide a concrete example from imaging neuroscience, normative modelling is a 

recently introduced technique that aims to map centiles of variation, such as the 

functional connectivity strength between amygdala and prefrontal cortex, across a 

reference cohort in an analogous manner to the use of growth charts in pediatric 

medicine (Marquand et al., 2019; Marquand et al., 2016a). For example, by plotting 

biological parameters as a function of age (or other clinically relevant variables), 

normative modelling enables statistical conclusions as to where the network coupling 

profile of each individual participant falls within the population range. This modelling 

tactic can therefore be used to chart variability in biological networks relevant to 
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many disorders including autism and detect the biological signatures of brain 

disorders in an anomaly detection setting (Zabihi et al., 2018). 

 

In such applications, the primary interest is in modelling inter-individual variation 

across the cohort whilst accounting for modelling uncertainty such as noise intrinsic 

to the fMRI signals from brain networks. For such neuroscience applications, the 

ability to jointly model different sources of variation and appreciate uncertainty in the 

same modelling instance is an important advantage of the Bayesian culture. For 

example, using Bayesian methods the investigator can use separate variance 

components to model variation in age-related connection strength across a 

population cohort and the uncertainty in that estimation, due for example to data 

sampling density (e.g. fewer female subjects, or less high-functioning patients). In 

contrast, classical methods may also be used for normative modelling. Confidence 

intervals for the centiles of variation could be derived using bootstrapping (Huizinga 

et al., 2018). However, bootstrapped frequentist models cannot easily be used to 

draw probabilistic conclusions on new, unseen connectomic data. In Bayesian 

analysis instead the directly estimated posterior distributions qualifying each model 

parameter can be readily used to form fully probabilistic predictions, such as on an 

individual’s diagnosis for autism on the basis of connectome fingerprints. 

 

The value of Bayesian analysis for the goal of delineating quantities of variability and 

uncertainty in connectivity analysis has been advertised through a body of literature 

(e.g. Bowman et al., 2008; Friston et al., 2008; Friston et al., 2002a; Friston and 

Penny, 2003; Friston et al., 2002b; Penny et al., 2005; Woolrich, 2012; Woolrich et 

al., 2004; Woolrich et al., 2009). More specifically, in the context of brain networks, 
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Bayesian methods have been applied for improving the estimation of whole-brain 

connectivity profiles (Colclough et al., 2018; Hinne et al., 2014) in finding 

parcellations of different brain networks (Janssen et al., 2015), for causal inference 

in fMRI (Mumford and Ramsey, 2014) and for multi-modal data fusion (Groves et al., 

2011). These existing neuroimaging applications have largely focused on datasets of 

modest size, for which Bayesian methods are well-suited due to the regularizing 

effect exerted by the imposed priors and the guidance of parameter updates by 

existing neuroscience knowledge. As such, generic priors can be used to de-

prioritize exceedingly large model parameters to discourage unrealistic model 

parameter estimates. Such smooth bounding of suboptimal parameter candidates 

during model estimation helps guard against overfitting to seemingly coherent 

patterns in the connectivity fingerprints of the subjects. In addition to previous 

applications, we argue here that Bayesian methods also provide an excellent tool for 

large, population-based cohorts, which are gaining center stage in clinical 

neuroimaging (Di Martino et al., 2014; Miller et al., 2016b; Smith et al., 2015a; Van 

Essen et al., 2013; Volkow et al., 2017). 

 

There are several reasons for the suitability of the Bayesian framework in the ‘big 

data’ era (cf. Bzdok et al., 2019; Bzdok and Yeo, 2017): the ability to separately 

quantify variability and generate explainable insight in the natural phenomenon 

under study and uncertainty in the model under use is likely to be instrumental to 

understanding inter-individual variations across large cohorts (cf. above). Its 

importance is increasingly recognised in IQ prediction based on connectivity 

fingerprints and other successful examples (Finn et al., 2015; Foulkes and 

Blakemore, 2018; Marquand et al., 2019; Seghier and Price, 2018). Bayesian 
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methods are also appealing because they provide estimates of the plausible range of 

a parameter value given the brain data. In contrast, in large samples classical null-

hypothesis testing methods can easily reject the null hypothesis for nearly all values 

(e.g. all network nodes in a classical frequentist connection-wise analysis), even 

though the underlying effects are of negligible magnitude (see Friston and Penny, 

2003). It should be obvious that quantifying methodological uncertainty is critical for 

optimal decision-making in medicine (Bishop, 2006). For example, for predicting an 

autism diagnosis on the basis of MRI scans, where uncertainty arises at multiple 

levels: not only in the diagnosis itself (i.e. at the level of clinical presentation), but 

also at the level of the underlying biology (e.g. the connectivity strength in a network 

modelling context). 

 

In this paper, we will provide a conceptual overview of the aim and utility of the 

Bayesian modelling framework in clinical neuroscience, focusing on the use of such 

methods for generating explainable insights on connectomics. Functional 

connectivity fingerprints are particularly valuable for capturing salient characteristics 

of momentary states of conscious awareness and for predicting individual 

differences in cognition (Finn et al., 2015; Rosenberg et al., 2016; Smith et al., 

2015a). These analytical techniques are widely applicable to predicting 

symptomatology across many clinical populations (Fornito et al., 2015; Xia et al., 

2018).  
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Hierarchical Bayesian modelling: Appreciating covariates of population 

stratification  

 

The boundary between signal and noise is often hard to identify; let alone to know 

prior to data analysis. It is common practice in many empirical sciences, including 

network analysis in imaging neuroscience (e.g. Miller et al., 2016a; Smith et al., 

2015b), to adjust for nuisance variance in the data in two separate steps. In a first 

modelling step, variation that can be explained by nuisance covariates is removed, 

typically using linear-regression-based deconfounding. In a subsequent modelling 

step, the remaining variation in the data is then fed into the actual statistical model of 

interest used to draw neuroscientific conclusions on brain network phenomena. As 

such, the final explanation is typically grounded in model parameter estimates from a 

version of the original data, in which any linear association with the considered 

nuisance covariates, such as age- and sex-related differences between individuals, 

has already been comprehensively removed beforehand. In this approach to network 

modelling, the implicit but critical assumption is that any target effects of interest in 

the brain data, such as for the goal of classifying neurotypicals from individuals with 

a diagnosis of autism based on connectomic fingerprints, is treated largely 

separately of what is measured by the nuisance covariates. 

 

In many brain disorders, including autism, the distinction between signal and noise 

may be more ambiguous than established analysis workflows belie. Age, sex, and 

motion are routinely chosen as nuisance covariates. However, the majority of autism 

samples include 3-5 times more males who carry a diagnosis of autism than females 

(Kanner, 1943; Lai et al., 2017b; Scott et al., 2002), reflecting differences in 
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prevalence in the wider population. While several reasons can be brought forward 

(Floris et al., 2018; Goldman, 2013; Lai et al., 2015; Schaafsma and Pfaff, 2014), it 

has been speculated that the discrepant prevalence of autism may point to a more 

profound distinction in the etiology of the disease, potentially linked to its triggering 

life events, underlying pathophysiological mechanisms, and ensuing coping 

strategies. Preceding removal of sex-related signal in the data can also remove 

information of and preclude insightful explanations about sex-specific disease 

pathways in autism or lead to spurious findings or incorrect conclusion (Miller and 

Chapman, 2001; Miller et al., 2016a). Let’s consider a hypothetical scenario where 

amygdala-prefrontal connectivity is pathologically increased in male patients, but 

pathologically decreased in female patients. Here, a preceding deconfounding step 

for sex would largely remove this sex-dependent aspect, which, however, truly is a 

characteristic of disease biology, from subsequent statistical analysis and scientific 

conclusion. 

 

In a similar spirit, the age trajectories of male and female individuals with autism, 

including the manifestations in underlying network biology, may be different in 

multiple ways. For instance, a commonly described clinical feature of autism is that 

females are more often diagnosed later in life (Schaafsma and Pfaff, 2014). Better 

coping strategies and more successful camouflaging behavior in women with autism 

is a common explanation for this age-related divergence (Lai et al., 2017a). 

Consequently, removing age-related variance in brain network measurements as a 

“data preprocessing” routine, expected by peer scientists and paper reviewers in the 

community, may systematically withhold insights that can teach us something about 

the age-dependent development of autism in different strata of the population. We 
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therefore argue that it is often more pertinent to model shared variance explicitly, 

such as in jointly modelling age-dependent connectivity variation and autism-

dependent variation in the functional connectome, for which the Bayesian framework 

is well suited. For example, Bayesian analysis could answer a question such as 

“How certain are we that amygdala-prefrontal connectivity strength is similar or 

dissimilar in certain subgroups, such as when stratifying by sex or lifespan?”. 

 

Rather than resorting to a deterministic decision in a black-or-white fashion, 

Bayesian hierarchical modelling (BHM) is a natural opportunity to quantify the 

separate contributions by answering which sex-, age- and motion-related 

components in network connectivity couplings are related to autism-related model 

parameters with which magnitude and how certain the investigator can be about it. A 

set of sources of variation in the brain data can be directly integrated in a single 

model estimation, instead of carrying out initial confound and later effect analyses 

(cf. above). Said in yet another way, BHM allows for explicit modelling of the group 

differences in functional brain connections in disease vs. control groups as linked to 

the question of how much any group difference are influenced by age, sex, and 

motion variation in the functional connectivity data by hierarchically accounting for 

dependencies between them.  

 

Removing age, sex and motion related information from the data in an isolated 

modelling step hides important information that can be instrumental in guiding the 

parameter estimation of the model actually used to gain biological insight. While this 

goal can also be accommodated in a non-Bayesian setting (e.g. using linear mixed 

effects models), the Bayesian formulation is appealing because it coherently 
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propagates uncertainty through different levels of the model and can therefore more 

readily disentangle different sources of variability and uncertainty. 

 

One prevalent form of Bayesian hierarchical modelling is known as parametric 

empirical Bayes (PEB) (Friston et al., 2016; Kass and Steffey, 1989). This now 

underwrites most of the between subject analyses using dynamic causal modelling. 

In brief, parametric empirical Bayes rests on a hierarchical Bayesian model in which 

random effects at the within and between subject level can be accommodated. 

Usually, these hierarchical models are based on a general linear models at higher 

levels; hence parametric. Below, we will consider nonparametric empirical Bayesian 

models. 

 

Motion during brain scanning is one of the measurements that is widely used to 

remove variation from connectivity data; before starting the actual functional 

connectivity analysis. A few years ago, neuroimaging investigators have reported a 

seemingly distinctive pattern of maturing functional network fluctuations with 

weakening short-range and growing long-range connections that slowly change 

during child development (Dinstein et al., 2011; Dosenbach et al., 2010). 

Investigators speculated these findings to mean that normal children start life with 

prominent short-range connectivity, which then weakens over the life span in healthy 

controls; vice versa for long-range connectivity (Belmonte et al., 2004). Individuals 

carrying a diagnosis of autism were then found to show more short-range and less 

long-range connectivity links (Geschwind and Levitt, 2007; Keary et al., 2009), 

especially in children. Unfortunately, it later became apparent that excessive head 

movements during brain scan acquisition reliably entailed artefacts with these same 



 15 

connectivity patterns in functional brain connectivity, previously thought to reflect 

impaired brain maturation (Power et al., 2012; Van Dijk et al., 2012), which entailed 

several retractions of high-profile papers 

(https://www.spectrumnews.org/news/movement-during-brain-scans-may-lead-to-

spurious-patterns/). 

 

On the other hand, at the behavioral level, it is well established that people with a 

diagnosis of autism exhibit greater degrees of movement than healthy controls 

(Nordahl et al., 2008; Yendiki et al., 2014). As such, unusually high body movement 

can be argued to be a hallmark feature of autism, but is now recognized to also be a 

reason for spurious functional connectivity findings. Put differently, it is hard to give a 

single clear-cut answer which aspects of functional connectivity signals corresponds 

to motion-related noise and which aspects corresponds to biologically informative 

signals in functional connectivity synchronization between brain regions. With and 

without a given adjustment for motion-related influences, distinguishing functional 

connectivity fingerprints in autism reflect different statistical questions (Pearl and 

Mackenzie, 2018). These data modelling scenarios correspond to two equally valid 

questions depending on the scientific purpose. Adjustment relates to partitioning a 

population into groups that are homogenous according to the de-confounding 

variable - there may be no single right or wrong. Bayesian analysis can help in 

quantifying uncertainty via joint probability distributions that explicitly incorporate how 

body motion measurements are related to network connectivity strengths and to 

other measurements of interest in an integrated approach. 

 

https://www.spectrumnews.org/news/movement-during-brain-scans-may-lead-to-spurious-patterns/
https://www.spectrumnews.org/news/movement-during-brain-scans-may-lead-to-spurious-patterns/
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The inferential grip of insights about brain network coupling can thus be enhanced by 

findings with models acknowledging variation at different scales. In this way, BHM 

allows asking more ambitious questions using hierarchical population models of 

brain connectomics in strata of individuals. Young people with autism are different 

from old people with autism as reflected in their connectome profiles. An additional 

and not mutually exclusive source of variation is that male autism is different from 

female autism, conjointly across lifespan. We can estimate differences in network 

connectivity between autism and control groups by modelling hierarchical 

dependencies between multiple sources including covariates, like age, sex, and 

motion, with parameters corresponding to network connectivity measurements. This 

multi-level modelling setup allows for partial pooling of information between 

measurements suspect to exert confounding influence and genuine measurements 

of brain signals. For instance, neuroscientists may find that increased amygdala-

prefrontal connectivity in autism is particularly characteristic for females who are in 

early childhood and tend to move their head little in the brain scanner as part of a 

joint posterior parameter distribution incorporating all measured sources of 

variability. Additionally, sex imbalance is often encountered in population samples of 

autism which can reflect the population prevalence or explicit exclusion of female 

cases. Imbalance in the considered participants in each group can be explicitly 

handled by BHM, with appropriate accounting for uncertainty. To adjust for these 

differences in naturally occurring group size we can avoid being misled in the way 

common single-level models typically would be. As such the often made a-priori 

distinction into signal and noise, as a separate preprocessing step, can be relaxed 

by combining and integrating statistical evidence from disparate sources in a single 

probabilistic model estimation (Efron and Hastie, 2016). 
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As a more concrete scenario for a key strength of flexible Bayesian hierarchical 

approaches, age, sex and motion may be modeled in well-defined nested 

relationships to make predictions from brain connectomic variation. It is conceivable 

that the tendency for body motion in the scanner is a function of age and differs by 

sex. As such, the investigator may wish to specify a generative model, where male 

and female participant prior distributions are at the top level, from which probabilistic 

distributions for age decades are sampled that, in turn, give rise to the (age/sex-

dependent) motion covariate distributions. During model estimation, partial pooling 

between the age-, sex-, and motion dependencies calibrate parameter shrinkage in a 

data-dependent fashion to achieve optimal prediction performance. The obtained 

posterior parameter distributions then allow the investigator to draw careful 

conclusions about the multi-level relationships between effects from several inter-

dependent sources of age, sex, and motion variation in how they relate to 

connectome-based predictions. Importantly, such joint modeling of sources of 

randomness is challenging in classical (non-Bayesian) general linear models. 

 

 

The importance of saying no: Uncertainty estimates for single-subject 

predictions  

 

As one of various supporting hints for the biological basis of autism, the integrity of 

the amygdala in the limbic network was repeatedly highlighted to differ in patients 

with autism, which is thought to play a role in impaired social interaction (Baron-

Cohen et al., 2000). Statistically significant differences in the amygdala in autism led 
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to varying reports in different patient samples (Kim et al., 2010; Nacewicz et al., 

2006). Thus, this disease manifestation does not appear to be present in every 

single autism patient, nor is it consistently present on average in every patient 

sample recruited for studies that compare healthy and diagnosed individuals. Asking 

whether or not a strict categorical difference exists in a specific brain region in 

individuals on the autism spectrum may simply be a suboptimal analytical approach 

for the job. 

 

Put differently, any modelling technique that is designed to give categorical black-

and-white answers may be inappropriate for probing disease features that are a) 

present in autism patients to varying degrees (i.e. reflecting biological variability), b) 

difficult to detect from the noisy behavioral and/or functional connectivity 

measurements that are available (i.e. reflecting epistemological uncertainty), or both. 

If these two sources of variation have played a role in amygdala studies in autism 

then using analysis approaches that can only make raw statements declaring 

presence or absence of an effect may be inherently ill-suited (Kruschke and Liddell, 

2018). If the network phenomenon under study is highly variable across people 

and/or tricky to quantify methodologically, then investigators in one lab may conclude 

on presence of a difference in connectivity between amygdala and prefrontal cortex 

on their sample, while another research group studying a different patient sample 

with the same research question may conclude on absence of group-related 

connectivity differences. While the answer is seemingly certain in each of these 

studies, the uncertainty in whether or not an amygdala effect is present in the limbic 

network of autists comes out at another end (Nosek et al., 2015): lacking 

reproducibility across different studies that have carried out a dichotomic test for 
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statistically significant vs. insignificant amygdala alterations in autism samples (He et 

al., 2019). 

 

In such cases, the conventional frequentist 95% confidence intervals are not the 

solution that many investigators desire. It is common to hear that a 95% confidence 

interval means that there is a probability 0.95 that the true parameter value lies 

within the interval; that is, that we do not have enough evidence to reject the null 

hypothesis of equal amygdala volume in both groups. In non-Bayesian statistical 

hypothesis testing, such a statement is never correct, because strict non-Bayesian 

inference forbids using probability to measure uncertainty about parameters like a 

measure of amygdala connectivity in healthy vs. diseased individual. Instead, one 

should say that if we repeated the study and analysis a large number of different 

samples, then 95% of the computed intervals would contain the true parameter 

value. The classical 95% confidence interval only takes its meaning in the 

hypothetical long run of repeatedly analyzing always new samples of controls and 

patients. Then we expect to be mistaken about presence or absence of amygdala 

effect in only 5%, that is 1 in 20 of the conducted network connectivity studies. 

 

A particularly clear illustration of this point is Lindley's paradox 

(https://en.wikipedia.org/wiki/Lindley%27s_paradox). It describes a situation in which 

a classical statistical analysis suggests a very significant effect, despite the fact that 

the Bayesian model evidence for the null hypothesis or model is far greater than the 

alternative. This paradox explains the dangers of over-powered studies that can 

become too sensitive to trivial effect sizes, while, in a Bayesian setting, would 

provide evidence for the null hypothesis. 

https://en.wikipedia.org/wiki/Lindley%27s_paradox
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Rather than forcing definitive answers on presence against absence of subtle 

amygdala effects using null-hypothesis statistical significance testing, Bayesian 

analysis fully embraces unavoidable variation as an integral part of model building, 

estimation, and interpretation (Gelman et al., 2014). In the Bayesian paradigm, each 

component of the model has a fully specified probability distribution; before and after 

seeing the brain data. As a consequence, a Bayesian model estimating differences 

in amygdala connectivity in healthy vs. autistic individuals naturally provides 

estimates of the degree of difference at the phenomenological level as well as 

estimates of the modelling uncertainty at the epistemological level. Any amount of 

divergence between 0 (’no difference’) and 1 (‘difference’) is a possible, legitimate, 

and interpretable result in the Bayesian posterior parameter estimate, while fully 

accounting for uncertainty in the parameter estimation. 

 

In this way, the Bayesian modelling regime offers rigorous statements on how much 

an explanation on a given group difference in the amygdala is justified in the patient 

sample at hand. The width of the corresponding parameter posterior estimate can be 

narrow to indicate high certainty in the obtained group difference (cf. Figure 1). In 

contrast, the posterior distribution can be widely spread out to indicate low 

methodological certainty and thus limited neuroscientific trustworthiness of the found 

parameter value reflecting amygdala coupling difference. Taken together, Bayesian 

modelling directly provides a confidence judgment about each quantity on the table. 

For example, it allows statements such as: ‘under the model, there is a 95% 

probability that amygdala connectivity to other networks differs between individuals 

with autism and controls’. If the evidence for the tested difference is ambiguous, we 



 21 

want this to be the result of the analysis so that we can align the strength of our 

conclusions with the certainty that the model can afford. 

 

Most modelling approaches following the frequentist philosophy have a harder time 

telling the investigator when the modelling result is unsure or not. For example, linear 

support vector classifiers or linear discriminant analysis can be applied to 

connectomic brain data to vote for autism, rather than control, based on a brittle 51% 

or a solid 98% probability for evidence of group difference in the amygdala. In other 

words, Bayesian analysis frameworks are a rare opportunity where the resulting 

model solution “knows when it does not know”. Moreover, in null-hypothesis 

statistical testing, the probability of detecting an effect (i.e. statistical power) 

increases with increasing sample size, even though the effect size (e.g. in terms of 

group differences in a point estimate for a given parameter) does not (Wagenmakers 

et al., 2008). Bayesian modelling does not suffer from this shortcoming for the 

reasons we have outlined above. 

 

Another key benefit of being able to say ‘None’ is that one can compare the evidence 

for models with and without particular parameters. This affords a very simple form of 

Bayesian model selection or structure learning; namely Bayesian model reduction 

(https://en.wikipedia.org/wiki/Bayesian_model_reduction). Using the variational 

procedures mentioned above, this leads to fast schemes for comparing thousands of 

models in which various combinations of parameters are "turn off" with appropriate 

priors. 

 

https://en.wikipedia.org/wiki/Bayesian_model_reduction
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The ability to say ‘None’ when the investigator asks for whether a group difference 

either exists or not will probably turn out to be crucial in our efforts towards precision 

medicine (Arbabshirani et al., 2017; Bzdok and Meyer-Lindenberg, 2018; Stephan et 

al., 2017). As Bayesian models are fully probabilistic by construction, brain data from 

a new incoming individual, such as brain scanning yielding amygdala connectivity 

measures, can be propagated through the already-built model into a probabilistic 

prediction for a single individual at hand. Adding such information can be crucial in a 

variety of settings in neuroscientific research and clinical practice. First, generating 

single-subject predictions in a patient may yield different levels of certainty in 

assessments of autism symptoms related to language, motor behavior, IQ, or social 

interaction capacities. For example, individuals who are confidently classified may 

have more severe symptoms in a particular domain, whilst others that are less 

confidently classified may be more mildly affected. Separate judgments on the 

certainty of predictive conclusions in each of these symptom domains may turn out 

to characterize different types of autism in the spectrum, such as high-functioning 

autism. Second, along the life trajectory, different symptom dimensions of autism 

may turn out to be predictable based on brain network measurements with higher or 

lower confidence, which may turn out to be characteristic for developmental periods 

in autism, or specific for atypical cases or different subtypes of autism. For instance, 

in women with autism, typically better camouflaging of social deficits (Dean et al., 

2017; Hull et al., 2017; Lai et al., 2017a) may lead to social impairment predictions 

that have non-identical confidence in men with autism. Third, uncertainty is 

undoubtedly a key asset of treatment response prediction to choose therapeutic 

interventions tailored to single individuals. In this context, models predicting which 

treatment option to choose based on an individual’s connectomic profile will be all 
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the more useful in clinical practice, if such algorithmic recommendations also carry 

forward information on the forecasting confidence. 

 

 

 

Disease subtyping: Towards probabilistic intermediate phenotype discovery 

 

A key challenge in the study of most psychiatric disorders, including autism, is that 

individuals with the same clinical diagnosis vary considerably from one another in 

terms of clinical phenotype and underlying network biology. This has led to some 

investigators proposing that it may be preferable to consider the ‘autisms’ 

(Geschwind and Levitt, 2007). Many studies  have aimed to dissect the clinical 

phenotype of autism (e.g. Kernbach et al., 2018; Wolfers et al., 2019b), for which 

functional connectivity provides promising candidate features (e.g. (Easson et al., 

2019)). Moreover, since atypicalities are often complex and multifaceted, the 

features used for this purpose are often high-dimensional (e.g. consider even more 

whole-brain nodes in functional connectivity matrices) and/or multimodal (e.g. 

combine measures derived from structural and functional connectivity).  

 

In general, the goal of such connectome-based studies is to derive the latent 

structure underlying the clinical phenotype (e.g. partitioning the cohort into subtypes) 

on the basis of psychometric or biological variables, whilst accounting for nuisance 

variation. There are many ways that this can be achieved, including classical 

clustering techniques and matrix factorization techniques such as non-negative 

matrix factorization (NMF) and independent components analysis (ICA). Briefly, 
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clustering approaches focus on finding subtype clusters in the data, whereas matrix 

factorization approaches focus on finding useful decompositions of a data matrix 

under various assumptions. This can be used, for example, to find latent factors that 

may overlap across individuals in that any given individual may express multiple 

latent factors (Tang et al., 2019). Whilst these approaches are widely applied in a 

classical frequentist context, Bayesian variants have also been developed. In 

addition, highly promising Bayesian ‘non-parametric’ clustering and matrix 

factorization approaches have been developed such as Dirichlet process mixtures 

(‘Chinese restaurant processes’) and the ‘Indian buffet’ process (IBP). Adopting a 

Bayesian approach to such problems confers many benefits, including providing 

good control over latent representations of the data, thereby helping to attenuate 

problems with high-dimensional estimation, providing predictive intervals around 

parameter estimates and predictions and providing flexible noise models for different 

forms of data. Moreover, Bayesian models are always generative in the sense that 

they always provide a model for how the brain connectivity measurements may have 

been generated. Collectively such Bayesian approaches are increasingly applied in 

clinical and neuroimaging contexts (Groves et al., 2011; Janssen et al., 2015; Ruiz et 

al., 2014; Schmidt et al., 2009) 

 

A key problem in most classical stratification techniques is the issue of model order 

selection, or in other words, determining the optimal number of clusters or latent 

factors for the data at hand (Eickhoff et al., 2015). For example, ‘How many subtypes 

of autism can be distinguished in a given clinical dataset based on brain connectivity 

profiles?’. This is a notoriously difficult problem in classical statistics for which no 

uniquely optimal solution has imposed itself (Bzdok, 2017; Kleinberg, 2002), leading 
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to suggestions that model order selection is perhaps sometimes largely a matter of 

taste (Hastie et al., 2009). There are many heuristic approaches for this problem, but 

these are subject to difficulty in practice. Additionally, choosing between a variety of 

viable model order selection criteria, which are by themselves objective, still amounts 

to taking a subjective choice on the number of latent factors best supported by the 

data. Different cluster validity criteria often give different answers or do not indicate a 

clear preference for one model order over others (Shalev-Shwartz and Ben-David, 

2014), nor whether a given clustering solution explains the data better than a 

continuous model (i.e. with no clusters (Liu et al., 2008)). This has contributed to 

inconsistencies in the clinical stratification literature such that there are no 

consistently reported subtypes for autism (Wolfers et al., 2019a) or indeed any 

psychiatric disorder, despite decades of effort (Marquand et al., 2016b). 

 

Above, we considered parametric empirical Bayesian models (Kass and Steffey, 

1989) as prevalent examples of hierarchical Bayesian modelling. The use of 

Bayesian model comparison and reduction to prune these models provides an 

efficient way to test hypotheses about the role of any particular brain region affect all 

connection. A similar functionality can be afforded by Bayesian nonparametric 

approaches. These provide an appealing solution to this problem because they can 

automatically adjust the model complexity (e.g. number of clusters or latent factors) 

on the basis of the data at hand. In other words, non-parametric models allow the 

flexibility to grow with the number of data points used for model building. The 

simplest examples of Bayesian non-parametric models are Gaussian process 

models (Rasmussen and Williams, 2006), which are widely used for non-linear 

regression and have been used in normative modelling approaches described 
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above. In a similar manner, Dirichlet process mixtures (DPM) (Ferguson, 1973; Neal, 

1992) and ‘Indian buffet’ processes  (Griffiths and Ghahramani, 2011) provide an 

elegant potential solution to the problem of model order selection in clustering and 

matrix factorization, respectively. For example, the DPM model can be viewed as a 

clustering model with where the number of clusters is bounded only by the sample 

size, effectively making the DPM an infinite mixture model (Rasmussen, 2000). This 

has already been shown to be useful in a recent neuroimaging study on autism 

(Kernbach et al., 2018). As noted, a very appealing feature of this model is that it is 

self-calibrating in that it allows the optimal model order (i.e. the number of clusters) 

to be automatically derived from the data whilst allowing the model order to grow 

with more data (i.e. increasing representational capacity). In practice, the number of 

clusters often grows sub-linearly with the number of observations (Neal, 1992). At 

the same time, by computing (or approximating) the full posterior distribution over the 

model parameters, this approach helps to attenuate overfitting. This non-parametric 

clustering approach has clearly desirable features for the stratification of psychiatric 

disorders such as autism in large data cohorts. Particularly as the size of the 

available datasets grows (e.g. through larger consortia), such models offer the ability 

to offer increasingly more fine-grained fractionations of the clinical phenotype. 

Similarly, in the context of brain networks, this approach has been shown to be 

useful for automatically parcellating brain networks into component regions (Janssen 

et al., 2015). 

 

A more recent addition to the Bayesian non-parametric toolbox is the IBP (Griffiths 

and Ghahramani, 2011) is. The name is derived by analogy to the ‘Chinese 

restaurant process’ formulation of Dirichlet process mixtures (see (Aldous, 1985)). 
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The IBP differs in that it does not assume that a single class is responsible for 

generating each data point (i.e. it does not provide a hard clustering solution). 

Rather, it allows each data point to express multiple features simultaneously, 

potentially reflecting multiple causes. Whilst this approach is yet to see extensive 

applications in brain connectomics, IBPs have been shown to provide an elegant 

way to model comorbidity in psychiatric disorders, where each individual expresses 

multiple latent factors to varying degrees (Ruiz et al., 2014). 

 

The key advantage of Bayesian techniques for model order selection in brain 

network modelling in health and disease is that they provide a formal framework for 

reasoning over model structures and deducing the plausibility of different candidate 

structures in view of the data at hand (see e.g. (Ghahramani, 2015; Tenenbaum et 

al., 2011). 
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Conclusion 

 

In this conceptual overview, we provided a pitch for the Bayesian perspective on 

modelling biological network circuits in the healthy brain and their perturbation in 

autism spectrum disorder. There are many different ways in which adopting a 

Bayesian philosophy to analysis and interpretation can open new windows of 

explanation for neuroscience investigators building on population neuroscience 

initiatives like UK Biobank, CamCAN, or the Human Connectome Project. 

 

These analysis techniques provide an appealing interpretation of probability in terms 

of degrees of belief in a proposition, which is more general than the more restricted 

notion of reasoning about long-run frequencies of repeatable events; provide 

analytical machinery to separate (methodological) uncertainty and (biological) 

variability along with a calculus for reasoning about both in a coherent manner; and 

usher towards avenues away from classical null-hypothesis significance testing, 

which is particularly valuable in data richness, and may contribute to overcoming the 

current reproducibility crisis in biomedicine. Finally, Bayesian methods afford 

estimates of uncertainty around all model parameters at play and can hence form 

predictions about single individuals by appropriate handling of all considered sources 

of variation in network approaches. Their value resides for instance in explaining 

brain network connectivity at different hierarchical scales in the same modelling 

instance. Promoting such approaches to uncovering key features of biological 

networks can bear further advantages in the context of data fusion, individual 

prediction, subgroup stratification of cohorts and for precisely quantifying statistical 

differences between experimental cohorts. We anticipate that in the coming years, 
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the Bayesian arsenal will be endorsed for applications in network-focused 

neuroscience studies more than is currently the norm. 
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Figure 1 
 
 

 
 
 
Bayesian model estimation of drug response in 4 autism populations based on whole-
brain connectivity profiles. Suppose that a new candidate treatment for autism is being 
developed, such as a special psychotherapeutic intervention. The investigator now wishes to 
know whether there is a difference in how reliably a favorable treatment response can be 
estimated in 4 different subgroups of autism (e.g. these could correspond to male and 
female high-functioning and not high-functioning individuals carrying a diagnosis of autism) 
based on inter-subject differences in connectomic fingerprints. Before acquiring any network 
coupling measurements of patients about to undergo the new treatment option, the 
investigators pre-suppose that each of the 4 autism subgroups should be expected to have 
the exact same chance of turning out to be a treatment responder. This initial belief is 
reflected in 4 probability distributions with equal height (i.e. mean) and equal dispersion (i.e. 
variance) (upper panel) – incorporating fully probabilistic expectations even before any real-
world data are considered. After specifying this assumed prior knowledge of equal response 
probabilities, the Bayesian model is updated (‘parameter updating’) by simultaneously 
integrating the observed clinical evidence collected from 4 different subgroups of autism 
patients to achieve a compromise between data-independent prior (upper panel) and data-
dependent experimental outcomes (lower panel). In this example, the consequence is that 
the prior distributions are carefully adapted in shape – affecting both magnitude and 
uncertainty – for each autism subgroup. Importantly, the prior probability distribution of 
showing a favorable response to the novel therapy is re-calibrated in a subgroup-sensitive 
fashion. After conditioning the model on the actual clinical observations, subgroup group 2 
turns out to show the highest posterior parameter distribution. This model solution indicates 
a strongest chance for the treatment to be successful, relative to the other 3 considered 
patient subgroups. At the same time, this subgroup posterior parameter distribution features 
the smallest posterior variance (i.e. highest precision). The narrow dispersion of the 
posterior treatment effect of subgroup 2 indicates that the investigator can be more sure that 
the true treatment response probability is close to the estimated treatment effect (i.e. 
parameter mean). In stark contrast, subgroup 1 shows the widest posterior distribution, 
which makes explicit that the investigators should be most careful about this estimated 
therapy response probability. That is, we do have a specific treatment responsiveness for 
subgroup 1 – in form a concrete number –, the interval of this posterior parameter 
distribution however also tells us that a much higher or much lower probabilities is quite 
plausible as well, which is why the obtained parameter mean should be interpreted with 
caution. Note that subgroups 2 and 3 are predicted to show higher treatment response 
probability based on connectivity profiles than assumed under the uniform prior of equal 
response potential with possible implications for clinical practice, rather than succumbing to 
the dichotomic statement that only the posterior response probability of group 2 is significant 
and worthy of being reported. Moreover, the conclusion of two subgroups showing evidence 
for treatment benefits, yet to different degrees with different uncertainty, illustrates the 
important advantage of Bayesian analysis to allow for fully probabilistic claims in population 
neuroscience studies. Reproduced with permission (Kruschke, 2011, page 21). 
 
 



 31 

References 

 
Aldous, D., 1985. Exchangeability and related topics. École d’Été de Probabilités de Saint-
Flour XIII-1983. Springer, pp. 1-198. 
Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D., 2017. Single subject prediction of brain 
disorders in neuroimaging: Promises and pitfalls. Neuroimage 145, 137-165. 
Baron-Cohen, S., Ring, H.A., Bullmore, E.T., Wheelwright, S., Ashwin, C., Williams, S., 2000. 
The amygdala theory of autism. Neuroscience & Biobehavioral Reviews 24, 355-364. 
Bayes, T., Price, N., 1763. An essay towards solving a problem in the doctrine of chances, by 
the late Rev. Mr. Bayes F.R S. communicated by Mr. Price, in a letter to John Caton. 
Philosophical Transactions of the Royal Society of London 53, 370-418. 
Beal, M.J., 2003. Variational algorithms for approximate Bayesian inference. university of 
London London. 
Belmonte, M.K., Allen, G., Beckel-Mitchener, A., Boulanger, L.M., Carper, R.A., Webb, S.J., 
2004. Autism and abnormal development of brain connectivity. Journal of Neuroscience 24, 
9228-9231. 
Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer, Heidelberg. 
Bowman, F.D., Caffo, B., Bassett, S.S., Kilts, C., 2008. A Bayesian hierarchical framework for 
spatial modeling of fMRI data. Neuroimage 39, 146-156. 
Bzdok, D., 2017. Classical statistics and statistical learning in imaging neuroscience. Front 
Neurosci 11, 543. 
Bzdok, D., Meyer-Lindenberg, A., 2018. Machine learning for precision psychiatry: 
Opportunites and challenges. Biological Psychiatry: Cognitive Neuroscience and 
Neuroimaging 3, 223-230. 
Bzdok, D., Nichols, T.E., Smith, S.M., 2019. Towards Algorithmic Analytics for Large-Scale 
Datasets. Nature Machine Intelligence, in press. 
Bzdok, D., Yeo, B.T.T., 2017. Inference in the age of big data: Future perspectives on 
neuroscience. Neuroimage 155, 549-564. 
Colclough, G.L., Woolrich, M.W., Harrison, S.J., Lopez, P.A.R., Valdes-Sosa, P.A., Smith, S.M., 
2018. Multi-subject hierarchical inverse covariance modelling improves estimation of 
functional brain networks. Neuroimage 178, 370-384. 
Cox, D.R., 2006. Frequentist and Bayesian Statistics: A Critique. Transactions in Particle 
Physics, Astrophysics and Cosmology. 
Cox, R.T., 1946. PROBABILITY, FREQUENCY AND REASONABLE EXPECTATION. American 
Journal of Physics 14, 1-13. 
Dean, M., Harwood, R., Kasari, C., 2017. The art of camouflage: Gender differences in the 
social behaviors of girls and boys with autism spectrum disorder. Autism 21, 678-689. 
Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., Anderson, J.S., Assaf, 
M., Bookheimer, S.Y., Dapretto, M., Deen, B., Delmonte, S., Dinstein, I., Ertl-Wagner, B., Fair, 
D.A., Gallagher, L., Kennedy, D.P., Keown, C.L., Keysers, C., Lainhart, J.E., Lord, C., Luna, B., 
Menon, V., Minshew, N.J., Monk, C.S., Mueller, S., Muller, R.A., Nebel, M.B., Nigg, J.T., 
O'Hearn, K., Pelphrey, K.A., Peltier, S.J., Rudie, J.D., Sunaert, S., Thioux, M., Tyszka, J.M., 
Uddin, L.Q., Verhoeven, J.S., Wenderoth, N., Wiggins, J.L., Mostofsky, S.H., Milham, M.P., 
2014. The autism brain imaging data exchange: towards a large-scale evaluation of the 
intrinsic brain architecture in autism. Molecular Psychiatry 19, 659-667. 
Dinstein, I., Pierce, K., Eyler, L., Solso, S., Malach, R., Behrmann, M., Courchesne, E., 2011. 
Disrupted neural synchronization in toddlers with autism. Neuron 70, 1218-1225. 



 32 

Dosenbach, N.U., Nardos, B., Cohen, A.L., Fair, D.A., Power, J.D., Church, J.A., Nelson, S.M., 
Wig, G.S., Vogel, A.C., Lessov-Schlaggar, C.N., Barnes, K.A., Dubis, J.W., Feczko, E., Coalson, 
R.S., Pruett, J.R., Jr., Barch, D.M., Petersen, S.E., Schlaggar, B.L., 2010. Prediction of 
individual brain maturity using fMRI. Science 329, 1358-1361. 
Easson, A.K., Fatima, Z., McIntosh, A.R., 2019. Functional connectivity-based subtypes of 
individuals with and without autism spectrum disorder. Network Neuroscience 3, 1-19. 
Efron, B., 1979. 1977 RIETZ LECTURE - BOOTSTRAP METHODS - ANOTHER LOOK AT THE 
JACKKNIFE. Annals of Statistics 7, 1-26. 
Efron, B., Hastie, T., 2016. Computer-Age Statistical Inference. Cambridge University Press. 
Eickhoff, S.B., Thirion, B., Varoquaux, G., Bzdok, D., 2015. Connectivity-based parcellation: 
Critique and implications. Hum Brain Mapp. 
Ferguson, T.S., 1973. A Bayesian Analysis of Some Nonparametric Problems. The Annals of 
Statistics 1, 209-230. 
Finn, E.S., Shen, X.L., Scheinost, D., Rosenberg, M.D., Huang, J., Chun, M.M., Papademetris, 
X., Constable, R.T., 2015. Functional connectome fingerprinting: identifying individuals using 
patterns of brain connectivity. Nature Neuroscience 18, 1664-1671. 
Floris, D.L., Lai, M.-C., Nath, T., Milham, M.P., Di Martino, A., 2018. Network-specific sex 
differentiation of intrinsic brain function in males with autism. Mol Autism 9, 17. 
Fornito, A., Zalesky, A., Breakspear, M., 2015. The connectomics of brain disorders. Nature 
Reviews Neuroscience 16, 159-172. 
Foulkes, L., Blakemore, S.J., 2018. Studying individual differences in human adolescent brain 
development. Nature Neuroscience 21, 315-323. 
Fox, C.W., Roberts, S.J., 2012. A tutorial on variational Bayesian inference. Artificial 
intelligence review 38, 85-95. 
Friston, K., Chu, C., Mourao-Miranda, J., Hulme, O., Rees, G., Penny, W., Ashburner, J., 2008. 
Bayesian decoding of brain images. Neuroimage 39, 181-205. 
Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., Penny, W., 2007. Variational free 
energy and the Laplace approximation. Neuroimage 34, 220-234. 
Friston, K.J., Glaser, D.E., Henson, R.N.A., Kiebel, S., Phillips, C., Ashburner, J., 2002a. 
Classical and Bayesian inference in neuroimaging: Applications. Neuroimage 16, 484-512. 
Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling. Neuroimage 19, 1273-
1302. 
Friston, K.J., Kahan, J., Biswal, B., Razi, A., 2014. A DCM for resting state fMRI. Neuroimage 
94, 396-407. 
Friston, K.J., Litvak, V., Oswal, A., Razi, A., Stephan, K.E., van Wijk, B.C.M., Ziegler, G., 
Zeidman, P., 2016. Bayesian model reduction and empirical Bayes for group (DCM) studies. 
Neuroimage 128, 413-431. 
Friston, K.J., Penny, W., 2003. Posterior probability maps and SPMs. Neuroimage 19, 1240-
1249. 
Friston, K.J., Penny, W., Phillips, C., Kiebel, S., Hinton, G., Ashburner, J., 2002b. Classical and 
Bayesian inference in neuroimaging: theory. Neuroimage 16, 465-483. 
Gal, Y., 2016. Uncertainty in Deep Learning. Department of Engineering. University of 
Cambridge, Cambridge. 
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D., 2013. Bayesian Data 
Analysis, 3 ed. CRC Press. 
Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 2014. Bayesian data analysis. Chapman & 
Hall/CRC Boca Raton, FL, USA. 



 33 

Geschwind, D.H., Levitt, P., 2007. Autism spectrum disorders: developmental disconnection 
syndromes. Current Opinion in Neurobiology 17, 103-111. 
Ghahramani, Z., 2015. Probabilistic machine learning and artificial intelligence. Nature 521, 
452-459. 
Goldman, S., 2013. Opinion: Sex, gender and the diagnosis of autism—A biosocial view of 
the male preponderance. Research in Autism Spectrum Disorders 7, 675-679. 
Griffiths, T.L., Ghahramani, Z., 2011. The Indian Buffet Process: An Introduction and Review. 
Journal of Machine Learning Research 12, 1185-1224. 
Groves, A.R., Beckmann, C.F., Smith, S.M., Woolrich, M.W., 2011. Linked independent 
component analysis for multimodal data fusion. Neuroimage 54, 2198-2217. 
Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning, 2nd ed. 
Springer, New York. 
He, Y., Byrge, L., Kennedy, D.P., 2019. Non-replication of functional connectivity differences 
in ASD: a multi-site study. bioRxiv, 640797. 
Hinne, M., Ambrogioni, L., Janssen, R.J., Heskes, T., van Gerven, M.A.J., 2014. Structurally-
informed Bayesian functional connectivity analysis. Neuroimage 86, 294-305. 
Huizinga, W., Poot, D., Vernooij, M., Rothschupkin, G., Ikram, M., Rueckert, D., Niessen, W., 
2018. A spatio-temporal reference model of the aging brain. NeuroImage 169, 11-12. 
Hull, L., Petrides, K., Allison, C., Smith, P., Baron-Cohen, S., Lai, M.-C., Mandy, W., 2017. 
“Putting on my best normal”: social camouflaging in adults with autism spectrum 
conditions. J Autism Dev Disord 47, 2519-2534. 
Janssen, R.J., Jylanki, P., Kessels, R.P.C., van Gerven, M.A.J., 2015. Probabilistic model-based 
functional parcellation reveals a robust, fine-grained subdivision of the striatum. 
Neuroimage 119, 398-405. 
Jaynes, E., 2003. Probability Theory: The Logic of Science. Cambridge University Press. 
Jeffreys, H., 1946. AN INVARIANT FORM FOR THE PRIOR PROBABILITY IN ESTIMATION 
PROBLEMS. Proceedings of the Royal Society of London Series a-Mathematical and Physical 
Sciences 186, 453-461. 
Kanner, L., 1943. Autistic disturbances of affective contact. Nervous child 2, 217-250. 
Kass, R.E., Steffey, D., 1989. Approximate Bayesian inference in conditionally independent 
hierarchical models (parametric empirical Bayes models). Journal of the American Statistical 
Association 84, 717-726. 
Keary, C.J., Minshew, N.J., Bansal, R., Goradia, D., Fedorov, S., Keshavan, M.S., Hardan, A.Y., 
2009. Corpus callosum volume and neurocognition in autism. J Autism Dev Disord 39, 834-
841. 
Kendall, A., Gal, Y., 2017. What uncertainties do we need in Bayesian deep learning for 
computer vision. Neural Information Processing Systems. 
Kernbach, J., Satterthwaite, T., Bassett, D., Smallwood, J., Margulies, D., Krall, S., Shaw, P., 
Varoquaux, G., Thirion, B., Konrad, K., Bzdok, D., 2018. Shared Endo-phenotypes of Default 
Mode Dysfunction in Attention Deficit/Hyperactivity Disorder and Autism Spectrum 
Disorder. Transl Psychiatry. 
Kim, J.E., Lyoo, I.K., Estes, A.M., Renshaw, P.F., Shaw, D.W., Friedman, S.D., Kim, D.J., Yoon, 
S.J., Hwang, J., Dager, S.R., 2010. Laterobasal amygdalar enlargement in 6- to 7-year-old 
children with autism spectrum disorder. Arch Gen Psychiatry 67, 1187-1197. 
Kleinberg, J., 2002. An impossibility theorem for clustering.  NIPS 15, 463-470. 
Kruschke, J.K., 2011. Doing Bayesian Data Analysis. Elsevier, London, UK. 



 34 

Kruschke, J.K., Liddell, T.M., 2018. The Bayesian New Statistics: Hypothesis testing, 
estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon Bull 
Rev 25, 178-206. 
Lai, M.-C., Lombardo, M.V., Auyeung, B., Chakrabarti, B., Baron-Cohen, S., 2015. Sex/gender 
differences and autism: setting the scene for future research. Journal of the American 
Academy of Child & Adolescent Psychiatry 54, 11-24. 
Lai, M.-C., Lombardo, M.V., Ruigrok, A.N., Chakrabarti, B., Auyeung, B., Szatmari, P., Happé, 
F., Baron-Cohen, S., Consortium, M.A., 2017a. Quantifying and exploring camouflaging in 
men and women with autism. Autism 21, 690-702. 
Lai, M.C., Lerch, J.P., Floris, D.L., Ruigrok, A.N., Pohl, A., Lombardo, M.V., Baron‐Cohen, S., 
2017b. Imaging sex/gender and autism in the brain: Etiological implications. J Neurosci Res 
95, 380-397. 
Lima, C.H., Kwon, H.-H., Kim, J.-Y., 2016. A Bayesian beta distribution model for estimating 
rainfall IDF curves in a changing climate. Journal of Hydrology 540, 744-756. 
Liu, Y., Hayes, D.N., Nobel, A., Marron, J.S., 2008. Statistical Significance of Clustering for 
High-Dimension, Low-Sample Size Data. Journal of the American Statistical Association 103, 
1281-1293. 
MacKay, D.J.C., 2003. Information theory, inference and learning algorithms. Cambridge 
university press. 
Mann, M.E., Lloyd, E.A., Oreskes, N., 2017. Assessing climate change impacts on extreme 
weather events: the case for an alternative (Bayesian) approach. Climatic change 144, 131-
142. 
Marquand, A.F., Kia, S., Zabihi, M., Wolfers, T., Buitelaar, J.K., Beckmann, C.F., 2019. 
Conceptualizing mental disorders as deviations from normative functioning. Molecular 
Psychiatry in press. 
Marquand, A.F., Rezek, I., Buitelaar, J., Beckmann, C.F., 2016a. Understanding Heterogeneity 
in Clinical Cohorts Using Normative Models: Beyond Case-Control Studies. Biological 
Psychiatry 80, 552-561. 
Marquand, A.F., Wolfers, T., Mennes, M., Buitelaar, J., Beckmann, C.F., 2016b. Beyond 
lumping and splitting: a review of computational approaches for stratifying psychiatric 
disorders. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 1, 433-447. 
Matta, C.r.F., Massa, L., 2017. Notes on the energy equivalence of information. The Journal 
of Physical Chemistry A 121, 9131-9135. 
Miller, G.A., Chapman, J.P., 2001. Misunderstanding analysis of covariance. Journal of 
Abnormal Psychology 110, 40. 
Miller, K.L., Alfaro-Almagro, F., Bangerter, N.K., Thomas, D.L., Yacoub, E., Xu, J., Bartsch, A.J., 
Jbabdi, S., Sotiropoulos, S.N., Andersson, J.L., 2016a. Multimodal population brain imaging 
in the UK Biobank prospective epidemiological study. Nat Neurosci 19, 1523. 
Miller, K.L., Alfaro-Almagro, F., Bangerter, N.K., Thomas, D.L., Yacoub, E., Xu, J.Q., Bartsch, 
A.J., Jbabdi, S., Sotiropoulos, S.N., Andersson, J.L.R., Griffanti, L., Douaud, G., Okell, T.W., 
Weale, P., Dragonu, J., Garratt, S., Hudson, S., Collins, R., Jenkinson, M., Matthews, P.M., 
Smith, S.M., 2016b. Multimodal population brain imaging in the UK Biobank prospective 
epidemiological study. Nature Neuroscience 19, 1523-1536. 
Mumford, J.A., Ramsey, J.D., 2014. Bayesian networks for fMRI: A primer. Neuroimage 86, 
573-582. 



 35 

Nacewicz, B.M., Dalton, K.M., Johnstone, T., Long, M.T., McAuliff, E.M., Oakes, T.R., 
Alexander, A.L., Davidson, R.J., 2006. Amygdala volume and nonverbal social impairment in 
adolescent and adult males with autism. Arch Gen Psychiatry 63, 1417-1428. 
Neal, R.M., 1992. Bayesian mixture modeling. workshop on maximum entropy and Bayesian 
methods of statistical analysis  Kluwer Academic Publishers. 
Nikam, V.B., Meshram, B., 2013. Modeling rainfall prediction using data mining method: A 
Bayesian approach. 2013 Fifth International Conference on Computational Intelligence, 
Modelling and Simulation. IEEE, pp. 132-136. 
Nordahl, C.W., Simon, T.J., Zierhut, C., Solomon, M., Rogers, S.J., Amaral, D.G., 2008. Brief 
report: methods for acquiring structural MRI data in very young children with autism 
without the use of sedation. J Autism Dev Disord 38, 1581-1590. 
Nosek, B.A., Aarts, A.A., Anderson, C.J., Anderson, J.E., Kappes, H.B., Collaboration, O.S., 
2015. Estimating the reproducibility of psychological science. Science 349, aac4716-
aac4716. 
Pearl, J., Mackenzie, D., 2018. The Book of Why: The New Science of Cause and Effect. Basic 
Books. 
Penny, W.D., Trujillo-Barreto, N.J., Friston, K.J., 2005. Bayesian fMRI time series analysis 
with spatial priors. Neuroimage 24, 350-362. 
Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious but 
systematic correlations in functional connectivity MRI networks arise from subject motion. 
Neuroimage 59, 2142-2154. 
Rasmussen, C., 2000. The Infinite Gaussian Mixture Model. Neural Information Processing 
Systems. 
Rasmussen, C.E., Williams, C., 2006. Gaussian Processes for Machine Learning. MIT Press. 
Rosenberg, M.D., Finn, E.S., Scheinost, D., Papademetris, X., Shen, X.L., Constable, R.T., 
Chun, M.M., 2016. A neuromarker of sustained attention from whole-brain functional 
connectivity. Nature Neuroscience 19, 165-+. 
Ruiz, F.J.R., Valera, I., Blanco, C., Perez-Cruz, F., 2014. Bayesian Nonparametric Comorbidity 
Analysis of Psychiatric Disorders. Journal of Machine Learning Research 15, 1215-1247. 
Schaafsma, S.M., Pfaff, D.W., 2014. Etiologies underlying sex differences in autism spectrum 
disorders. Frontiers in neuroendocrinology 35, 255-271. 
Schmidt, M.N., Winther, O., Hansen, L.K., 2009. Bayesian Non-negative Matrix Factorization. 
Independent Component Analysis and Signal Separation. Lecture Notes in Computer 
Science, Springer. 
Scott, F.J., Baron-Cohen, S., Bolton, P., Brayne, C., 2002. Brief report prevalence of autism 
spectrum conditions in children aged 5-11 years in Cambridgeshire, UK. Autism 6, 231-237. 
Seghier, M.L., Price, C., J, 2018. Interpreting and Utilising Intersubject Variability in Brain 
Function. Trends in Cognitive Sciences 22, 517-530. 
Shalev-Shwartz, S., Ben-David, S., 2014. Understanding machine learning: From theory to 
algorithms. Cambridge University Press. 
Smith, S.M., Nichols, T.E., Vidaurre, D., Winkler, A.M., Behrens, T.E.J., Glasser, M.F., Ugurbil, 
K., Barch, D.M., Van Essen, D.C., Miller, K.L., 2015a. A positive-negative mode of population 
covariation links brain connectivity, demographics and behavior. Nature Neuroscience 18, 
1565-1567. 
Smith, S.M., Nichols, T.E., Vidaurre, D., Winkler, A.M., Behrens, T.E.J., Glasser, M.F., Ugurbil, 
K., Barch, D.M., Van Essen, D.C., Miller, K.L., 2015b. A positive-negative mode of population 



 36 

covariation links brain connectivity, demographics and behavior. Nat Neurosci 18, 1565-
1567. 
Stephan, K.E., Schlagenhauf, F., Huys, Q.J.M., Raman, S., Aponte, E.A., Brodersen, K.H., 
Rigoux, L., Moran, R.J., Daunizeau, J., Dolan, R.J., 2017. Computational neuroimaging 
strategies for single patient predictions. Neuroimage. 
Tang, S., Sun, N., Floris, D.L., Zhang, X., Di Martino, A., Yeo, B.T., 2019. Reconciling 
Dimensional and Categorical Models of Autism Heterogeneity: a Brain Connectomics & 
Behavioral Study. bioRxiv, 692772. 
Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D., 2011. How to Grow a Mind: 
Statistics, Structure, and Abstraction. Science 331, 1279-1285. 
Van Dijk, K.R., Sabuncu, M.R., Buckner, R.L., 2012. The influence of head motion on intrinsic 
functional connectivity MRI. Neuroimage 59, 431-438. 
Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K., 
Consortium, W.U.-M.H., 2013. The WU-Minn Human Connectome Project: An overview. 
Neuroimage 80, 62-79. 
Volkow, N., Koob, G., Croyle, R., Bianchi, D., Gordon, J., Koroshetz, W., Pérez-Stable, E., 
Riley, W., Bloch, M., Conway, K., Deeds, B., Dowling, G., Grant, S., Howlett, K., Matochik, J., 
Morgan, G., Murray, M., Noronha, A., Spong, C., Wargo, E., Warren, K., Weiss, S., 2017. The 
conception of the ABCD study: From substance use to a broad NIH collaboration. 
Developmental Cognitive Neuroscience in press. 
Wagenmakers, E.-J., Lee, M., Lodewyckx, T., Iverson, G.J., 2008. Bayesian versus frequentist 
inference. Bayesian evaluation of informative hypotheses. Springer, pp. 181-207. 
Wolfers, T., Beckman, C.F., Hoogman, M., Buitelaar, J.K., Franke, B., Marquand, A., 2019a. 
Individual differences   v.     the average patient: mapping the heterogeneity in ADHD using     
normative models. Psychological Medicine In press. 
Wolfers, T., Floris, D., Dinga, R., van Rooij, D., Isakoglou, C., Kia, S.M., Zabihi, M., Llera, A., 
Chowdanayaka, R., Kumar, V., Peng, H., Laid, C., Batalle, A., Dimitrova, R., Charman, T., Loth, 
E., Lai, M.-C., Jones, E., Baumeister, S., Moessnang, C., Banaschewski, T., Ecker, C., Dumas, 
G., O’Muircheartaigh, J., Murphy, D., Buitelaar, J.K., Marquand, A.F., Beckmann, C.F., 2019b. 
From pattern classification to stratification: towards conceptualizing the heterogeneity of 
Autism Spectrum Disorder. Neuroscience and Biobehavioural Reviews in press. 
Woolrich, M.W., 2012. Bayesian inference in FMRI. Neuroimage 62, 801-810. 
Woolrich, M.W., Behrens, T.E.J., Beckmann, C.F., Jenkinson, M., Smith, S.M., 2004. 
Multilevel linear modelling for FMRI group analysis using Bayesian inference. NeuroImage 
21, 1732-1747. 
Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, 
C., Jenkinson, M., Smith, S.M., 2009. Bayesian analysis of neuroimaging data in FSL. 
Neuroimage 45, S173-S186. 
Xia, C.H., Ma, Z.M., Ciric, R., Gu, S., Betzel, R.F., Kaczkurkin, A.N., Calkins, M.E., Cook, P.A., de 
la Garza, A.G., Vandekar, S.N., Cui, Z.X., Moore, T.M., Roalf, D.R., Ruparel, K., Wolf, D.H., 
Davatzikos, C., Gur, R.C., Gur, R.E., Shinohara, R.T., Bassett, D.S., Satterthwaite, T.D., 2018. 
Linked dimensions of psychopathology and connectivity in functional brain networks. 
Nature Communications 9. 
Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., Fischl, B., 2014. Spurious group 
differences due to head motion in a diffusion MRI study. Neuroimage 88, 79-90. 
Zabihi, M., Oldehinkel, M., Wolfers, T., Frouin, V., Goyard, D., Loth, E., Charman, T., Tilmann, 
J., Banaschewski, T., Dumas, G., Holt, R., Baron-Cohen, S., Durston, S., Bolte, S., Murphy, D., 



 37 

Ecker, C., Buitelaar, J.K., Beckmann, C.F., Marquand, A.F., 2018. Dissecting the 
heterogeneous cortical anatomy of autism spectrum disorder using normative models. 
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging in press 
  
Zhang, C., Butepage, J., Kjellstrom, H., Mandt, S., 2018. Advances in variational inference. 
IEEE transactions on pattern analysis and machine intelligence. 
 


