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Abstract

Finite-amplitude thermal convection in a shear-thinning fluid layer between two horizontal plates

of finite thermal conductivity is considered. Weakly nonlinear analysis is adopted as a first approach

to investigate non linear effects. The rheological behavior of the fluid is described by the Carreau

model. As a first step, the critical conditions for the onset of convection are computed as a function

of the ratio ξ of the thermal conductivity of the plates to the thermal conductivity of the fluid.

In agreement with the literature, the critical Rayleigh number Rac and the critical wave number

kc decrease from 1708 to 720 and from 3.11 to 0, when ξ decreases from infinity to zero. In the

second step, the critical value αc of the shear-thinning degree above which the bifurcation becomes

subcritical is determined. It is shown that αc increases with decreasing ξ. The stability of rolls

and squares is then investigated as a function of ξ and the rheological parameters. The limit value

ξc, below which squares are stable, decreases with increasing shear-thinning effects. This is related

to the fact that shear-thinning effects increase the nonlinear interactions between sets of rolls that

constitute the square patterns [3]. For a significant deviation from the critical conditions, nonlinear

convection terms and nonlinear viscous terms become stronger leading to a further diminution of

ξc. The dependency of the heat transfer on ξ and the rheological parameters is reported. It is

consistent with the maximum heat transfer principle. Finally, the flow structure and the viscosity

field are represented for weakly and highly conducting plates.
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I. INTRODUCTION

Recently, a weakly nonlinear stability analysis of thermal convection in a layer of a

non-Newtonian fluid between two horizontal plates heated from below was considered by

Bouteraa et al. [3]. Assuming the fluid purely viscous and shear-thinning, Bouteraa et

al. [3] studied the influence of shear-thinning effects on the nature of the bifurcation,

the convection intensity and the pattern selection. The possibility of wall slip was taken

into account by using Navier’s slip law at top and bottom walls. It was shown that the

bifurcation is supercritical for moderately shear-thinning effects and becomes subcritical

for strongly shear-thinning effects. The critical value of the degree of shear-thinning αc

defined by Eq. (14), above which the bifurcation becomes subcritical is determined as a

function of a dimensionless slip length parameter. Bouteraa et al. [3] demonstrated that

near the threshold of the convection, only rolls are stable and this stability is reinforced by

the shear-thinning behavior. It is shown that shear-thinning effects increase the interaction

between sets of rolls that constitute square and hexagon patterns. In the above analysis, it

was assumed that the plates are of infinite thermal conductivity k̂p and heat capacity.

In experimental situations, however, the thermal conductivity of the plates is finite.

Furthermore, in some situations, the plates are much poorer conductors than the fluid. For

instance, in LeGal & Croquette [21], the plates are made of Plexiglas and the fluid is water.

The ratio ξ of the thermal conductivity of the plates k̂p to the thermal conductivity of the

fluid k̂ is ξ = 0.4. In Kebiche [18] and Kebiche et al. [19], the horizontal plates are made of

Polycarbonate and the fluid is an aqueous solution of CarboxyMethylCellulose or Carbopol,

the ratio ξ is estimated to ξ = 0.25. In these situations, as well as those encountered in

some engineering convection problems and in geophysics, the assumption that the plates are

held at fixed and uniform temperatures loses its validity. Indeed, temperature disturbance

penetrates the wall. More general boundary conditions have to be used. The temperature

and the heat flux obey a continuity equation at the boundaries.

For a Newtonian fluid, the effect of imperfect conducting plates on the Rayleigh-Bénard

convection was investigated by several authors. First, in the linear theory frame, Sparrow

et al. [32] and Hurle et al. [16] (see also Riahi [30], Clever & Busse [8] and Holmedal
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et al. [15] for plates of arbitrary thicknesses and conductivities) showed that the critical

Rayleigh number Rac and the critical wave number kc, vary continuously from 1708 to 720

and from 3.11 to 0, when the ratio of thermal conductivities decreases from infinity to zero.

According to Cerisier et al. [6] a temperature fluctuation occurring in the liquid close to a

nearly insulating plate persists and distorts the temperature distribution. This distribution

can led to instability of the fluid layer. As a consequence, the temperature gradient is small

and the fluid organizes in a pattern with a small wavenumber.

Exploiting the fact that for nearly insulating walls (ξ << 1), the horizontal scale of convec-

tion is much larger than the depth of the fluid, Busse & Riahi [4] considered weakly nonlinear

three-dimensional solutions in the case of infinitely thick plates. They showed that near

the onset, square convection cells are the stable planform, in contrast with two-dimensional

rolls which are the only stable convection pattern in a symmetrical situation with isothermal

boundary conditions. This result was confirmed and extended to fully nonlinear convection

by Proctor [28] using a “shallow water theory” adapted for the Rayleigh-Bénard convection

by Chapman & Proctor [7]. The thickness of the plates was assumed finite. Jenkins &

Proctor [17] considered three-dimensional finite-amplitude thermal convection with finite

thickness and finite thermal conductivity of the bounding plates. They determined the

critical value ξc of the thermal conductivities ratio at which the preferred planform changes

from square cell (ξ < ξc) to roll (ξ > ξc), as function of the Prandlt number. When the

thickness of the plates is of the same order as that of the fluid layer and for Pr ≥ 10, rolls

should be observed when ξ > 1 and squares when ξ < 1. This is in agreement with LeGal

& Croquette’s experiments [21].

The objective of the present paper is twofold. Firstly, to determine the critical value of

the shear-thinning degree above which the bifurcation becomes subcritical as a function of

ξ. Secondly, to study the influence of shear-thinning effects on ξc. We hope that our findings

will shed new light on the interpretation of the results obtained by Kebiche [18] and Kebiche

et al. [19], although the fluid used in [19] is not only shear-thinning but has also a yield stress.

The paper is organized as follows. In section II, the mathematical formulation of the

problem is presented. In section III, the linear stability analysis for the onset of convec-

tive flow is reinvestigated. The critical Rayleigh number (Rac) and wavenumber (kc) are
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determined as a function of ξ. Section IV presents briefly the procedure used in the weakly

nonlinear stability analysis. The results are discussed in section V. The critical value of the

shear-thinning degree above which the bifurcation becomes subcritical is determined as a

function of ξ. The pattern selection near the threshold of convection is investigated in terms

of α and ξ. For a significant deviation from the critical conditions, higher-order solutions

are computed in section VI. Section VII provides information on the flow structure and the

heat transfer. A concluding discussion is given in the last section of the paper.

II. PROBLEM FORMULATION

A. General equations and parameters

We consider a layer of shear-thinning fluid of depth d̂ confined between two horizon-

tal plates that are infinite in extent and which have a thickness Λd̂, where Λ is of order

unity. The outer surface of the bottom and top plates are kept at constant temperatures

respectively T̂0+∆ T̂ /2 and T̂0−∆ T̂ /2, with ∆T̂ > 0. The fluid has density ρ̂, thermal con-

ductivity k̂, thermal coefficient expansion (at constant pressure) β̂ and viscosity µ̂0 at zero

shear rate. The thermal conductivity of the slabs is k̂p. Because of the thermal expansion,

the temperature difference between the two plates, induces a vertical density stratification.

Heavy cold fluid is above a light warm fluid. For small ∆T̂ , the fluid remains at rest and

the heat is transferred by conduction. In the fluid, 0 < ẑ < d̂, the hydrostatic solution and

the temperature profile are:

dP̂

dẑ
= −ρ̂0ĝ

[

1− β̂
(

T̂ − T̂0

)]

and T̂cond = T̂0 +
∆T̂

1 + 2Λ/ξ

[

1

2
−

ẑ

d̂

]

, (1)

where, ĝ is the acceleration due to gravity. Here, the z-axis is directed upwards, with the

origin located at the bottom plate. The reference temperature T̂0 is the temperature in

the middle of the fluid layer and ρ̂0 is the fluid density at T̂0 . The temperature difference

between the top and the bottom of the fluid layer is ∆ T̂f = ∆ T̂ /(1 + 2Λ/ξ).

The temperature profile in the top and bottom plates are:

T̂cond = T̂0 +
∆T̂

ξ + 2Λ

[

1−
1

2
ξ −

ẑ

d̂

]

, d̂ ≤ ẑ ≤ (1 + Λ)d̂ (2)
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and

T̂cond = T̂0 +
∆T̂

ξ + 2Λ

[

1

2
ξ −

ẑ

d̂

]

, −Λd̂ ≤ ẑ ≤ 0. (3)

When ξ is low, a large part of ∆T̂ occurs across the plates, and remains only a small part

∆T̂f of ∆T̂ , acting as the driving force for the convection. When ∆Tf , exceeds a critical

value, the buoyancy force overcomes, the dissipative effects, i.e., viscous and heat diffusion,

the convection sets in and a so-called convective patterns emerge. The stability of the hydro-

static solution is considered by introducing temperature and pressure perturbation as well

as a fluid motion. Boussinesq approximation is adopted, i.e., the temperature dependence of

the fluid properties can be neglected except for the temperature induced density difference

in the buoyant force that drives the flow. The heat production due to viscosity is neglected.

Here and in what follows, the quantities with hat (̂.) are dimensional. Distances are scaled

with d̂, velocity with κ̂/d̂, where κ̂ is the thermal diffusivity of the fluid, time with d̂2/κ̂

(characteristic time scale of thermal diffusion), temperature with ∆T̂f , pressure and stresses

with κ̂µ̂0/d̂
2. Using these scales, the dimensionless perturbation equations read:

∇ · u = 0, (4)

1

Pr

[

∂u

∂t
+ u ·∇u

]

= −∇p +Ra θ ez +∇ · τ , (5)

∂θ

∂t
+ u ·∇θ = u · ez +∇

2θ , (6)

in the fluid, and

∂θ̃

∂t
=

κ̂p

κ̂
∇

2θ̃ , (7)

in the bounding slabs. Here, ez denotes the unit vector in the vertical direction, u(x, t) =

uex + vey +wez is the fluid velocity and p(x, t) and θ(x, t) represent the pressure and tem-

perature deviations from their values in the conduction state. The temperature perturbation

in the slabs is denoted θ̃(x, t). The position vector x has components x, y, z. The Rayleigh

number Ra and the Prandtl number Pr are defined by :

Ra =
ρ̂0ĝβ̂∆T̂f d̂

3

κ̂ µ̂0
; Pr =

µ̂0

ρ̂0 κ̂
. (8)

Generally, for non-Newtonian fluids, Pr >> 1, i.e., the viscous diffusion time is shorter than

the thermal diffusion time.
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B. Rheological model and parameters

The fluid is assumed to be purely viscous and shear-thinning. The viscous stress-tensor

τ = µ (Γ) γ̇ with γ̇ = ∇u + (∇u)T (9)

the rate-of-strain tensor, of second invariant

Γ =
1

2
γ̇ij γ̇ij. (10)

The Carreau model is given by

µ̂− µ̂∞

µ̂0 − µ̂∞

=
(

1 + λ̂2 Γ̂
)

nc−1

2

, (11)

with µ̂0 and µ̂∞ the viscosities at low and high shear rate, (nc < 1) the shear-thinning index,

λ̂ the characteristic time of the fluid. The location of the transition from the Newtonian

plateau to the shear-thinning regime is determined by λ̂, since 1/λ̂ defines the characteristic

shear rate for the onset of shear-thinning. Increasing λ̂ reduces the Newtonian plateau to

lower shear rates. The infinite shear viscosity, µ̂∞, is generally associated with a breakdown

of the fluid, and is frequently significantly smaller (10−3 to 10−4 times smaller) than µ̂0, see

Bird et al. [2] and Tanner [34]. The ratio µ̂∞/µ̂0 will be thus neglected in the following.

The dimensionless effective viscosity is then

µ =
µ̂

µ̂0
=

(

1 + λ2 Γ
)

nc−1

2 with λ =
λ̂

d̂2/κ̂
. (12)

The Newtonian behavior, µ̂ = µ̂0, is obtained by setting nc = 1 or λ̂ = 0.

For a small amplitude disturbance, the viscosity can be expanded about the hydrostatic

solution,

µ = 1 +

(

nc − 1

2

)

λ2 Γ +
1

2

(

nc − 1

2

)(

nc − 3

2

)

λ4Γ2 + ... (13)

At lowest nonlinear order, a relevant rheological parameter is the ‘degree of shear-

thinning’

α =

∣

∣

∣

∣

dµ

dΓ

∣

∣

∣

∣

Γ=0

=
1− nc

2
λ2. (14)
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C. Boundary conditions

For the perturbation velocity u, the conditions imposed on the top and bottom plates

are either no-slip (no-slip boundary conditions NSBC), which implies

u = 0 at z = 0, 1 (15)

or stress-free (stress-free boundary conditions SFBC), which implies

∂u

∂z
=

∂v

∂z
= w = 0 at z = 0, 1 (16)

For thermal boundary conditions, a constant and uniform temperature is assumed on the

outer surface of each plate

θ̃ = 0 at z = −Λ, 1 + Λ (17)

The continuity condition for temperature and heat flux are

θ = θ̃ at z = 0, 1, (18)

Dθ = ξDθ̃ at z = 0, 1. (19)

Where D ≡
∂

∂z
and ξ =

k̂p

k̂
.

Remark:

The governing equations (5) and (6) with the constitutive equation (9) and the boundary

conditions (15)-(19) are reflection-symmetric about the midplane z = 1/2. The action of

this so-called Boussinesq symmetry is

[u, v, w, θ, p] (t, x, y, z) → [u, v,−w, θ, p] (t, x, y, 1− z).

D. Reduction: elimination of the pressure

In the momentum equations, the pressure field can be eliminated using the curl of Eq.

(5). We then take the curl of Eq. (5) one more time. Using the continuity equation, and

projecting onto ez, we get the following evolution equations for the vertical vorticity ζ and
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the vertical velocity w:

∂ζ

∂t
+ ez ·∇× [(u ·∇)u] = Pr∆ζ + Pr ez ·∇× [∇ · (µ− 1)γ̇] , (20)

∂∇2w

∂t
− ez · [∇×∇× [(u.∇)u]] = Pr∆2w +RaPr∇2

Hθ − (21)

Pr [∇×∇× [∇ · (µ− 1)γ̇]] · ez ,

∂θ

∂t
+ (u ·∇) θ = w +∇

2θ , (22)

∂θ̃

∂t
=

κ̂p

κ̂
∇

2θ̃ , (23)

where

ζ =
∂v

∂x
−

∂u

∂y
and ∇

2
H =

∂2

∂x2
+

∂2

∂y2
.

From the continuity equation and the vertical vorticity definition, one can deduce the hori-

zontal velocity components (u , v):

∇
2
Hu = −

∂2w

∂x∂z
−

∂ζ

∂y
; ∇

2
Hv = −

∂2w

∂y∂z
+

∂ζ

∂x
. (24)

The boundary conditions for w are:

w = Dw = 0 at z = 0, 1 for NSBC, (25)

and

w = D2w = 0 at z = 0, 1 for SFBC. (26)

For the temperature, the boundary conditions are :

θ̃ = 0 at z = −Λ, 1 + Λ, (27)

θ = θ̃ at z = 0, 1, (28)

Dθ = ξDθ̃ at z = 0, 1. (29)

In the following, as in Chapman & Proctor [7], Proctor [28] and Carriere et al. [5], we will

assume that κ̂p/κ̂ = ξ.
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III. LINER STABILITY ANALYSIS

A. Critical conditions and critical modes

In the linear theory, u and θ are assumed infinitesimal. The nonlinear terms in (20)-(22)

can be neglected. We obtain :

1

Pr

∂ζ

∂t
= ∆ζ , (30)

1

Pr

∂∆w

∂t
= ∆2w +Ra∆Hθ , (31)

∂θ

∂t
= w +∆θ , (32)

∂θ̃

∂t
=

κ̂p

κ̂
∆θ̃. (33)

At this stage, no non-Newtonian effects enter the problem. The vertical vorticity de-

couples and obeys a diffusion equation and thus can be ignored in the linear theory. For

equations (31)-(33), we seek a normal mode solution










w(x, y, z, t)

θ(x, y, z, t)

θ̃(x, y, z, t)











=











F11(z)

G11(z)

G̃11(z)











f(x, y) exp (s t) , (34)

where s = sr+isi, is a complex number and f(x, y) satisfies the two-dimensional Helmoltz

equation ∆Hf = −k2f . Here k is the norm of the horizontal wavenumber k. Substituting

(34) into (31)-(33), leads to the differential equations

s Pr−1
(

D2 − k2
)

F11 = −k2RaG11 +
(

D2 − k2
)2

F11 , (35)

sG11 = F11 + (D2 − k2)G11 , (36)

s G̃11 =
κ̂p

κ̂
(D2 − k2)G̃11 . (37)

It may be shown easily that s is real. The boundary conditions are:

F11 = DF11 = 0 at z = 0, 1 For NSBC (38)

F11 = D2F11 = 0 at z = 0, 1 For SFBC (39)

G̃11 = 0 at z = −Λ, 1 + Λ, (40)

G11 = G̃11 at z = 0, 1 (41)

DG11 = ξDG̃11 at z = 0, 1 (42)
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The set of differential equations (35)-(37) is an eigenvalue problem where s is the eigen-

value and X11 = (F11, G11, G̃11) the eigenvector. It can be written

sM ·X11 = L ·X11 . (43)

Actually, Eq. (37) can be solved analytically:

G̃11(z) = G11(z = 1)
sinh

(

k̃ (1 + Λ− z)
)

sinh
(

k̃Λ
) ; 1 ≤ z ≤ 1 + Λ , (44)

G̃11(z) = G11(z = 0)
sinh

(

k̃ (Λ + z)
)

sinh
(

k̃Λ
) ; −Λ ≤ z ≤ 0 , (45)

with k̃ =
√

k2 + sκ̂/κ̂p. Hence, the eigenvalue problem (35)-(37) can be restrained to the

fluid domain, i.e. Eqs (35) - (36), with the boundary conditions

DG11 = ±ξk̃G11 coth k̃Λ ; z = 0, 1. (46)

The eigenvalue problem (35)-(36) with the boundary conditions (46) is solved using

a Chebyshev collocation method. The functions, F11 and G11 are expanded in series of

Chebyshev polynomial series of order N . The 2 (N + 1) unknowns are determined at the

Gauss-Lobatto nodes

zj =
1

2

(

cos

(

π j

N

)

+ 1

)

j = 0, 1, ..., N. (47)

Since k̃ depends on s, an iterative process is implemented. The eigenvector X11 is nor-

malized such that

G11(z = 1/2) = 1. (48)

The marginal stability curve Ra(k) is determined by the condition s = 0. The minimum

of the marginality stability curve gives the critical Rayleigh number Rac and kc respectively.

Figure ?? displays the variation of Rac and kc as a function of the ratio ξ of the thermal

conductivity of the boundary to that of the fluid in the case of NSBC and SFBC. The

dimensionless thickness of the plates is fixed at Λ = 1. These results are in very good

quantitative agreement with those obtained by Sparrow et al. [32], Proctor[28], Jenkins and

Proctor [17], Carriere et al. [5] and Cerisier et al. [6]. The wavelength of the convection

becomes larger with decreasing ξ and the critical Rayleigh number Rac is also reduced.
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FIG. 1. Critical Rayleigh number (a) and critical wavenumber (b) as function of ξ in the case of

NSBC (1) and SFBC (2).

Indeed, when a temperature fluctuation occurs in the liquid close to highly conducting wall,

it easily relaxes. Whereas, it can persist and distorts the temperature distribution when

the thermal conductivity of the boundary is very low. This temperature distortion can lead

to an instability. As a consequence, the critical Rayleigh number is smaller [6]. When the

convection flow starts, it distorts the originally horizontal isotherms. Since, this deviation

from the basic state occurs in the fluid layer as well as in the wall boundary, the wavelength

of the convection pattern becomes larger with decreasing ξ [36]. From mathematical point

of view, the decrease of Rac is caused by the weakening of the thermal boundary condition

(29) for θ as ξ decreases from 103 to 10−3. For a given thermal conductivities ratio, the

critical Rayleigh number for NSBC is greater than that for SFBC. The physical reason is

quite intuitive. In the case of NSBC, the friction of the fluid against the wall dissipates

more energy, therefore a hogher thermal gradient has to beimposed so that the convection

can start.

Additional properties of the critical mode are given by F11 and G11 at the critical conditions.

They are displayed in Fig. 2 for NSBC and SFBC and different values of ξ. As indicated

above, when ξ decreases, the temperature perturbation persists at the wall (Figs. 1c 1d,

curves 3, 2 and 1), reducing Rac and the velocity perturbation is damped (1a and 1b, curves

3, 2 and 1). The coupling betweeb the temperature perturbation θ in the fluid and that

in the horizontal plates θ̃ is illustated by Fig. 3(a), where contours of the temperature

perturbation at ξ = 1 are represented. For comparison, the case of large value of ξ, where

the temperature vanshes in the liquid vanishes at the boundaries is also represented (3 a).
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FIG. 3. Temperature perturbation contours for two values of the thermal conductivity ratio ξ: (a)

ξ = 1 and (b) ξ = 1000. In this latter case, the temperature perturbation in the liquid relaxes at

the boundaries.
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B. Adjoint mode

First, we need to define an inner product between two vectors f and g by

〈f , g〉 =

∫ 1+Λ

−Λ

f · gdz. (49)

The adjoint mode Xad associated to the critical mode X11, verifies the adjoint eigenvalue

problem

L+ ·Xad = 0. (50)

The adjoint operator L+ of operator L is defined by

〈Xad,L ·X〉 =
〈

L+ ·Xad,X
〉

. (51)

C. Characteristic time of the instability

Near the onset of convection, the growth rate Re(s) of the perturbation may be approx-

imated using Taylor expansion,

s =
ǫ

τ0
+O

(

ǫ2
)

with ǫ =
Ra− Rac

Rac
. (52)

The determination of the characteristic time follows the methodology described by Cross

[9], Plaut [26]. Explicitly, it is given by

τ−1
0 =

−k2
cRac 〈G11, Fad〉

〈G11, Gad〉+
〈

G̃11, G̃ad

〉

+ 1/Pr 〈(D2 − k2)F11, Gad〉
. (53)

The integrals are evaluated numerically by means of Clenshaw and Curtis method, in

terms of the critical conditions. Note that we consider F11 = G11 = 0 inside the slabs and

G̃11 = 0 in the fluid domain. Figure 4 shows the variation of τ0 as a function of ξ. As it

can be observed, The characteristic time of instability increases significantly as the thermal

conductivities ratio decreases. In other words, the time needed for the system to reach a

state of thermal equilibrium increases drastically with decreasing ξ.
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IV. WEAKLY NONLINEAR STABILITY ANALYSIS

A. Principles and procedure

A standar weakly nonlinear convection analysis using the amplitude expansion method

is adopted as a first approach to investigate nonlinear effects (see Stuart [33], Watson [35],

Reynolds & Potter [29], Sen & Venkateswarlu [31], Fujimura & Yamada [11], Generalis &

Fujimura [12]). At leading order, one writes

w(x, y, z, t) = f(x, y, t)F11(z) + c.c., (54)

θ(x, y, z, t) = f(x, y, t)G11(z) + c.c., (55)

θ̃(x, y, z, t) = f(x, y, t) G̃11(z) + c.c. (56)

The planform function which describes the convection pattern is

f(x, y, t) =
N
∑

p=1

Ap(t) exp (ikp · r) (57)

where |kp| = kc, and Ap(t) the amplitude of the perturbation. According to the normaliza-

tion of the eigenfunctions used in the linear theory, Ap(t) represents the amplitude of the

thermal perturbation measured at the midplane. Configuration with N = 1 corresponds

to rolls and N = 2 to squares. The weakly nonlinear analysis is applied to each of these

patterns. The configuration with N = 3 corresponding to hexagons is not considered here.

Further calculations show that this three-dimensional pattern is unstable.
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In the neighborhood of the critical conditions, the dynamics are assumed to be determined

by the fundamental disturbance with wavenumber k = kc, its higher harmonics generated by

the nonlinear self-interactions and the modification of the base state due to the interaction

with the complex conjugate. As in Stuart [33], Watson [35], Herbert [14], the disturbance

is expanded in harmonic series and the coefficient of each harmonic is further expanded in

an asymptotic series with disturbance amplitude as a small parameter.

In the case of rolls, the velocity and the temperature disturbances are expanded as follows:

(

w(x, z; t), θ(x, z; t), θ̃(x, z; t
)

=
∑

m=1

(

F0,2m(z), G0,2m(z), G̃0,2m(z)
)

|A|2m + (58)

∑

n=1

∑

m=0

[(

Fn,n+2m)(z), Gn,n+2m)(z), G̃n,n+2m)(z)
)

|A|2mAnEn + c.c.
]

,

where c.c. means the complex conjugate of its preceding expression, En = einkcx;, n de-

notes the harmonic index and m indicates the asymptotic order. The time evolution of the

amplitude A(t) is given by the Stuart-Landau equation

dA

dt
= g0A+ g1 |A|

2A+ g2 |A|
4A+ ... (59)

In Eq. (59), g0 = s is the linear growth rate and g1 is the first Landau constant. The sign of

g1 determines whether the nature of the bifurcation is supercritical (g1 < 0) or subcritical

(g1 > 0). Substituting expansions (58) and (59) into (21)-(23) yields after some algebra the

differential equation for any Fn,2m+n , Gn,2m+n and G̃n,2m+n, which are solved sequentially

beginning from n = 1 and m = 0.

The problem with harmonic index n = 1 and amplitude order m = 0 is the linear stability

problem (35)-(37). The problem n = 0, m = 1 is O(A2) correction of the conductive temper-

ature profile due to nonlinear interactions. The problem n = 2, m = 0 is the first harmonic

of the fundamental mode which manifests at order O(A2). The problem n = 1, m = 1

is O(A3) correction to the fundamental mode. It contains nonhomogeneous terms due to

nonlinear interations. The application of the Fredholm alternative allows the determination

of the first Landau constant (the first correction to the linear growth rate) which appears in

the time derivative of w, θ and θ̃. It can be shown that g1 is the sum of contributions of two

terms gI1 arising from the nonlinear inertial terms and gV1 arising from the nonlinear viscous

terms. Since at the lowest order µ = 1− αΓ, Eqs. (13) and (14), where α = 1−nc

2
λ2, then

g1 = gI1 + gV1 with gV1 − αgNN
1 (60)
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B. Numerical method

In the above sections, the nonlinear stability problem is reduced to a sequence of dif-

ferential equations. As in the linear problem, they are solved using a spectral collocation

method based on Chebyshev polynomials. The differential equations are collocated at Gauss-

Lobatto points. The integrals involved in the determination of the first Landau constant are

calculated using Clenshaw and Curtis method.

V. RESULTS AND DISCUSSION

A. Bifurcation to rolls

The first Landau constant g1 as well as the different contributions g
I
1 and gNN

1 are deter-

mined for different critical sets (Rac, kc, ξ, P r).

In Fig.5(a) , we plot gI1 as a function of ξ. As expected, gI1 is negative, i.e., the bifurcation

is supercritical for a Newtonian fluid. The absolute value of gI1 decreases with decreasing ξ

and |gI1| → 0 when ξ → 0. Note that gI1 is sensitive to change in ξ mainly when 0.1 ≤ ξ ≤ 5.

For Pr ≥ 1, the analysis of the contribution to gI1 arising from the different nonlinear in-

teractions shows that gI1 is dominated by the nonlinear thermal convection terms involving

the mofication of the conductive temperature profile, for all the range of ξ considered. The

contribution of the nonlinear inertial term is practically negligible.

As it can be observed, gNN
1 is negative, and gV1 = −αgNN

1 > 0. Therefore, shear-thinning

effects promote a subcritical bifurcation. In Fig. 6 we plot g1 as a function of ξ for different

values of α. For low shear thinning effects, g1 < 0 and the bifurcation is supercritical, while

for sufficiently high shear-thinning effects, g1 > 0 and the bifurcation is subcritical. Using

Eqs. (60), the critical degree of shear-thinning αc above which the bifurcation changes from

supercritical to subcritical is given by

αc =
gI1
gNN
1

. (61)

Figure 7 shows the variation of αc as a function of ξ at Pr = 10, for NSBC and SFBC. The

more ξ is low, the more the degree of shear-thinning α of the fluid must be high to obtain

a subcritical bifurcation. This is due to the reduction of the convection intensity when ξ

decreases. This effect is even more pronounced in the case of SFBC. Note that, the largest
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variation of αc with ξ occurs mainly for 10−2 ≤ ξ ≤ 10.
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1. Bifurcation to squares

For square patterns, considered as the superposiution of two perpensicular sets of rolls,

the amplitude equations are [13]:

dA1

dt
= sA1 +

[

g1A
2
1 + λ1A

2
2

]

A1 , (62)

dA2

dt
= sA2 +

[

g1A
2
2 + λ1A

2
1

]

A2 . (63)

As for g1, the coefficient of cross saturation λ1 is obtained by invoking the solvability con-

dition and can be written as:

λ1 = λI
1 − αλNN

1 . (64)
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The numerical results indicate that λI
1 and λNN

1 are negative and their variation with ξ

is similar to that of gI1 and gNN
1 respectively. The critical value of α above which, the

bifurcation becomes subcritical is given by

αc =
gI1 + λI

1

(gNN
1 + λNN

1 )
(65)

The variation of αc as a function of ξ, at Pr = 10, is depicted in Fig. 8 for NSBC and

SFBC. As in the case of rolls, αc increases with decreasing ξ.

The influence of Prandtl number on αc is shown in Figure 9 for two limit values of ξ:

10−3 and 103. Note that for Pr ≥ 10, αc no longer depends on Pr. However, when Pr < 1,

αc increases strongly as Pr decreass.
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B. Pattern selection

In this section, we investigate the pattern selection on a square lattice. The calculation

proceeds in two stages. First, the possible steady states solutions of the amplitude equations

are determined. Then, their linearized stability is determined by computing the eigenvalues

of the linearized system around each solution. A solution is stable if all its eigenvalues are

negative.

The system of amplitude equations for a square lattice are given by Eqs (62) and (63). The

coefficients s, g1 and λ1 in these equations depend on the rheological parameters and on the

reduced Rayleigh number ǫ = (Ra− Rac) /Rac. The stationary solutions are obtained by

setting fi (A1, A2) = 0, where fi is the right hand side of the amplitude equations. Their

stability is determined by the sign of the eigenvalues χi of the Jacobian matrix Jij =
∂fi
∂Aj

evaluated at the steady states. In the following, the stability of the stationary solutions is

examined in details.

(i) Conduction state, A1 = A2 = 0. The eigenvalues associated to this state are χ1 = χ2 = s.

The conduction state is stable if ǫ < 0 and undergoes a stationary bifurcation at ǫ = 0.

(ii) Steady convection with rolls parallel to ex or ey , A1 =
√

−s/g1, A2 = 0 or A1 = 0, A2 =
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√

−s/g1. The eigenvalues associated to this state are: χ1 = −2s and χ2 = s
g1 − λ1

g1
.

(iii) Steady convection with square patterns, A1 = A2 =
√

−s/(g1 + λ1). The eigenvalues

associated to this steady state are χ1 = −2s and χ2 =
2 s (λ1 − g1)

λ1 + g1
.

In the supercritical regime, i.e. s > 0 and χ1 < 0. The sign of χ2 depends on the ratio λ1/g1.

It is represented in Fig. 10 as a function of ξ for different values of α. When |λ1| > |g1|,

χ2 is positive and the squares are unstable. According to [10], the interaction between the

two sets of rolls is too strong and one of the two sets of rolls nonlinearly damps out the

other. When |λ1| < |g1|, χ2 < 0 and the squares are stable. The critical value of ξ at which

the planform of convection changes from square-cell solution (ξ < ξc) to two-dimensional

roll solution (ξ > ξc) is given as a function of α in Fig. 11. In the Newtonian case, i.e.

α = 0, ξc = 1. This result is in agreement with that given by Jenkins and Proctor [17].

With increasing shear thinning effects, the interaction between the two sets of rolls of a

square-cell increases, reducing by this way, ξc.

VI. SOLUTIONS AT HIGHER ORDER

Figure 11 is obtained by truncating the series (59) to the first Landau constant, i.e. at

cubic order in A. For a significant deviation from the critical conditions, terms of higher
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order become large and should be taken into account. A weakly nonlinear expansion was

then carried out up to fifth-order in amplitude. Figure 12 shows the evolution of ξc versus

the reduced Rayleigh number, ǫ, for different values of the constant time of the fluid λ. The

shear-thinning index is fixed to n = 0.5. The intensity of convection increases with increasing

ǫ. The interaction between the two sets of rolls, via nonlinear inertial and nonlinear viscous

terms become stronger leading to a diminution of ξc.
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VII. HEAT TRANSFER, FLOW STRUCTURE AND VISCOSITY FIELD

In the present section, information on the heat transfer, the flow structure and viscosity

field in rolls and squares are provided. The influence of shear-thinning will be emphasized.

A. Heat transfer

The heat transfer through the horizontal fluid layer is described by the Nusselt number,

Nu, the ratio of the total heat flux to the purely conductive heat flux in the absence of fluid

flow. It can be calculated either at the lower or upper plate. At the lower plate, we have

Nu = 1−

(

∂θ̄

∂z

)

z=0

= 1−
N
∑

p=1

M
∑

m=1

[

A2m
p (DG02m)z=0

]

− S A2
1A

2
2 (DG04)z=0 (66)

where the overbar denotes the horizontal average over one wavelength, N = 1 corresponds

to rolls and N = 2 to squares, M = 1, when the series (59) is truncated at the third order,

and M = 2, when (59) is truncated at the fifth order, S = 1 for squares and S = 0 for rolls.

The term DG04 arises from the interaction between modes with different eigenvectors. The

unperturbed solution, Nu = 1, corresponds to the hydrostatic solution. The second term of

Nu refers to the convective transfer.

Figure 13 shows for a two-dimensional roll solution computed at the fifth-order, the evolution

of Nu − 1 as a function of ǫ for different values of ξ. The Nusselt number decreases with

decreasing ξ. When ξ → 0, i.e. for poorly conducting plates, Nu → 1. The convection in

the fluid layer will not contribute to the overall heat transfer. For ξ = 1000, to represent

the case of perfectly conducting walls, our results are in good agreement with the numerical

solution of (21) and (22) obtained using the spectral code of [27], at least up to ǫ = 0.25. The

influence of shear-thinning effects is illustrated by the dotted curves. The Nusselt number

increases with increasing shear-thinning effects (Pierre & Tien [25], Liang & Acrivos [22],

Ozoe & Churchill [24], Lamsaadi et al. [20], Aloui et al. [1], Bouteraa et al. [3]. For low

values of ξ, the influence of shear-thinning effects is reduced. Figure 14 shows Nu− 1 as a

function of ǫ for rolls and squares at two values of ξ : 0.1 and 1. At ξ = 0.1, the Nusselt

number is larger for squares than for rolls, while at ξ = 1, Nu is greater for rolls than for

squares. The differences are small but notable and in agreement with the maximum heat

transfert principle: the only stable solution is the one of maximum heat transport (Malkus
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FIG. 13. Nusselt number as a function of the reduced Rayleigh number ǫ in the case of NSBC at

Pr = 10 and for three values of ξ. The Continuous lines correspond to a Newtonian fluid and the

dashed lines to a shear-thinning fluid with n = 0.5, λ = 0.02; (�) numerical solution of (21) and

(22) obtained using the spectral code of Plaut & Busse [27] in the case of a Newtonian fluid with

perfectly conducting walls.

& Veronis [23])

B. Viscosity field

The viscosity distribution for rolls and square cells, computed at the fifth order in am-

plitude, is shown in Fig. 15 for ǫ = 0.2. Two values of ξ are considered. The first one is

ξ = 1000, where rolls are stable and the second one is ξ = 0.1 where squares are stable. For

the rheological parameters, we set n and λ such that α = 0.2αc.

Rolls, ξ = 1000 with NSBC. The viscosity field and the flow structure are illustrated by Fig

15(a). The interior of the roll is practically isoviscous with µ ≈ 1. The viscosity is minimal

at the wall where the shear-rate is maximal. It is weakly reduced at the four corners of the

roll because of the elongational rate γ̇zz = −γ̇xx.

Squares, ξ = 0.1 with NSBC. Because of the symmetry of the solution, considered as a

superposition of two equal strength perpendicular roll sets in the x- and y- directions, no
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FIG. 14. Nusselt number as a function of the reduced Rayleigh number ǫ in the case of NSBC with

Pr = 10 and for two values of ξ. (a) Newtonian fluid, (b) shear-thinning fluid with n = 0.5 and

λ = 0.02. The Continuous lines correspond to rolls and the dashed lines to squares.

fluid passes through the vertical diagonal planes and the vertical cell boundaries. Since the

amplitude equations on a square lattice involve A in the form of A2, there are two equi-

probable opposite motions (as for rolls). In the first one, the fluid is downwardly directed

in the cell centre and upwardly through the vertical cell boundaries. In the second one,

the fluid is upwardly directed in the cell centre and downwardly through the vertical cell

boundaries. We have chosen to represent the second case. The vertical velocity profile is

shown in Fig. 15(c) for NSBC ans SFBC. The viscosity field and the flow structure are
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displayed in Fig. 15(b). At the wall and around the stagnation points (light region in the

figure), the viscosity is weakly reduced. The viscosity is minimal at locations (dark region

in the figure) where the shear rates γ̇xz and γ̇yz are maximal.

VIII. CONCLUSION

We have investigated the influence of shear-thinning effects on the convection in a hor-

izontal layer of a shear-thinning fluid between two horizontal symmetric plates of finite

thermal conductivity. The rheological behavior of the fluid is described by the Carreau

model. The critical Rayleigh number Rac and wavenumber kc for the onset of convection

are determined as a function of the ratio ξ of the thermal conductivity of the plates to that

of the fluid. As the fluid viscosity at zero shear rate is constant, the values of Rac and kc in

NSBC and SFBC are in very good quantitative agreement with those given in the literature

for a Newtonian fluid. Additional results dealing with the characteristic time of instability

τ0 are provided. It is found that τ0 increases significantly when ξ < 1. The nature of

the bifurcation to rolls and squares has been determined using a three-dimensional weakly

nonlinear approach of amplitude equations. The critical value of the shear-thinning degree

αc above which the bifurcation becomes subcritical is determined as a function of ξ. It is

shown that αc increases with decreasing ξ. This variation occurs mainly for 10−2 ≤ ξ ≤ 10.

For ξ > 10, αc is practically the same as for perfectly conducting plates. The numerical

results indicate also that αc is independent of Pr when Pr > 10. The stability of rolls

and squares is then investigated as a function of ξ and the rheological parameters. In the

Newtonian case, squares are stable when ξ < 1, in agreement with [17]. In the case of

shear-thinning fluids, an additional nonlinear coupling between modes is introduced by the

rheological law. This leads to a decrease of the crtical value of ξ below which squares are

stable.

By considering the amplitude expansion at the fifth order, the range of validity of the weakly

nonlinear analysis is extended and the domain of stability of the square pattern in the (ξ, ǫ)

plane is determined. These results are consistent with the maximum heat-transfer principle.

In the weakly nonlinear approach, it is assumed implicitly that the dynamics is dominated

by the fundamental mode. We intend to analyse the stability of the convective patterns, in
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the space Rayleigh-wavenumber, as a function of ξ and shear-thinning effects.
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