
HAL Id: hal-02447264
https://hal.science/hal-02447264

Submitted on 21 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Generic Web Content Extraction with Open-Source
Software

Adrien Barbaresi

To cite this version:
Adrien Barbaresi. Generic Web Content Extraction with Open-Source Software. KONVENS 2019,
Oct 2019, Erlangen, Germany. pp.267-268. �hal-02447264�

https://hal.science/hal-02447264
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr


Generic Web Content Extraction with Open-Source Software

Adrien Barbaresi
Center for Digital Lexicography for the German Language (ZDL)

Berlin-Brandenburg Academy of Sciences (BBAW)
Jägerstraße 22/23 D-10117 Berlin

barbaresi@bbaw.de

Abstract

Web corpus construction involves numer-
ous design decisions. The software pack-
ages presented here can help facilitate col-
lection and enhance corpus quality.

1 Problem description

Large “offline” web corpora are now standard
throughout disciplines among the research commu-
nity. Corpus construction notably involves “crawl-
ing, downloading, ‘cleaning’ and de-duplicating
the data, then linguistically annotating it and load-
ing it into a corpus query tool.” (Kilgarriff, 2007)
As such, this process involves a significant number
of design decisions and turning points in data pro-
cessing. Depending on the purpose of data collec-
tion, a substantial filtering and quality assessment
may also be needed. While some large-scale algo-
rithms can be expected to smooth out irregularities,
uses requiring a low margin of error as well as close
reading approaches imply constant refinements and
improvements in the constitution of the dataset and
its processing, for example in the context of an ag-
gregated lexical information platform (Geyken et
al., 2017).

Recently, approaches using the CommonCrawl1

have flourished as they allow for faster download
and processing by skipping (or more precisely out-
sourcing) the crawling phase. Barring the fact that
finding one’s “own” way through the Web can be
preferable, it is clear that such data should not be
used without some filtering. Corresponding to the
potential lack of metadata is a lack of informa-
tion regarding the content, whose adequacy, focus
and quality are the object of a post hoc evaluation
(Baroni et al., 2009). Because of the vastly increas-
ing variety of corpora, text types and use cases,
it becomes more and more difficult to assess the
usefulness and appropriateness of certain web texts

1https://commoncrawl.org

for given research objectives. Most notably, an es-
sential operation in corpus construction consists in
retaining the desired content while discarding the
rest, a polyonymous task referring to peculiar sub-
tasks or to the whole, most notably web scraping,
boilerplate removal, web page cleaning, or web
content extraction (Lejeune and Zhu, 2018).

Consequently, a significant challenge lies in the
ability to extract and pre-process web data to meet
scientific expectations with respect to corpus qual-
ity (Barbaresi, 2019b). In the following, two li-
braries grounding on previous efforts (Barbaresi,
2016) are presented which can help enhancing the
quality of webcorpora. They are both relying on
Python, currently one of the most used program-
ming languages, within and outside of academia.2

2 htmldate: finding the publishing date

The htmldate library (Barbaresi, 2019a) can find
both the original and the updated publication dates
of web pages. It involves a rule-based examination
of the semantic structure of HTML documents, us-
ing a combination of tree traversal, common struc-
tural patterns, text-based heuristics and robust date
extraction. First, it uses the markup in the docu-
ment header, where common patterns are used to
identify relevant elements (e.g. link and meta ele-
ments) including common standards and idiosyn-
cracies of content management systems. Second,
it looks for cues within the HTML code as the
whole document is searched for structural mark-
ers: abbr/time elements and a series of attributes
(e.g. postmetadata). Finally, a series of heuristics
is run on text and markup. The library currently
focuses on texts written in English and German, it
is used in production and is documented online.3

2Python Software Foundation, http://www.python.org
https://spectrum.ieee.org/computing/software/the-top-
programming-languages-2019

3https://github.com/adbar/htmldate

Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
Distributed under a CC BY-NC-SA 4.0 license.

267

https://creativecommons.org/licenses/by-nc-sa/4.0/


3 trafilatura: targeting the main content

The second software component focuses on the
main content, which is usually the part displayed
centrally, without the left or right bars, the header
or the footer, but including potential titles and com-
ments. Distinguishing between whole page and
essential parts can help to alleviate many quality
problems related to web texts. While this is partic-
ularly useful for de-duplication, other tasks related
to content extraction also benefit from a cleaner
text base. In the concrete case of linguistic and lex-
icographic research, it allows for content checks on
the only portion of the document that really counts.

Although most corresponding Python modules
are not actively maintained, the following alter-
natives perform similar tasks: dragnet4 features
combined and machine-learning approaches, but
requires many dependencies as well as extensive
tuning; python-readability5 cleans the page and pre-
serves some markup but is mostly geared towards
news texts; html2text6 converts HTML pages to
Markup language and thus keeps the structure, but
it doesn’t focus on main text extraction. Another
issue resides in the lack of output formats corre-
sponding to corpus linguists’ needs for document
storage and processing, e.g. XML formats such as
TEI/XML following the recommendations of the
Text Encoding Initiative.7

The trafilatura library (Barbaresi, 2019c)
scrapes the main text of web pages while preserv-
ing some structure, which is equivalent to boil-
erplate removal, DOM-based content extraction,
main content identification, and HTML text clean-
ing. The extraction focuses on original text and
can help with the noise consisting of recurring el-
ements (headers and footers, ads, links/blogroll,
etc.). It has to be precise enough not to miss texts
or discard valid documents, it also has to be rea-
sonably fast, as it is expected to run in production
on millions of documents. The processing result
can be in plain text or XML format. In the latter
case, basic formatting elements are preserved such
as text formatting (bold, italic, etc.) and page struc-
ture (paragraphs, titles, lists), which can be used
for further processing.

This is work in progress8, currently experimental

4https://github.com/dragnet-org/dragnet
5https://github.com/buriy/python-readability
6https://github.com/Alir3z4/html2text
7https://tei-c.org
8https://github.com/adbar/trafilatura

features include the extraction of comments (sepa-
rated from the rest), duplicate detection at sentence,
paragraph and document level using a least recently
used (LRU) cache, TEI/XML output, and language
detection on the extracted content.

4 Conclusions

This ongoing work constitutes a step towards the
ability to extract and pre-process web texts in or-
der to make them available in clearly definable
and coherent collections. In both software com-
ponents presented here, all the operations needed
from web page download to HTML parsing are
handled, including scraping and textual analysis.
URLs, HTML files or parsed HTML trees are given
as input and the libraries output strings in the de-
sired format. They can be used on common op-
erating systems, by themselves, within Python, or
on the command-line. Their versatility allows for
work on different languages and corpus types as
well as for inclusion in various processing chains.

References
Adrien Barbaresi. 2016. Efficient construction of

metadata-enhanced web corpora. In Proceedings of
the 10th Web as Corpus Workshop, Annual meeting
of the ACL 2016, pages 7–16. Association for Com-
putational Linguistics.

Adrien Barbaresi. 2019a. htmldate.
https://doi.org/10.5281/zenodo.3459599.

Adrien Barbaresi. 2019b. The Vast and the Focused:
On the need for thematic web and blog corpora. In
Proceedings of the CMLC-7 workshop, pages 29–32.

Adrien Barbaresi. 2019c. trafilatura.
https://doi.org/10.5281/zenodo.3460969.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi,
and Eros Zanchetta. 2009. The WaCky Wide
Web: a collection of very large linguistically pro-
cessed web-crawled corpora. Language Resources
and Evaluation, 43(3):209–226.

Alexander Geyken, Adrien Barbaresi, Jörg Di-
dakowski, Bryan Jurish, Frank Wiegand, and Lothar
Lemnitzer. 2017. Die Korpusplattform des ”Digi-
talen Wörterbuchs der deutschen Sprache” (DWDS).
Zeitschrift für germanistische Linguistik, 45(2):327–
344.

Adam Kilgarriff. 2007. Googleology is bad science.
Computational Linguistics, 33(1):147–151.

Gaël Lejeune and Lichao Zhu. 2018. A New Proposal
for Evaluating Web Page Cleaning Tools. Com-
putación y Sistemas, 22(4).

268


