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Abstract

Random microstructures of heterogeneous materials play a crucial role in the
material macroscopic behavior and in predictions of its effective properties. A
common approach to modeling random multiphase materials is to develop so-
called surrogate models approximating statistical features of the material. How-
ever, the surrogate models used in fatigue analysis usually employ simple mi-
crostructure, consisting of ideal geometries such as ellipsoidal inclusions, which
generally does not capture complex geometries. In this paper, we introduce
a simple but flexible surrogate microstructure model for two-phase materials
through a level-cut of a Gaussian random field with covariance of Matérn class.
Such parametrization of the covariance function allows for the representation of
a few key design parameters while representing the geometry of inclusions in a
more general setting for a large class of random heterogeneous two-phase me-
dia. In addition to the traditional morphology descriptors such as porosity, size
and aspect ratio, it provides control of the regularity of the inclusions interface
and sphericity. These parameters are estimated from a small number of real
material images using Bayesian inversion. An efficient process of evaluating the
samples, based on the Fast Fourier Transform, makes possible the use of Monte-
Carlo methods to estimate statistical properties for the quantities of interest
in a given material class. We demonstrate the overall framework of the use of
the surrogate material model in application to the uncertainty quantification in
fatigue analysis, its feasibility and efficiency, and its role in the microstructure
design.
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1. Introduction

Real materials, employed in engineering applications or that occur in nature,
possess random heterogeneous microstructures, which play a crucial role in their
macroscopic behavior and in determining their effective properties [1, 2, 3, 4, 5].
The determination of how particular microstructures lead to effective macroscale
properties has been a major goal of material science for decades. The particular
features of the microstructure of a material, as for example porosities, cracks,
polycrystalline shape and texture, etc., have an important impact on the life-
time of an industrial structure and highly depend on the choice of manufacturing
process. The standard paradigm is to split the design analysis of structures in
two steps. First, a global mechanical analysis is performed on the complete
structure using the constitutive law of the material, and second, a local fatigue
analysis based on the global stabilized stress-strain response is applied to a local
elementary volume element of material. Standard fatigue analysis is generally
based on a phenomenological formulae and only characterizes the average re-
sponse of the material, neglecting the microstructure variability at the material.
A micromechanical model representing the microstructure as a plastic inclusion
has been initially proposed by Orowan [6] and interpreted and developed later
for polycrysalline solids in [7]. Recently, methods have been proposed to analyze
the statistical output of the microstructure and to estimate not only the average
statistical lifetime, but also the spread of the lifetime due to the variability of
the microstructure [8].

A common approach to modeling random multiphase heterogeneous mate-
rials is to develop so-called surrogate models that ideally mimic key macroscale
features of the material. These models approximate the geometric distribution
of phases, and effective properties are calculated using homogenization, often
implemented using Monte-Carlo methods. Such surrogates for two-phase mate-
rials have been used to study and to characterize properties of the porous media,
e.g., permeability [9] or effective constitutive models [10, 11, 12, 13, 14, 15], in fa-
tigue and damage analysis [16, 17], in microstructure design [18]. However, these
models usually employ simple microstructure, consisting only of ideal geome-
tries such as ellipsoidal inclusions. Understandably, these idealized surrogate
models have limited use as they generally do not capture complex geometries
and distributions of phases such as inclusions.

Alternatively, realistic microstructures can be obtained experimentally by
extracting and analyzing samples from real materials, e.g., Computed Tomog-
raphy (CT) or Scanning Electron Microscopy (SEM). These methods are time-
consuming and expensive, possibly destructive, and cannot be deployed on a
large database. In order to complete the experimental databases, one can use
algorithms to generate artificial microstructures, based on the statistical infor-
mation from only a small number of original samples. Such stochastic recon-
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struction methods provide effective tools for efficient reproduction of heteroge-
neous microstructures [19, 20, 21, 22]. Recently developed methods based on
convolutional neural networks [23, 24] fall into this category. Although these
methods can lead to an accurate microstructure reconstruction, their mathe-
matical and statistical structures are often based on heuristic arguments.

In this paper, we first propose a simple but flexible surrogate microstructure
model for two-phase materials. Key design parameters of the microstructure are
provided, while the geometry of inclusions or pores is represented in a general
setting, which permits a close representation of the microstructure of materials.
In a second stage, we use the surrogate microstructure as the representative vol-
ume element (RVE) for a fatigue analysis of the Dang Van type [7, 25, 26, 27].
More precisely, we focus on the high cycle fatigue regime where both structure
and microstructure are in an elastic shakedown regime under an external cyclic
loading. The novelty is two fold: on one hand, we introduce realistic microstruc-
tures in the analysis, and on the other hand, we propose tools for a statistical
analysis of the results at the local scale of the elementary volume element.

We define our surrogate material model through a level-cut of a Gaussian
random field [28, 29, 30, 31, 32], called the intensity field. Such a model is
entirely controlled by the mean and the covariance function of this field. The
choice of the covariance defines the morphology of the microstructure. Thus,
considering the covariances from a given class constrains our design parameter
space. In our model we consider covariances of Matérn class [33, 34, 35]. In
addition to the traditional morphology descriptors such as porosity, size and
aspect ratio, this covariance class provides control of the smoothness of the
inclusion interface. This regularity parameter is also related to the sphericity of
pores or inclusions.

While defined only by a few ”design” parameters, such a surrogate model is
able to mimic a large class of random heterogeneous two-phase media. These
parameters can be estimated from a small number of real material images by
approximating the image statistical descriptors by the surrogate ones. Here,
we use Bayesian inversion to find the probability distributions of the design
parameters, from which they are then drawn for each material sample.

The intensity field is constructed by convolving the Matérn-type covariance
with the white noise. In the case of statistically homogeneous media, this can
be done by Fast Fourier Transform. Moreover, the Fourier Transform of the
Matérn covariance is given in a closed analytical form. This leads to a very
efficient sampling process, which makes possible the use of Monte-Carlo methods
to evaluate statistical properties for the quantities of interest in a given material
class.

An important goal of this work is to demonstrate the overall framework of
the use of the surrogate material model in applications to homogenization and
fatigue analysis, its feasibility and efficiency, and its role in the microstructure
design.

The paper is structured as follows. First, we describe in detail the proper-
ties and assumptions underlying the construction of a class of surrogate material
models in Section 2. We present the level-set of Gaussian field model (Subsec-
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tion 2.1), the Matérn covariance (Subsection 2.2) and the microstructure recon-
struction technique from real material images (Subsection 2.3). In Section 3,
we give the formulation of the associated linear elasticity problem together with
the description of quantities of mechanical interest used in fatigue analysis. The
simulation results are taken up in Section 4, including analysis and prediction
of damage evolution and failure (Subsection 4.1), and a discussion of the use
of the resulting models for the design of microstructure employing the process
parameters (Subsection 4.2). We present final discussions and conclusions in
Section 5.

2. Surrogate material model

Let us consider a random two-phase composite material in a bounded do-
main D ⊂ Rd, d = 2, 3, the phases representing a matrix with inclusions (e.g.,
pores, precipitates, etc.). For a particular microstructure realization, the mate-
rial phases are defined by the characteristic function

χ(xxx;ω) =

{
1, xxx in inclusion,

0, xxx in matrix,
xxx ∈ D ⊂ Rd, ω ∈ Ω, (1)

where Ω is the space of the material samples (as in [36]), such that each sample
point ω ∈ Ω corresponds to a realization of a spatial random field χ(xxx;ω),
xxx ∈ D. Thus, for a particular realization ω, the spatial distribution of a material
property κ over D can be written as

κ(xxx;ω) = κI · χ(xxx;ω) + κM · (1− χ(xxx;ω)), xxx ∈ D, ω ∈ Ω, (2)

where κI and κM are the corresponding properties of the inclusions and the
matrix, respectively.

2.1. Level-cut of a Gaussian field

The characteristic function of the material phase can be expressed as a level-
cut of an intensity field m(xxx;ω):

χ(xxx;ω) =

{
1, if |m(xxx;ω)| ≥ τ, inclusions,

0, if |m(xxx;ω)| < τ, matrix,
(3)

ω ∈ Ω, where the level τ ≥ 0 controls the volume fractions of the inclusions.
We define the intensity m(xxx) as a zero-mean Gaussian random field [37] with
covariance C(xxx,yyy). Suggested in earlier works of [38, 28, 29], the level-set model
is widely used in porous media reconstruction [30, 31, 39] and in geometric
inverse problems for interfaces [32, 40, 41].

Given (3), the formula (2) can be rewritten as

κ(xxx) =
κI + κM

2
+
κI − κM

2
· sign (|m(xxx)| − τ) .
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Let us denote the standard deviation of m(xxx;ω) by σ =
√
C(xxx,xxx). Then,

since sign (|m(xxx)| − τ) = sign
(
|m(xxx)|
σ − τ

σ

)
, we can consider the Gaussian field

σ−1m(xxx) instead of m(xxx) with the level parameter τ
σ . Thus, without loss of

generality, we can assume C(xxx,xxx) = 1 and thus σ = 1.
The first two moments of the random field χ(xxx, ω) are given in closed form,

similar to [42, 30], by the following lemma (see AppendixA for the proof).

Lemma 1. Let S1 = E [χ(xxx)] and S2(xxx,yyy) = E [χ(xxx)χ(yyy)] be respectively the
one- and two-point correlation functions [36] of the random field χ(xxx, ω) defined
by (3). Then, they can be written as

S1 = φ0 =

√
2

π

∞∫
τ

e−
1
2 t

2

dt, (4)

S2(xxx,yyy) =
2

π

C(xxx,yyy)∫
0

e
− τ2

1−t2 cosh

(
τ2t

1− t2

)
dt√

1− t2
+ φ2

0

= 2φ0 − 4T

(
τ,

√
1− C(xxx,yyy)

1 + C(xxx,yyy)

)
− 4T

(
τ,

√
1 + C(xxx,yyy)

1− C(xxx,yyy)

)
, (5)

where T (τ, x) = 1
2π

x∫
0

e−
τ2

2 (t2+1) dt
t2+1 is Owen’s T function [43, 44], and φ0

denotes the expected volume fraction of the inclusions (or porosity). It also
holds

S2(xxx,xxx) = φ0, lim
‖xxx−yyy‖→∞

S2(xxx,yyy) = φ2
0.

From (4), it follows that the level-set parameter τ is uniquely defined through
the given expected volume fraction φ0,

τ(φ0) =
√

2 erf−1(1− φ0), (6)

where erf(x) denotes the Gauss error function.

Remark 1. Defining in (3) the phase through the absolute value of m(xxx;ω), see
also [29, 42], allows us to distinguish the matrix and the inclusions for all values
of the inclusions volume fraction φ0. This departs from the model in [28, 30, 39],
where the phase is defined simply by the sign of m(xxx;ω) − τ , τ ∈ R, and the
”matrix” becomes ”inclusions” when φ0 > 0.5 (see Figure 1).

In this work, we primarily focus on statistically isotropic materials [36]. The
isotropy constraint on C(xxx,yyy) is taken for simplicity, but it does not limit the
generality of the approach. In this case, the covariance C(xxx,yyy) and, thus, the
two-point correlation S2(xxx,yyy) are rotationally invariant (stationary) and depend
only on the distance between the points:

S2(xxx,yyy) = S2(‖xxx− yyy‖), C(xxx,yyy) = C(‖xxx− yyy‖).

In what follows, we will write a stationary function of two arguments xxx and yyy
as a function of the distance r = ‖xxx− yyy‖.
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(a) Black phase defined by m(xxx;ω) ≥ τ(φ0) for φ0 = 0.2 (left) and 0.8 (right)

(b) Black phase defined by |m(xxx;ω)| ≥ τ(φ0) for φ0 = 0.2 (left) and 0.8 (right).

Figure 1: Comparison of two level-cut models for ”inclusions” (black phase) defined by (a)
m(xxx;ω) ≥ τ(φ0) and (b) |m(xxx;ω)| ≥ τ(φ0), for fixed ν = 1.5 and ` = 0.05, constructed from
the same white noise realization. The black phase volume fraction is φ0 = 0.2 (left) and 0.8
(right). The model (b), using the absolute value, allows to distinguish the matrix and the
inclusions for high volume fraction values.

2.2. Matérn covariance

The microstructure morphology of the above level-cut model is defined by
the covariance function C(xxx,yyy) of the intensity field m(xxx;ω). Parametrization of
this covariance provides the so-called ”design” parameters of the microstructure.
In general, this covariance can have an infinite dimensional parameter space. In
order to reduce the model and to have a limited number of design parameters,
one can consider a projection of the material onto a reduced material class, that
is, one may consider a parameterized class of covariance kernels. Here we use
the Matérn covariance class [33, 34, 35], that is of the form

C(xxx,yyy) = σ2Mν

(√
2ν · r

)
, r =

√
(xxx− yyy)ΘΘΘ−1(xxx− yyy), (7)

with unit standard deviation σ = 1 and Matérn kernel

Mν(x) =
1

2ν−1Γ(ν)
xν Kν(x)
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where Γ and Kν denote the Euler Gamma function and the modified Bessel
function of the second kind [45, 46, 47], respectively. The scalar parameter ν > 0
defines the differentiability (smoothness) of the field, while the second order
tensor ΘΘΘ defines the shape of inclusions. In particular, ΘΘΘ = `2 IdIdId corresponds to
an isotropic covariance with correlation length `. In general, ΘΘΘ can be written
through a rotation and scaling as

ΘΘΘ = RRRt

`
2
1

. . .

`2d

RRR,
where the matrix RRR defines a rotation of axes in Rd, and `k, k = 1, . . . , d, are
the correlation lengths in each axis direction.

The Matérn covariance model (7) is widely used in statistics [48, 49], geo-
statistics [50] and machine learning [51], and represents a large class of popular
covariance kernels. In particular, when ν varies from 0.5 to infinity, it presents
a continuous family of kernels from the exponential function to the square ex-
ponential (Gaussian), respectively.

It is shown in [33] that the Matérn covariance function is related to the
Green’s function of a stochastic PDE. Namely, the Gaussian random fieldm(xxx;ω)
with Matérn covariance (7) is the solution of the following linear stochastic PDE
in Rd, d ∈ N, [52, 53, 54](

Id− 1

2ν
∇ · (ΘΘΘ∇)

) 1
2 (ν+ d

2 )

m(xxx;ω) = ηW(xxx;ω), (8)

where W ∼ N (0, Id) is a spatial white noise in Rd, and the normalization
parameter η is given by

η2 =
(2π)

d
2

√
detΘΘΘ Γ(ν + d/2)

ν
d
2 Γ(ν)

.

In practice, equation (8) is solved on a bounded domain with arbitrary boundary
conditions [55, 56, 57].

In the general case, the shape operator can be spatially varying: ΘΘΘ = ΘΘΘ(xxx)
(see, for example, [53]), which leads to a non-stationary covariance. As men-
tioned above, we consider in this work the stationary covariance case and thus
the spatially invariant shape operator ΘΘΘ. This allows the solution of the equa-
tion (8) using the Fourier Transform:

m(xxx;ω) = F−1
{
Ĝ(ξξξ) · Ŵ(ξξξ;ω)

}
(xxx), (9)

where F−1 denotes the operator of the inverse Fourier Transform, Ŵ is the
Fourier Transform of the white noise W, and Ĝ is the Fourier Transform of
the Green’s operator for the operator in (8), which is given by (see [46, Vol.II,
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section 8.13, formula (3)])

|Ĝ(ξξξ)|2 =
(2π)

d
2

√
detΘΘΘ Γ(ν + d/2)

ν
d
2 Γ(ν)

·
(

1 +
1

2ν
ξξξ ·ΘΘΘξξξ

)−(ν+ d
2 )

. (10)

Use of the Fast Fourier Transform algorithm in convolution (9), along with
periodic boundaries, makes possible a fast generation of the synthetic samples.

Thus, given design parameters φ0 (or τ), ν and ΘΘΘ, the process of generating
a microstructure realization for the surrogate material model described above
can be summarized as follows:

1. Draw a realization of the spatial white noise W(xxx).

2. Compute the corresponding intensity field m(xxx) by solving (8). For the
stationary case, it is given by convolution (9), computed using FFT.

3. The characteristic function χ(xxx) of the inclusions phase is given by the
level-cut (3) of the intensity m(xxx).

This surrogate material model is completely determined by only a few design
parameters φ0, ν and ΘΘΘ. However, by varying these parameters, the model can
produce a large number of classes of random heterogeneous media (see examples
in Figure 2). Besides, the parameters have clear intuitive meanings:

• The parameter φ0 is the expected volume fraction of the inclusions (or
porosity).

• The regularity parameter ν defines the differentiability (smoothness) of
the inclusions interface.

• The shape operator ΘΘΘ defines the metric to measure the distance in the
covariance function and thus controls the form of the inclusions: their size,
anisotropy level (aspect ratio) and orientation.

Remark 2. In [58], it is shown that, given the white noise is almost sure
in H−d/2−ε(Rd), ε > 0, the solution of (8) is in Hν−ε(Rd). Then, from the
Sobolev embedding theorem, the intensity field m(xxx) is continuous for ν > d/2.
And for ν ≤ d/2, we deal with a discontinuous intensity field m(xxx), which
produces a disjoint particles microstructure (see Figure 2a).

The regularity parameter ν is also related to the pore sphericity, one of
the important parameters describing a microstructure [59, 60, 61]. We use the
sphericity definition, proposed in [62], and define the relative pore size r:

Sphericity =
π1/3(6Vpore)

2/3

0.833 · Spore
, r =

(
Vpore
Vtotal

) 1
3

, (11)

where Vpore and Spore denote the volume of the pore and the surface of the
pore interface respectively, and Vtotal is the total volume of the sample. A
correction factor of 0.833 is taken into account due to the digitized structure of
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(a) φ0 = 0.05, ν = 0.5,
`i = 0.05.

(b) φ0 = 0.05, ν = 1.5,
`i = 0.05.

(c) φ0 = 0.05, ν = 10,
`i = 0.05.

(d) φ0 = 0.1, ν = 1,
0.1 · `1 = `2 = `3 = 0.05.

(e) φ0 = 0.1, ν = 1,
0.1 · `1 = 0.1 · `2 = `3 = 0.05.

(f) φ0 = 0.8, ν = 10,
`i = 0.05.

Figure 2: Examples of surrogate material. (a)-(c) influence of the parameter ν: with poros-
ity φ0 and correlation lengths `i fixed, the smoothness of the pores increases with ν. (d)-(e)
anisotropic media examples. (f) high porosity value example.

the surface [61]. Figure 3 shows the distribution of the relative pore size and
the pore sphericity, computed for 3D surrogate samples of 29·3 ≈ 108 voxels.
We observe that with growing size the sphericity depends on ν: the larger ν
is, the more spherical are the pores. With the correlation length fixed, higher
porosity φ0 provides larger maximum pore size.

We use the Matérn covariance class because of its flexibility, i.e. it covers a
large variety of morphologies (microstructural shapes) with a relatively simple
parametrization. Nevertheless, other convenient covariance kernel can be used
instead (see, for example, [34, 48, 63, 30]). In the general case, in the absence of
an explicit formula for the power spectrum, like (10), it can always be directly
computed using FFT.

2.3. Bayesian inference of the model parameters

Let us suppose that several binary images (realizations ω) χ(xxx;ω) of a real
material are given. Under the stationarity assumption, we can approximate the
two-point probability function S2(r) of this material with the spatial average

Sdata2 (rrrn) =
1

Nn

∑
k

χ(xxxk)χ(xxxk + rrrn), (12)
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φ0 = 0.05

ν = 0.50 ν = 1.00 ν = 1.50 ν = 3.00 ν = 10.00
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0

0.2

0.4

Sphericity

r

φ0 = 0.2

Figure 3: Sphericity as a function of the relative pore size r, eq. (11), observed on 500
pores, with porosity φ0 = 0.05 (left) and φ0 = 0.2 (right) and varying ν (marked by color).
Computed for 3D surrogate samples of about 108 voxels.

where xxxk runs through all the voxels in all the provided images, χ(xxx) being
zero outside the images (zero padding), and Nn is the number of points xxxk +rrrn
belonging to the images. We compute the cross-correlation (12) using FFT with
zero padding.

The two-point probability function S2(r) = E [χ(xxx;ω)χ(xxx+ rrr;ω)], r = ‖rrr‖,
is the probability of the event when two points separated with distance r are in
the same phase. Then, the random variable zk(rrr;ω) = χ(xxxk;ω)χ(xxxk + rrr;ω) has
the Bernoulli distribution with parameter p = S2(r). In (12) we compute the
sum of ”trials” of z(r;ω,xxx), which is, thus, from the Binomial distribution. Since

this tends with a large number of trials to the normal distribution N
(
p, p(1−p)N

)
with the probability density function, we have

f

(
1

N

N∑
k=1

zk

)
≈ 1√

2πN−1 p · (1− p)
Exp

−
(

1
N

∑N
k=1 zk − p

)2

2N−1 p · (1− p)

 , ∀rrrn.

Thus, the product of the densities for all rrrn provides the likelihood for our
Bayesian inverse problem:

Likelihood =
∏
n

Constantn√
S2(rn) · (1− S2(rn))

Exp

(
−

(
Sdata2 (rrrn)− S2(rn)

)2
2N−1

n S2(rn) · (1− S2(rn))

)
,

where we can substitute the real two-point correlation S2(r) within our surrogate
model. The surrogate two-point probability function is given by formula (5):

Smodel2 (r;ξξξ) = 2φ0 − 4T

(
τ,

√
1− C(r;ξξξ)
1 + C(r;ξξξ)

)
− 4T

(
τ,

√
1 + C(r;ξξξ)
1− C(r;ξξξ)

)

10



where C(r;ξξξ) is the intensity field covariance kernel, φ0 is the average volume
fraction of the pores (porosity), τ is given by (6), and ξξξ denotes the vector of
design parameters of the model. In our case, C(r;ξξξ) is of Matérn type in the
form (7) with unit variance σ = 1, and ξξξ = (φ0, ν,ΘΘΘ).

Assuming a uniform prior, the posterior distribution is simply determined
by the Likelihood(ξξξ). We use the Laplace approximation of the posterior: we
approximate it with a multivariate lognormal distribution logN (log ξξξMLE ,ΣΣΣ),
where the maximal likelihood estimator ξξξMLE is given by

ξξξMLE = arg max
ξξξ∈Ξ

Likelihood(ξξξ), (13)

and the covariance matrix is approximated with

ΣΣΣ = −
(

d2 log Likelihood(ξξξ)

d(log ξξξ)2

)−1
∣∣∣∣∣
ξξξ=ξξξMLE

. (14)

In the isotropic case, we have ΘΘΘ = `2 IdIdId. Then ` simply plays the role of the
characteristic length scale and does not affect the microstructure morphology.
So, we simply fix ` ≡ `MLE as a deterministic parameter.

3. Fatigue Analysis: mechanical formulation

In what follows, we will perform a mechanical analysis on the surrogate
microstructure with periodic boundary conditions under a given mean cyclic
loading. The output of the computation will be analyzed in terms of quantities
of interest for a standard high cycle fatigue analysis. The goal is to estimate the
uncertainty of these quantities with respect to the variability of the underlying
surrogate microstructures. From the point of view of a fatigue design method,
the surrogate microstructure represents the material RVE and carries the statis-
tical features of the real material as discussed in the previous sections. Moreover,
the RVE represents a material point of a large structure and the given cyclic
loading is the local shakedown response of the structure under service loading.
In order to simplify the discussion and the subsequent computations, we will
next only consider an elastic material behavior for the RVE. This assumption
does however not restrain the generality of the present method and can be ap-
plied to materials with plasticity, viscosity, damage, etc., and can equally cover
multiples material phases.

3.1. Linear elasticity problem

Let D = (0, 1)3 be a representative volume element (RVE) of a heteroge-
neous two-phase material. The phases are defined by a stochastic characteristic
function χ(xxx;ω) as in (1), periodic on D. The material is submitted to the
macroscopic stress ΣΣΣ to be imposed on average on the RVE, which results in a
macroscopic strain EEE. Thus, for all xxx ∈ Rd, the total displacement field uuu(xxx) is
of the form [64]

uuu(xxx) = EEE · xxx+ ũuu(xxx), (15)
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where the fluctuation ũuu(xxx) is periodic on D.
Under the assumption of small strains, the local microscopic strain tensor

field, observed on the stochastic RVE after loading, is

εεε(xxx) =
1

2

(
∇uuu(xxx) +∇uuu(xxx)t

)
,

and then condition (15) can be written in terms of strains:

εεε(xxx) = EEE + ε̃εε(xxx), ε̃εε(xxx) =
1

2

(
∇ũuu(xxx) +∇ũuu(xxx)t

)
,

where ε̃εε(xxx) has zero mean and is periodic on D, and EEE denotes the macrostrain.
The local stress tensor field σσσ(xxx) is

σσσ(xxx) = CCC(xxx) · εεε(xxx) =
(
K(xxx)− 2

dG(xxx)
)

tr(εεε(xxx)) IdIdId+ 2G(xxx)εεε(xxx),

where CCC(xxx) is the fourth order stiffness tensor, K(xxx) and G(xxx) are the bulk and
shear moduli, respectively, which are defined by the phase χ(xxx):

K(xxx) = KI χ(xxx) +KM (1− χ(xxx)), G(xxx) = GI χ(xxx) +GM (1− χ(xxx)),

where KI , GI are the bulk and shear moduli of the inclusions, and KM , GM –
of the matrix, respectively. The equilibrium is given by

∇ · σσσ(xxx) = 0 in D,

∫
D

σσσ(xxx) dxxx = ΣΣΣ,

where ΣΣΣ denotes the macrostress.
Thus, for a given macrostress ΣΣΣ, we want to find the local strain field

εεε(xxx) = EEE + ε̃εε(xxx), such that the macrostrain EEE and the fluctuation ε̃εε(xxx) =
1
2 (∇ũuu(xxx) +∇ũuu(xxx)t) are the solution of the system

∇ ·
(
CCC(xxx) · ε̃εε(xxx)

)
= −∇ ·

(
CCC(xxx) ·EEE

)
in D, (16)∫

D

CCC(xxx) · (EEE + ε̃εε(xxx)) dxxx = ΣΣΣ,

ε̃εε(xxx) is periodic on D.

3.2. Mechanical Quantity of Interest for multidimensional loading

The high cycle fatigue analysis of metals is based on an elastic shakedown
assumption at the structural scale and on material observations at the micro-
scopic scale. Moreover, plasticity is driven by the deviatoric part of stresses, and
cracks and porosities are opened by the positive spherical part of the stresses,
which provides a natural split in the stress space. Therefore, a characteristic
loading path can be characterized by a combination of bulk and shear loading
as follows:

ΣΣΣθ =


1√
3

cos θ − 1√
2

sin θ 0

− 1√
2

sin θ 1√
3

cos θ 0

0 0 1√
3

cos θ
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= cos θ ·


1√
3

0 0

0 1√
3

0

0 0 1√
3

+ sin θ ·

 0 − 1√
2

0

− 1√
2

0 0

0 0 0

 ,

where the angle θ varies from 0 to π/2 and characterizes the share of hydrostatic
and deviatoric loading respectively. Lode coordinates of this loading are z =
cos θ, r = sin θ and θs = 0. In the stress space, the loading is a unit vector in
the meridional plane (z, r) and varies continuously from an isotropic traction
with eigenstress ( 1√

3
, 1√

3
, 1√

3
) obtained at θ = 0 to a pure shear with eigenstress

(− 1√
2
, 0, 1√

2
) obtained at θ = π/2.

We can compute for a given microstructure χ(xxx;ω), xxx ∈ D, the elastic
solutions σσσ0(xxx;ω) and σσσπ/2(xxx;ω) corresponding to the loads ΣΣΣ0 and ΣΣΣπ/2, re-
spectively. We decompose the local stress field σσσ(xxx) into a deviatoric part sssssssss =
σσσ − 1

3 tr(σσσ)IdIdId and a spherical part 1
3 tr(σσσ)IdIdId, and introduce the local ”trac-

tion” tr+(σσσ) = max(tr(σσσ), 0). Then, for each angle θ, we can obtain the associ-
ated quantities

tr+(σσσθ(xxx;ω)) = tr+

(
cos θ · σσσ0 + sin θ · σσσπ/2

)
(xxx;ω)

and

sssθ(xxx;ω) =

(
cos θ · sss0 + sin θ · sssπ/2

)
(xxx;ω)

and deduce the associated combined quantity of interest over the volume D

Q(ω, θ) =

√√√√ 1

|Ot(ω, θ)|

∫
Ot(ω,θ)

d(xxx;ω, θ)2dxxx, (17)

where
d(xxx;ω, θ) = ‖sssθ(xxx;ω)‖+ 0.3 · tr+(σσσθ(xxx;ω)) (18)

is the microscopic damage parameter, and ‖sss‖ =
√
sss : sss. This weighted com-

bination of deviatoric norm and of positive trace is often used in practical fa-
tigue criteria [65]. The slope 0.3 is an empirical value. The subdomain of
integration Ot(ω, θ) is here a ball of radius ` centered at the point xxx which
maximizes d(xxx;ω, θ), the pores being excluded.

We are interested in the expected value E [Q(θ)] and the variance Var [Q(θ)],
which are functions of θ, and the ”worst” loading combination will be the one
leading to the maximum expected value max

0≤θ≤π2
E [Q(θ)].

The quantity Q presents the mean squared damage parameter around the
maximum point. Since, in general, the maximum point can be a singularity,
the integral (17) of the damage parameter is preferred as quantity of interest.
Having the estimation of the damage parameter in hand, one can proceed with
the analysis of the number of loading cycles to failure [59, 65] or the failure
probability [66].
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4. Fatigue Analysis: results and discussions

In this section, we apply the surrogate microstructure model, discussed in
Section 2, to the linear elasticity problem, formulated in Section 3, in order to
perform a risk analysis of a heterogeneous material with respect to fatigue. Ac-
cess to the fast microstructure sampling algorithm allows the approximation of
the probability distribution of the fatigue criteria using Monte-Carlo methods.
Furthermore, we can construct in this way a mapping from the microstruc-
ture design parameters to quantities of interest, which can serve for analysis of
the influence of the microstructure morphology properties on the quantities of
interest. Thus, in this section, we discuss two types of results:

• First, using the Laplace approximation for Bayesian inference of the mi-
crostructure design parameters (see Section 2.3), a surrogate material is
reconstructed from a few CT images of a real material. The statistical
properties of the simplified fatigue criteria (17) for the surrogate material
are analyzed using the Monte-Carlo method, employing a fast Fourier-
based sampling process and linear elasticity solver.

• Second, we perform the sensitivity analysis of the fatigue criteria and
the homogenized elastic moduli with respect to the design parameters:
porosity φ0 and pore regularity ν. This makes possible the optimization
of the microstructure design with respect to fatigue.

All simulations have been performed using an Intel Xeon E5 processor (48x 3.00GHz)
and 504 GB RAM, computing Monte-Carlo samples in parallel. Each Monte-
Carlo iteration includes:

1. Sample surrogate microstructure using Matérn covariance kernel (Sec-
tion 2).

2. Solution of the linear elasticity problem (16) for the loadings θ = 0 and
θ = π/2 to obtain the local strains and stresses for the current microstruc-
ture sample (Section 3). Given the problem linearity, the results for in-
termediate loads θ ∈ (0, π/2) are computed as linear combination of the
cases θ = 0 and θ = π/2.

3. Computation of quantities of interest for the current sample (Subsec-
tion 3.2).

Runtime of one such iteration is about 1.5 s for a 2D sample of 28·2 ≈ 6.5 · 104

voxels, or about 70 s for a 3D sample of 27·3 ≈ 2 · 106 voxels.
The linear elasticity problem (16) is solved in terms of local strains, using

a Fourier-based Krylov solver, proposed by [67], which is a modification of
the original method of [68], providing the convergence in case of the infinite
contrast. See also [69, 70]. The problem is implemented with an in-house code
written in Python and C++, using FFTW [71] and PETSc [72] libraries for
the Fast Fourier Transform and the matrix-free conjugated gradient method
respectively. SciPy [73] and Numdifftools [74] packages have been used to solve
the optimization problem (13) and to compute the hessian (14) respectively.
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4.1. Fatigue analysis of a real material

We reconstruct an aluminum–silicon alloy, A319-LFC, studied in [66], using
six 2D CT images of the alloy (Figure 4, top). Using the Laplace approxima-
tion for Bayesian inference (see Section 2.3 for the procedure) of the design
parameters of the surrogate material model introduced in Section 2, we obtain[

log τ
log ν

]
∼ N

([
log 2.46
log 1.13

]
,

[
6.9 · 10−6 1.3 · 10−4

1.3 · 10−4 2.7 · 10−3

])
. (19)

The estimator τMLE corresponds to porosity φ0MLE ≈ 0.014, ν varies in (1.0, 1.26).
The correlation length is ` ≈ 0.256mm. With the design parameters in hand, we
can generate the surrogate microstructure samples in 2D or in 3D. The original
CT images and the surrogate 2D and 3D samples are presented in Figure 4. The
two-point correlation function S2(r) obtained with MLE parameters is traced
in Figure 5 (left) and compared with two-point correlations of original images
(computed as cross-correlations using FFT). In [66], the experimentally com-
puted distribution has been fitted with a lognormal and exponential distribu-
tions. In Figure 5 (right), we compare these reference distributions to the surro-
gate pore-size distribution, obtained from 10, 000 3D samples of 28·3 ≈ 1.6 · 107

voxels. We observe that both distributions are in very good agreement.
For the surrogate material, we compute the quantity of interest Q(θ) for

different loading types θ, using 20, 000 3D samples of 27·3 ≈ 2 · 106 voxels. The
angle θ is discretized with 45 equidistant points in [0, π/2]. The probability
distributions of the quantity of interest Q(θ) are shown in Figure 6 (left). The
”worst” loading case θmax, maximizing the average of Q(θ), is given by θmax ≈
0.3π. The associated distribution is also depicted in Figure 6 (right), along with
its lognormal fit.

4.2. Sensitivity to the design parameters

In what follows, Q is associated with the load θmax = max0≤θ≤π2 E [Q(θ)],
which corresponds to 0.3π < θmax < 0.32π. We want to study the sensitivity
of the quantity of interest Q (17) to the two design parameters: porosity φ0 and
pore regularity ν. To be representative, a volume element has to be of size much
larger than the correlation length `. So we consider a unit square as RVE and fix
` = 0.05. For each φ0 and ν, we solve the plane-strain problem (16) on 10, 000 2D
samples with 28·2 ≈ 6.5 · 104 voxels. Young’s modulus is 1GPa for the material
matrix and 0 in the pores, material Poisson ratio is 0.3. Solution examples for
ν = 0.5 and ν = 10 with porosity φ0 = 0.1 are shown in Figure 7. Figure 8
depicts the average of Q as function of porosity φ0 and of pore regularity ν. The
standard deviation is denoted with the error bars. We observe that the damage
parameter grows with the porosity and with the pore regularity. We note the
asymptotic behavior of Q when ν goes to infinity. This limit case corresponds
to infinitely differentiable pore interfaces, when the Matérn covariance of the
intensity field becomes a squared exponential covariance. We also note that the
influence of the parameter ν increases with the porosity. The standard deviation
of Q also grows with the porosity.
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(a)

(b)

(c)

Figure 4: Original samples (a) from [66] compared to the surrogate 2D (b) and 3D (c) samples.
Design parameters are given by (19). Level of gray serves for 3D representation.
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Figure 5: Left: the two-point correlation functions S2(r) of the original samples from [66]
(see Figure 4a) and of the associated surrogate model (Minimal Likelihood estimator) with
φ0MLE ≈ 0.014 and νMLE = 1.13. Right: comparison of the poresize probability distribution
of the surrogate material to the reference distributions from [66].
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Figure 6: Probability distribution of Qθ for different loads θ (left) and for the ”worst” load-
ing θmax ≈ 0.3π (right), which maximizes the average of Qθ.

Finally, in addition, we want to estimate the homogenized elastic moduli,
K (bulk) and G (shear). Figure 9 shows their averages as functions of poros-
ity, compared to the corresponding upper Hashin-Shtrikman bounds [5]. The
standard deviation is presented there with error bars. As before, we observe the
standard deviation growing with the porosity.

Figure 10 shows the scattering of the homogenized moduli over 100 samples
for each value of ν and fixed φ0 = 0.2. We remark that the parameter φ0 is the
average volume fraction, and thus the computed average K and G respect the
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Figure 7: Examples of solution: damage parameter field d(xxx) (18) for ν = 0.5 (left) and
ν = 10 (right) with porosity φ0 = 0.1, zoom of the zone of the maximum damage parameter.
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Figure 8: Average of Q as function of porosity φ0 (left) and of pore regularity ν (right).

bound. However, a particular realization has random volume fraction and can,
therefore, violate the bound (see Figure 10). For each sample, the associated

18



homogenized moduli are approximated as

K =
1

d
· trΣΣΣθ=0

trEEEθ=0
, G =

1

2
·

ΣΣΣθ=π/2

EEEθ=π/2
,

where ΣΣΣθ is the imposed macro stress, and EEEθ is the associated computed macro
strain (see Subsection 3.2).
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Figure 9: Homogenized elastic moduli K (bulk) and G (shear) as functions of porosity φ0 for
different values of ν, compared to the corresponding upper Hashin-Shtrikman bounds (HS).
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Figure 10: Scattering of the elastic moduli K (bulk) and G (shear) over 100 samples for
different values of ν (marked by color) and fixed porosity φ0 = 0.2 (left) and φ0 = 0.4 (right).
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5. Conclusion

In this work, we have demonstrated a framework for uncertainty quantifica-
tion in fatigue analysis using a surrogate microstructure model. The proposed
microstructure model presents a trade off between computational performance,
realistic random microstructure reconstruction and the small number of design
parameters.

The approach presented here is quite general, although for specifity we have
focused on the simple case of statistically isotropic media. The anisotropy can be
included through the shape operator ΘΘΘ in (7). Modifying the ratio of different
correlation lengths, we change the pore aspect ratio. In more sophisticated
cases, when ΘΘΘ(xxx) depends on the position, the sampling procedure can be still
based on the solution of the SPDE (8), however, the FFT can not be employed
any more.

In this work, we have considered covariances of Matérn class [33, 34, 35],
which presents a large class of covariance functions and provides enough flex-
ibility in material reconstruction. In addition to the traditional morphology
descriptors as porosity, size and aspect ratio, this covariance class provides the
regularity of the inclusion interface, which is also related to the pore spheric-
ity [59, 60]. In order to introduce more design parameters and thus extend the
class of possible reconstructed materials, one can consider other more general
covariance kernels [34, 48, 63, 30].

We also demonstrated the use of the model in the fatigue analysis, and
we have studied the influence of the regularity of the pore interface on the
statistical properties of the simplified fatigue criteria and of the homogenized
elastic moduli.
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AppendixA.

Proof of Lemma 1. We show the formulas (4)-(5) for S1 and S2 in two steps.
First, we consider S1. Since the intensity m(xxx;ω) is a Gaussian random field,
the mean of the phase χ(xxx;ω), defined by (3), satisfies

S1 =
1√

2πσ2

∞∫
−∞

χ[|ξ|>τ ] e
− ξ2

2σ2 dξ

=
1√
2π

∞∫
τ/σ

e−
1
2 ξ

2

dξ +
1√
2π

−τ/σ∫
−∞

e−
1
2 ξ

2

dξ =
2√
2π

∞∫
τ/σ

e−
1
2 ξ

2

dξ

Let us consider the volume fraction of all inclusions

φ(ω) =
1

|D|

∫
D

χ(xxx;ω) dxxx.

Then, its average over samples φ0 = E [ϕ] is

φ0 = E [φ(ω)] =
1

|D|

∫
D

E [χ(xxx;ω)] dxxx = E [χ] = P (|m| > τ)

=
1√

2πσ2

∞∫
τ

e−
ξ2

2σ2 dξ +
1√

2πσ2

−τ∫
−∞

e−
ξ2

2σ2 dξ

=
2√
π

∞∫
τ√
2σ

e−t
2

dt = S1,
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The mean volume fraction φ0 can be also directly related to τ by the Gauss
error function erf(·), i.e.,

φ0 = 1− erf

(
τ√
2σ

)
.

Now let us focus on S2. We denote the bivariate Gaussian covariance matrix
by

ΣΣΣ = σ2

[
1 g
g 1

]
, where g = C(xxx,yyy)/σ2,

where C(xxx,yyy) is the covariance function of the Gaussian field m(xxx;ω). Then,

detΣΣΣ = σ4(1− g2), ΣΣΣ−1 =
1

σ2(1− g2)

[
1 −g
−g 1

]
.

Hence, the two-point correlation function of the phase χ is given by

S2(xxx,yyy) =
1

2π
√

detΣΣΣ

∫
R2

χ[|ξ1|>τ ] χ[|ξ2|>τ ] e
− 1

2ξξξ
t·ΣΣΣ−1·ξξξ dξξξ

=
1

2π
√

1− g2

∫∫
{(−∞,−τ/σ]∪[τ/σ,∞)}2

e
− ξ

2
1−2g ξ1ξ2+ξ22

2(1−g2) dξ1 dξ2

= 2a
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τ/σ

∞∫
τ/σ

e
− ξ

2
1−2g ξ1ξ2+ξ22

2(1−g2) dξ1 dξ2 +
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τ/σ

−τ/σ∫
−∞

e
− ξ

2
1−2g ξ1ξ2+ξ22

2(1−g2) dξ1 dξ2


= 2a
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τ/σ
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τ/σ

(
e
− ξ

2
1−2g ξ1ξ2+ξ22
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− ξ

2
1+2g ξ1ξ2+ξ22
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dξ1 dξ2

= 4a
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(
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− (ξ1−gξ2)2+(1−g2)ξ22

2(1−g2) + e
− (ξ1+gξ2)2+(1−g2)ξ22

2(1−g2)

)
dξ1 dξ2,

where a = 1

2π
√

1−g2
. Let us denote with S−2 and S+

2 the integrals

S±2 =
2

π
√

1− g2

∞∫
τ/σ
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ξ2

e
− (ξ1±gξ2)2

2(1−g2)
− 1

2 ξ
2
2 dξ1 dξ2.

Thus, S2 = S−2 + S+
2 . Let us first consider the integral S−2 . After a change of

variable ξ̂1 = ξ1−gξ2√
1−g2

, it becomes

S−2 (xxx,yyy) =
2

π

∞∫
τ
σ
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ξ2−gξ2√
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1
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=
2
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√
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d
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, (A.1)

which can be written as

S−2 (xxx,yyy) = φ0 − 4T

(
τ

σ
,

√
1− g
1 + g

)
,

where

T (τ, x) =
1

2π

x∫
0

e−
τ2

2 (t2+1) dt

t2 + 1

is Owen’s T function [43, 44]. Similarly, changing the variable ξ̂1 = ξ1+gξ2√
1−g2

in S+
2 leads to

S+
2 (xxx,yyy) =
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(A.2)

Thus, we have

S2(xxx,yyy) = 2φ0 − 4T

(
τ

σ
,

√
1− g
1 + g

)
− 4T

(
τ

σ
,

√
1 + g
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)
.

Moreover, from

T (τ/σ, 0) = 0, T (τ/σ, 1) =
1

4
φ0(1− 1

2
φ0), T (τ/σ,∞) =

1

4
φ0,
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we have that S2(xxx,xxx) = φ0 and lim‖xxx−yyy‖→∞ S2(xxx,yyy) = φ2
0.

Alternatively, given T (τ/σ, 1) = 1
4φ0(1 − 1

2φ0), changing the variable z =√
1−t
1+t in (A.1) and z =

√
1+t
1−t in (A.2) leads respectively to
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and
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Hence,
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Similar but more general formula can be found in [42, eq.(33)].
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