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Abstract
We consider a chain of particles connected by an-harmonic springs, with a

boundary force (tension) acting on the last particle, while the first particle is kept
pinned at a point. The particles are in contact with stochastic heat baths, whose
action on the dynamics conserves the volume and the momentum, while energy
is exchanged with the heat baths in such way that, in equilibrium, the system
is at a given temperature T . We study the space empirical profiles of volume
stretch and momentum under hyperbolic rescaling of space and time as the size
of the system growth to be infinite, with the boundary tension changing slowly in
the macroscopic time scale. We prove that the probability distributions of these
profiles concentrate on L2-valued weak solutions of the isothermal Euler equations
(i.e. the non-linear wave equation, also called p-system), satisfying the boundary
conditions imposed by the microscopic dynamics. Furthermore, the weak solutions
obtained satisfy the Clausius inequality between the work done by the boundary
force and the change of the total free energy in the system. This result includes
the shock regime of the system.

1 Introduction

Boundary conditions in hyperbolic systems of conservation laws introduce challenging
mathematical problems, in particular for weak solutions that are not of bounded vari-
ations. The solution may depend on the particular approximation used, and reflects
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different microscopic origins of the equation. Recently (cf. [6]) we have considered L2-
valued weak solution to the isothermal Euler equation in Lagrangian coordinates on [0, 1]
(also called in the literature non-linear wave equation or p-system):{

∂tr − ∂xp = 0

∂tp− ∂xτ(r) = 0
, (1.1)

with the following boundary conditions: p(t, 0) = 0 (the material is attached to a fixed
point on the left side), τ(r(t, 1)) = τ̄(t) (a time dependent force τ̄(t) is acting on the right
side). The precise sense an L2-valued solution satisfies the boundary condition is given in
Definition 2.2. In [6] we consider viscous approximations of (1.1), that requires two extra
boundary conditions. We choose these extra boundary conditions to be of Neumann type
(i.e. conservative). Adapting the L2-version of the compensated-compactness argument
of Shearer [9] and [8], we prove in [6] the existence of vanishing viscosity solutions to
the p-system. Furthermore, these solutions satisfy the usual Lax-entropy production
characterisation and the thermodynamic Clausius inequality, which relates the change
of the total free energy to the work done by the boundary force (see Section 5). We call
such weak solutions thermodynamic entropy solutions.

In the present article we study the microscopic statistical mechanics origin of (1.1).
We want to understand how equation (1.1) emerges in a hydrodynamic limit, i.e. a
hyperbolic space-time rescaling of a microscopic dynamics. We consider a chain of N +
1 particles connected by N anharmonic springs (see Figure 1). The first particle on
the left is fixed at a point, while on the rightmost particle is acting a time-dependent
force (tension). The Hamiltonian dynamics of this system is perturbed by the action of
stochastic heat baths at temperature T . Each heat bath is acting, independently from
the others, between two springs connected by a particle, randomly exchanging momenta
and volume stretch. The energy of the particles is not conserved but exchanged with
the heath baths in such a way that, in equilibrium, the system is at temperature T . The
intensity of the action of the heat baths is such that it does not affect the macroscopic
equation directly, but sufficiently strong to provide the required regularity at certain
microscopic scales and establish an isothermal macroscopic evolution. In this sense
these heat baths act like a stochastic viscosity, vanishing after the space-time hyperbolic
rescaling. The conservative nature of these stochastic heat baths also provides at the
boundaries the analogue of the extra Neumann conditions as used in [6].

We rescale space and time using N as parameter in such a way that the time-
dependent external force is changing on the macroscopic scale (i.e. very slowly on the
microscopic time scale). We prove that the probability distributions of the random pro-
files of volume stretch and momenta concentrate on the L2-valued weak solutions of (1.1)
(in the sense of Definition 2.2), that satisfy the Clausius inequality. Proving uniqueness
would complete the convergence theorem. Unfortunately, uniqueness for such weak so-
lutions is a well known and challenging open problem.
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Figure 1: Microscopic model

The proof of the convergence to the weak solutions is adapted from the stochastic
version of compensated compactness developed by Fritz in [3] for the same dynamics but
without boundaries (see also Fritz and Toth [4] for a different two component dynamics).
In a previous work [7], we considered the same problem as here, but we proved that (1.1)
were satisfied only in the bulk by the limit profiles, without giving any information of
the boundary conditions, nor on the entropic properties of these solutions.

The main new contributions of the present article are the followings:

• the limit profiles obtained are L2-valued weak solutions that satisfy the boundary
conditions, in the sense of Definition 2.2;

• the work done by the boundary force is larger than the change in the total free
energy (Clausius inequality).

The proof of the Clausius inequality is the content of Section 5. It uses the vari-
ational characterisation of the (microscopic) relative entropy in order to connect it to
the macroscopic free energy and estimate its time derivative. In other words, Clausius
inequality follows from the microscopic entropy production.

2 The Model and the Main Theorem

We study a one-dimensional Hamiltonian system of N+1 particles of unitary mass. The
position of the i-th particle (i = 0, 1, . . . , N) is denoted by qi ∈ R and its momentum by
pi ∈ R. We assume that particle 0 is kept fixed, i.e. (q0, p0) ≡ (0, 0), while on particle N
is applied a time-dependent force, τ̄(t).

Denote by q = (q0, . . . , qN) and p = (p0, . . . , pN). The interaction between particles
i and i − 1 is described by the potential energy V (qi − qi−1) of an anharmonic spring,
where V is a uniformly convex function that grows quadratically at infinity: there exist
constants c1 and c2 such that for any r ∈ R:

0 < c1 ≤ V ′′(r) ≤ c2. (2.1)
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Moreover, there are some positive constants V ′′+ , V
′′
− , α and R such that∣∣V ′′(r)− V ′′+∣∣ ≤ e−αr, r > R (2.2)∣∣V ′′(r)− V ′′−∣∣ ≤ eαr, r < −R. (2.3)

For τ ∈ R and β > 0 we define the canonical Gibbs function as

G(τ) := log

∫ +∞

−∞
e−βV (r) + βτr dr. (2.4)

For ` ∈ R, the free energy is given by the Legendre transform of G:

F (`) := sup
τ∈R

{
τ`− β−1G(τ)

}
, (2.5)

so that its inverse is
G(τ) = β sup

`∈R
{τ`− F (`)} . (2.6)

Note that we neglect to write the dependence of F and G on β, as it shall be fixed
throughout the paper.

We denote by `(τ) and τ(`) the corresponding convex conjugate variables, that de-
pend parametrically on β and satisfy

`(τ) = β−1G′(τ), τ(`) = F ′(`). (2.7)

We identify τ(`) with the equilibrium tension of the system of length `, and we assume
that the potential V , besides satisfying the assumptions above, is such that τ is strictly
convex (i.e. τ ′′(`) > 0 for all ` ∈ R).

Remark. At the present time, we do not know a general condition on V that yield a
strictly convex tension, but as example (cf [7], Proposition A.7) one may take V to be a
mollification of the function

r 7−→ 1

2
(1− κ)r2 +

1

2
κr|r|+, (2.8)

where |r|+ = max{r, 0} and κ ∈ (0, 1/3).

Define the Hamiltonian:

HN(q,p, t) :=
N∑
i=0

(
p2
i

2
+ V (qi − qi−1)

)
− qN τ̄(t), (2.9)

where τ̄(t) is the external tension. Since the interaction depends only on the distance
between particles, we define

ri := qi − qi−1, i = 1, . . . , N. (2.10)
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Consequently, recalling that p0 ≡ 0, the configuration of the system is given by (r,p) :=
(r1, . . . , rN , p1, . . . , pN) and the phase space is R2N . Thus, the Hamiltonian reads

HN(r,p, t) =
N∑
i=1

(
p2
i

2
+ V (ri)− τ̄(t)ri

)
. (2.11)

We add to the Hamiltonian dynamics physical and artificial noise. Thus, the full dy-
namics of the system is determined by the generator

G τ̄(t)
N := NL

τ̄(t)
N +Nσ

(
SN + S̃

τ̄(t)
N

)
. (2.12)

σ = σ(N) is a positive number that tunes the strength of the noise. We take it such that

lim
N→∞

σ

N
= lim

N→∞

N

σ2
= 0. (2.13)

The Liouville operator L
τ̄(t)
N is given by

L
τ̄(t)
N =

N∑
i=1

(pi − pi−1)
∂

∂ri
+

N−1∑
i=1

(V ′(ri+1)− V ′(ri))
∂

∂pi
+ (τ̄(t)− V ′(rN))

∂

∂pN
, (2.14)

together with p0 ≡ 0. Note that the time scale in the tension is chosen such that it
changes smoothly on the macroscopic scale.

The operators SN and S̃
τ̄(t)
N generate the stochastic part of the dynamics, modelling

the interaction with a heat bath at constant temperature β−1, and are defined by

SN := −
N−1∑
i=0

D∗iDi, S̃
τ̄(t)
N := −

N∑
i=1

D̃∗i D̃i, (2.15)

where, for i = 1, . . . , N − 1,

Di :=
∂

∂pi+1

− ∂

∂pi
, D∗i := pi+1 − pi − β−1Di (2.16)

D̃i :=
∂

∂ri+1

− ∂

∂ri
, D̃∗i := V ′(ri+1)− V ′(ri)− β−1D̃i. (2.17)

The extra boundary operators were first considered in [5] and are given by

D0 :=
∂

∂p1

, D∗0 := p1 − β−1D0, (2.18)

D̃N := − ∂

∂rN
, D̃∗N := τ̄(t)− V ′(rN)− β−1D̃N . (2.19)
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On the one-particle state space R2 we define a family of probability measures

λβ,p̄,τ (dr, dp) :=
1√

2πβ−1
e
−β

2
(p− p̄)2 − βV (r) + βτr −G(β, τ)

dr dp. (2.20)

The mean elongation and momentum are∫
r dλβ,p̄,τ = `(τ),

∫
p dλβ,p̄,τ = p̄. (2.21)

We also have the relations∫
V ′(r) dλβ,p̄,τ = τ,

∫
p2 dλβ,p̄,τ − p̄2 = β−1, (2.22)

that identify τ as the tension and β−1 as the temperature.
Define the family of product measures λNt = λNβ,0,τ̄(t) where

λNβ,p̄,τ (dr, dp) =
N∏
i=1

λβ,p̄,τ (dri, dpi). (2.23)

Notice that L
τ̄(t)
N is antisymmetric with respect to λNt , while SN and S̃

τ̄(t)
N are symmetric.

It follows that, in the case τ̄ is constant in time, λNβ,0,τ̄ is the unique stationary measure
for the dynamics. This is the canonical Gibbs measure at a temperature β−1, pressure τ̄
and velocity 0.

Define the discrete gradients and Laplacian by

∇ai := ai+1 − ai, ∇∗ai := ai−1 − ai, (2.24)

∆ai := −∇∇∗ai = −∇∗∇ai = ai+1 + ai−1 − 2ai. (2.25)

The time evolution of the system is described by the following system of stochastic
differential equations

dr1 = Np1dt+ σN∇V ′(r1)dt−
√

2β−1σN dw̃1

dri = −N∇∗pi − dt+ σN∆V ′(ri)dt+
√

2β−1σN ∇∗dw̃i, 2 ≤ i ≤ N − 1

drN = −N∇∗pNdt+ σN (τ̄(t) + V ′(rN−1)− 2V ′(rN)) +
√

2β−1σN ∇∗dw̃N ,
dp1 = N∇V ′(r1)dt+ σN (p2 − 2p1) dt+

√
2β−1σN ∇∗dw1,

dpj = N∇V ′(rj)dt+ σN∆pjdt+
√

2β−1σN ∇∗dwj, 2 ≤ j ≤ N − 1

dpN = N(τ̄(t)− V ′(rN))dt− σN∇pN−1dt+
√

2β−1σN dwN−1

(2.26)
Here {wi}∞i=0, {w̃i}∞i=1 are independent families of independent Brownian motions on a
common probability space (Ω,P). The expectation with respect to P is denoted by E.
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Notice that the noise introduced by the heat bath respects the boundary conditions
V ′(rN+1(t)) = τ̄(t) and p0(t) = 0 already present in the Hamiltonian part of the dy-
namics, while it introduces the Neumann type boundary conditions r0(t) = r1(t) and
pN+1(t) = pN(t). In this sense these boundary conditions are the microscopic analogous
of those taken in the viscous approximation used in reference [6].

Thanks to the assumptions we made on the interaction V , it is possible to show (cf
[3] or Appendix A of [7]) the following

Proposition 2.1. For any fixed β > 0, the application τ : R→ R is smooth and has the
following properties:

i) c−1
2 ≤ τ(`) ≤ c−1

1 for all ` ∈ R;

ii) τ ′′, τ ′′′ ∈ L2(R) ∩ L∞(R).

Furthermore, we assume τ ′′(`) > 0 for all ` ∈ R.

Remark. The condition τ ′ ≥ c−1
2 > 0 is a condition of strict hyperbolicity. On the other

hand, τ ′′ > 0 is a condition of genuine nonlinearity, and it is easy to see that it rules out
symmetric interactions (V (−r) = V (r)). Nevertheless, such a condition may be relaxed
as in [8] and we can allow τ ′′ to vanish at most at one point, which is compatible with
having a symmetric interaction.

Denote by µNt the probability measure of the system a time t. Then, the density fNt
of µNt with respect to λNt solves the Fokker-Plank equation

∂

∂t

(
fNt λ

N
t

)
=
(
G τ̄(t),∗
N fNt

)
λNt . (2.27)

Here
G τ̄(t),∗
N = −NLτ̄(t)

N +Nσ
(
SN + S

τ̄(t)
N

)
(2.28)

is the adjoint of G τ̄(t)
N with respect to λNt .

We define the relative entropy

HN(t) :=

∫
fNt log fNt dλ

N
t , (2.29)

and require that the initial distribution fN0 is such that HN(0) ≤ CN for some C
independent of N .

We are interested in the macroscopic behaviour of the volume stretch and momentum
of the particles, at time t, as N → ∞. Note that t is already the macroscopic time, as
we have already multiplied by N in the generator. We shall use Lagrangian coordinates,
that is our space variables will belong to the lattice {1/N, . . . , (N − 1)/N, 1}.
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Consequently, we set ui := (ri, pi). For a fixed macroscopic time T , we introduce
the empirical measures on [0, T ]× [0, 1] representing the space-time distributions on the
interval [0, 1] of volume stretch and momentum:

ζζζN(dx, dt) :=
1

N

N∑
i=1

δ

(
x− i

N

)
ui(t)dx dt. (2.30)

We expect that the measures ζζζN(dx, dt) converge, as N →∞ to an absolutely continuous
measure with density (r(t, x), p(t, x)), satisfying the following system of conservation
laws: {

∂tr(t, x)− ∂xp(t, x) = 0

∂tp(t, x)− ∂xτ(r(t, x)) = 0
,

p(t, 0) = 0, τ(r(t, 1)) = τ̄(t)
r(0, x) = r0(x) p(0, x) = p0(x)

. (2.31)

Since (2.31) is a hyperbolic system of nonlinear partial differential equations, its solutions
may develop shocks in a finite time, even if smooth initial data are given. Therefore, we
shall look for weak solutions, which are defined even if discontinuities appear.

Definition 2.2. Fix T > 0 and let QT = [0, T ] × [0, 1]. We say that (r, p) ∈ L2(QT ) is
a weak solution of (2.31) provided∫ 1

0

ϕ(0, x)r0(x)dx+

∫ T

0

∫ 1

0

(r∂tϕ− p∂xϕ) dxdt = 0 (2.32)

∫ 1

0

ψ(0, x)p0(x)dx+

∫ T

0

∫ 1

0

(p∂tψ − τ(r)∂xψ) dxdt+

∫ T

0

ψ(t, 1)τ̄(t)dt = 0 (2.33)

for all functions ϕ, ψ ∈ C2(QT ) such that ϕ(t, 1) = ψ(t, 0) = 0 for all t ∈ [0, T ].

Denote by QN the probability distribution of ζζζN on M(QT )2. Observe that ζζζN ∈
C([0, T ],M([0, 1])2), where M([0, 1]) is the space of signed measures on [0, 1], endowed
by the weak topology. Our aim is to show the convergence

ζζζN(J)→
(∫ T

0

∫ 1

0

J(t, x)r(t, x)dxdt,

∫ T

0

∫ 1

0

J(t, x)p(t, x)dxdt

)
, (2.34)

where r(t, x) and p(t, x) satisfy (2.32)-(2.33). Since we do not have uniqueness for the
solution of these equations, we need a more precise statement.

Theorem 2.3 (Main theorem). Assume that the initial distribution satisfies the entropy
condition HN(0) ≤ CN . Then sequence QN is compact and any limit point of QN has
support on absolutely continuous measures with densities r(t, x) and p(t, x) solutions of
(2.32)-(2.33) and belonging to L∞(0, T ;L2(0, 1)).
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Moreover, if the system at time t = 0 is at a local equilibrium, namely if

fN0 (r,p) :=
N∏
i=1

e
β

[(
τ

(
r0

(
i

N

))
− τ̄(0)

)
ri + p0

(
i

N

)
pi

]
−G

(
τ

(
r0

(
i

N

)))
+G(τ̄(0))− β

2
p0

(
i

N

)2

,

(2.35)

then we have the following Clausius inequality

EQ

(∫ T

0

∫ 1

0

[F(t, y)−F(0, y)]dy

)
≤ EQ

(∫ T

0

W (t)dt

)
, (2.36)

where

F(t, x) :=
p(t, x)2

2
+ F (r(t, x)) (2.37)

is the free energy and

W (t) := −
∫ t

0

τ̄ ′(s)

∫ 1

0

r(s, y)dy + τ̄(t)

∫ 1

0

r(t, y)dy − τ̄(0)

∫ 1

0

r0(y)dy (2.38)

is the work done by the tension τ̄ .

Notice that in the case the total length L(t) =
∫ 1

0
r(t, y)dy is time differentiable, the

definition of work coincide with the usual one: W (t) :=
∫ t

0
τ̄(s)L′(s)ds.

3 Some bounds from Relative entropy and Dirichlet

forms

Define the Dirichlet forms

DN(t) :=

∫
fNt (−SN log fNt )dλNt =

∫
1

fNt

[(
∂fNt
∂p1

)2

+
N−1∑
i=1

(
∂fNt
∂pi+1

− ∂fNt
∂pi

)2
]
dλNt ,

D̃N(t) :=

∫
fNt (−S̃ τ̄(t)

N log fNt )dλNt =

∫
1

fNt

[
N−1∑
i=1

(
∂fNt
∂ri+1

− ∂fNt
∂ri

)2

+

(
∂fNt
∂rN

)2
]
dλNt .

(3.1)

Proposition 3.1. The following inequality holds for any t ≥ 0:

HN(t)−HN(0) ≤ −β
∫ t

0

τ̄ ′(s)

∫ N∑
i=1

ri(s)f
N
s dλ

N
s +Nβ

∫ t

0

τ̄ ′(s)`(τ̄(s))ds. (3.2)

Moreover, there is C(t) independent of N such that

HN(t) +Nσβ−1

∫ t

0

(
DN(s) + D̃N(s)

)
ds ≤ C(t)N. (3.3)
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Proof.

dHN(t)

dt
=

∫
∂t(f

N
t λ

N
t ) log fNt drdp +

∫
λNt ∂tf

N
t drdp (3.4)

=

∫ (
G τ̄(t),∗
N fNt

)
log fNt dλ

N
t −

∫
fNt ∂tλ

N
t drdp + ∂t

∫
ftdλ

N
t (3.5)

=

∫
fNt G

τ̄(t)
N log fNt dλ

N
t − βτ̄ ′(t)

∫
[qN −N`(τ̄(t))] fNt dλ

N
t (3.6)

=−Nσβ−1
(
DN(t) + D̃N(t)

)
− βτ̄ ′(t)

∫
[qN −N`(τ̄(t))] fNt dλ

N
t , (3.7)

since
∫
fNt L

τ̄(t)
N log fNt dλ

N
t = 0, by the antisymmetry of L

τ̄(t)
N . Thus, (3.2) follows after

an integration in time and recalling that qN =
∑N

i=1 ri and that the Dirichlet forms are
non-negative.

By the entropy inequality and the strict convexity of G(τ) we have, for any α > 0,

−βτ̄ ′(t)
∫

[qN −N`(τ̄(t))] fNt dλ
N
t ≤ α−1HN(t) + α−1 log

∫
e−αβτ̄

′(t)[qN−N`(τ̄(t))]dλNt

= α−1HN(t) + α−1N [G(τ̄(t)− ατ̄ ′(t))−G(τ̄(t)) + ατ̄ ′(t)`(τ̄ ′(t))]

≤ α−1HN(t) + ατ̄ ′(t)2NCG. (3.8)

By choosing α = |τ̄ ′(t)|−1 we obtain the bound

d

dt
HN(t) +Nσβ−1

(
DN(t) + D̃N(t)

)
≤ |τ̄ ′(t)| (HN(t) +NCG) . (3.9)

By Gronwall’s inequality we get

HN(t) +Nσβ−1

∫ t

0

(
DN(s) + D̃N(s)

)
ds ≤ HN(0)e

∫ t
0 |τ
′(s)|ds +NCG

∫ t

0

|τ ′(s)|e
∫ t
s |τ
′(u)|duds

≤ C(t)N. (3.10)

Observe that C(t) in this proposition is equal to C0 if τ̄ ′(t) = 0, and that can be
chosen independent of t if τ̄ ′(t) = 0 for t > t0 for some t0.

The energy bound is a standard consequence of the bound on the relative entropy.

Proposition 3.2 (Energy estimate). For any t ≥ 0∫ [ N∑
i=1

(
p2
i

2
+ V (ri)

)]
fNt dλ

N
t ≤ C(t)N, (3.11)

and the constant C(t) can be chosen independent of t in the case τ̄ ′(t) = 0 for t ≥ t0.
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Proof. By the entropy inequality and for 0 < α < β,

∫ [ N∑
i=1

(
p2
i

2
+ V (ri)

)]
ftdλt ≤

1

α
HN(t) +

1

α
log

∫
e
α

N∑
i=1

(
p2
i

2
+ V (ri)

)
dλNt (3.12)

=
1

α
HN(t) +

N

α
log

∫
e

(α− β)

(
p2

1

2
+ V (r1)

)
+ βτ̄(t)r1 −G(τ̄(t))

dr1
dp1√
2πβ−1

.

Note that thanks to our choice of α the last integral is convergent and bounded with
respect to t. Thus, the conclusion follows as a consequence of Proposition 3.1.

4 The hydrodynamic limit

4.1 Microscopic solutions

Let (ri(t), pi(t))
N
i=1 be solutions of (2.26). Let ϕ, ψ ∈ C2(QT ) be such that ϕ(t, 1) =

ψ(t, 0) = 0 for all t ∈ [0, T ], and let

ϕi(t) := ϕ

(
t,
i

N

)
, ψi(t) := ψ

(
t,
i

N

)
, i = 1, . . . , N. (4.1)

We set V ′i := V ′(ri) and evaluate

1

N

N∑
i=1

ϕi(T )ri(T )− 1

N

N∑
i=1

ϕi(0)ri(0) =

∫ T

0

1

N

N∑
i=1

ϕ̇i(t)ri(t)dt+ (4.2)

+

∫ T

0

(
p1ϕ1 −

N−1∑
i=2

∇∗piϕi +∇∗pNϕN

)
dt+

+ σ

∫ T

0

(
ϕ1∇V ′1 +

N−1∑
i=2

ϕi∆V
′
i + ϕN(τ̄(t) + V ′N−1 − 2V ′N)

)
dt+

+

√
2β−1

σ

N

∫ T

0

(
−ϕ1dw̃1 +

N−1∑
i=2

ϕi∇∗dw̃i + ϕN∇∗dw̃N

)
.

We use the summation by parts formula

N−1∑
i=2

ϕi∇∗ai =
N−1∑
i=1

ai∇ϕi + ϕ1a1 − ϕNaN−1 (4.3)
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with ai = pi, ai = V ′i+1 − V ′i and ai = dw̃i in order to obtain

1

N

N∑
i=1

ϕi(T )ri(T )− 1

N

N∑
i=1

ϕi(0)ri(0)

=

∫ T

0

1

N

N∑
i=1

ϕ̇i(t)ri(t)dt−
∫ T

0

N−1∑
i=1

∇piϕidt+

∫ T

0

ϕNpNdt+ (4.4)

− σ
∫ T

0

N−1∑
i=1

∇ϕi∇V ′i dt+ σ

∫ T

0

ϕN(τ̄(t)− V ′N)dt+

+

√
2β−1

σ

N

∫ T

0

N−1∑
i=1

∇ϕidw̃i

=

∫ T

0

1

N

N∑
i=1

ϕ̇i(t)ri(t)dt−
∫ T

0

N−1∑
i=1

∇ϕipidt− σ
∫ T

0

N−1∑
i=1

∇ϕi∇V ′i dt+ (4.5)

+

√
2β−1

σ

N

∫ T

0

N−1∑
i=1

∇ϕidw̃i,

as ϕN(t) = ϕ(t, 1) = 0. After a second summation by parts we obtain

−
N−1∑
i=1

∇ϕi∇V ′i =
N−1∑
i=1

V ′i ∆ϕi + V ′1∇ϕ0 − V ′N∇ϕN−1 (4.6)

so that we can write

1

N

N∑
i=1

ϕi(T )ri(T )− 1

N

N∑
i=1

ϕi(0)ri(0) =

∫ T

0

1

N

N∑
i=1

ϕ̇i(t)ri(t)dt−
∫ T

0

N−1∑
i=1

pi∇ϕidt+ R̃N ,

(4.7)

with

R̃N =σ

∫ T

0

N−1∑
i=1

V ′i (t)∆ϕidt+

√
2β−1

σ

N

∫ T

0

N−1∑
i=1

∇ϕi(t)dw̃i(t) (4.8)

+ σ

∫ T

0

V ′1(t)∇ϕ0dt− σ
∫ T

0

V ′N(t)∇ϕN−1dt.

Lemma 4.1. E[|R̃N |2]→ 0.
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Proof. Since ϕ ∈ C2([0, 1]), we can estimate |∆ϕi| ≤ ‖∂2
xxϕ‖∞N−2. Moreover, since

c1 ≤ V ′′(r) ≤ c2 we have |V ′(r)|2 ≤ C (1 + r2), and

E

∣∣∣∣∣
∫ T

0

σ

N−1∑
i=1

V ′i ∆ϕidt

∣∣∣∣∣
2
 ≤ σ2T

(
N−1∑
i=1

(∆ϕi)
2

)∫ T

0

E

[
N−1∑
i=1

(V ′i (t))
2

]
dt (4.9)

≤ C
σ2T

N3

∫ T

0

E

[
N−1∑
i=1

(
1 + r2

i (t)
)]
dt ≤ C(T )

σ2

N2
.

Since the Brownian motions dw̃i are independent, we evaluate

E

∣∣∣∣∣
√

2σ

βN

∫ T

0

N−1∑
i=1

∇ϕidw̃i

∣∣∣∣∣
2
 ≤ 2σ

βN

∫ T

0

N−1∑
i=1

(∇ϕi)2dt ≤ CTσ

N2

In order to evaluate the boundary terms in (4.8), we estimate, for any i = 1 and i = N ,∫
(V ′i )

2fNt dλ
N
t =

∫
τ̄(t)V ′i f

N
t dλ

N
t +

∫
(V ′i − τ̄(t))V ′i f

N
t dλ

N
t (4.10)

=

∫
τ̄(t)V ′i f

N
t dλ

N
t +

∫
V ′′(ri)f

N
t dλ

N
t +

∫
V ′i
∂fNt
∂ri

dλNt

≤ C + α

∫
(V ′i )

2fNt dλ
N
t +

∫ (
∂fNt
∂ri

)2
1

fNt
dλNt ,

where we have used Cauchy-Schwartz twice and used the boundedness of τ̄(t) and V ′′.
Here we can choose C > 0 and 0 < α < 1 such that do not depend on t or N , so that
we have ∫

(V ′i )
2fNt dλ

N
t ≤ C ′

(
1 +

∫ (
∂fNt
∂ri

)2
1

fNt
dλNt

)
For i = N this gives directly (1 − α)

∫
(V ′i )

2fNt dλ
N
t ≤ C ′

(
1 + D̃N(t)

)
. For i = 1, by

writing (
∂fNt
∂r1

)2

=

(
−

N−1∑
j=1

(
∂fNt
∂rj+1

− ∂fNt
∂rj

)
+
∂fNt
∂rN

)2

(4.11)

≤ N

(
N−1∑
j=1

(
∂fNt
∂rj+1

− ∂fNt
∂rj

)2

+

(
∂fNt
∂rN

)2
)

we obtain

(1− α)

∫
(V ′1)2fNt dλ

N
t ≤ C +ND̃N(t), (4.12)
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and, in turn, ∫ T

0

∫
(V ′1)2fNt dλ

N
t ≤ C(T )

(
1 +

N

σ

)
≤ C ′(T )

N

σ
. (4.13)

This allows us to estimate

E

[(
σ

∫ T

0

V ′1(t)∇ϕ0dt

)2
]
≤ T

σ2

N2
E
[∫ T

0

(V ′1(t))2dt

]
≤ CT

σ

N
, (4.14)

which vanishes as N → ∞. In a similar way we estimate the boundary term involving
V ′N .

Thus, we have obtained the following

Proposition 4.2. Let ϕ ∈ C2(QT ) such that ϕ(t, 1) = 0 for all t ∈ [0, T ]. Then

1

N

N∑
i=1

ϕi(T )ri(T )− 1

N

N∑
i=1

ϕi(0)ri(0)−
∫ T

0

1

N

N∑
i=1

ϕ̇i(t)ri(t)dt+

∫ T

0

N−1∑
i=1

pi∇ϕidt→ 0 (4.15)

in probability as N →∞

From similar calculations and recalling that ψ0 = 0, we evaluate

1

N

N∑
i=1

ψi(T )pi(T )− 1

N

N∑
i=1

ψi(0)pi(0) (4.16)

=

∫ T

0

1

N

N∑
i=1

ψ̇i(t)pi(t)dt−
N−1∑
i=1

V ′i∇ψidt+

∫ T

0

ψN τ̄(t)dt+RN ,

where

RN =σ

∫ T

0

N−1∑
i=1

pi∆ψidt+

√
2β−1

σ

N

∫ T

0

N−1∑
i=1

∇ψidwi+ (4.17)

− σ
∫ T

0

pN∇ψN−1dt+

√
2β−1

σ

N

∫ T

0

ϕ1dw0,

Similarly to Lemma 4.1, we prove the following

Lemma 4.3. E[|RN |2]→ 0.

Thus, we have proved
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Proposition 4.4. Let ψ ∈ C2(QT ) such that ψ(t, 0) = 0 for all t ∈ [0, T ]. Then

1

N

N∑
i=1

ψi(T )pi(T )− 1

N

N∑
i=1

ψi(0)pi(0)−
∫ T

0

1

N

N∑
i=1

ψ̇i(t)pi(t)dt+ (4.18)

+

∫ T

0

N−1∑
i=1

V ′i∇ψidt+

∫ T

0

ψ(t, 1)τ̄(t)dt→ 0

in probability as N →∞.

4.2 Mesoscopic solutions

For any sequence (ai)i∈N and any l ∈ N, smoother block averages are defined as

âl,i :=
1

l

∑
|j|<l

l − |j|
l

ai−j, i ≥ l, (4.19)

where we will choose

l = l(N) :=
[
N

1
4σ(N)

1
2

]
. (4.20)

Remark. Since σ/N and N/σ2 vanish as N → ∞, we may choose σ = N
1
2

+α, with

α ∈ (0, 1/2). This means l is of order N
1
2

+α
2 .

Let 1N,i(x) be the indicator function of the interval

[
i

N
− 1

2N
,
i

N
+

1

2N

]
, then we

define functions on [0, 1] from the sequence (ai)i∈N as

âN(x) :=
N−l∑
i=l+1

1N,i(x)âl,i, x ∈ [0, 1]. (4.21)

Notice that for any function f on R and ϕ(x) ∈ L1([0, 1]) we have∫ 1

0

f(âN(x))ϕ(x)dx =
1

N

N−l∑
i=l+1

f(âl,i)ϕ̄i+ (4.22)

+ f(0)

(∫ l/N+1/(2N)

0

ϕ(x)dx+

∫ 1

1−l/N−1/(2N)

ϕ(x)dx

)
where

ϕ̄i = N

∫ 1

0

ϕ(x)1N,i(x)dx = N

∫ i/N+1/(2N)

i/N−1/(2N)

ϕ(x)dx, i = 1, . . . , N − 1. (4.23)
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We have, by Cauchy-Schwarz inequality,∫ 1

0

âN(x)2dx ≤ 1

N

N−1∑
k=2

a2
k

Recalling that ui = (ri, pi), we define

ûN(t, x) =
N−l∑
i=l+1

1N,i(x)ûl,i(t), (t, x) ∈ QT . (4.24)

As a consequence of (4.24) and the energy estimate given by Proposition 3.2, we have
that

E
(∫

QT

|ûN(t, x)|2
)
≤ CT , (4.25)

i.e. almost surely ûN(t, x) is uniformly bounded in L2(QT ) and is therefore weakly
convergent, up to a subsequence. The following proposition ensures us that ζζζN(dx, dt)
has the same weak limit points as ûN(t, x).

Proposition 4.5. For any function ϕ ∈ C1([0, 1]) we have that

lim
N→∞

E

(∣∣∣∣∣
∫ 1

0

ûN(t, x)ϕ(x)dx− 1

N

N∑
i=1

ui(t)ϕ

(
i

N

)∣∣∣∣∣
)

= 0. (4.26)

Proof. By (4.22) with f(ûN) = ûN we have∫ 1

0

ûN(t, x)ϕ(x)dx =
1

N

N−l∑
i=l+1

ûl,iϕ̄i. (4.27)

Next, we note that we can neglect the first and the last l points at the boundaries.
Namely, we have∣∣∣∣∣ 1

N

l∑
i=1

ui(t)ϕ

(
i

N

)∣∣∣∣∣ ≤
(

1

l

l∑
i=1

ϕ

(
i

N

)2
)1/2(

1

l

l∑
i=1

l2

N2
|ui(t)|2

)1/2

(4.28)

≤ C

√
l

N

(
1

N

N∑
i=1

|ui(t)|2
)1/2

, (4.29)

so that

E

[∣∣∣∣∣ 1

N

l∑
i=1

ui(t)ϕ

(
i

N

)∣∣∣∣∣
]
→ 0. (4.30)
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Similarly, we have

E

[∣∣∣∣∣ 1

N

N∑
i=N−l+1

ui(t)ϕ

(
i

N

)∣∣∣∣∣
]
→ 0. (4.31)

Therefore, we evaluate

1

N

N−l∑
i=l+1

ûl,iϕ̄i −
1

N

N−l∑
i=l+1

uiϕ

(
i

N

)
=

1

N

N−l∑
i=l+1

(ûl,i − ui)ϕ

(
i

N

)
+ (4.32)

+
1

N

N−l∑
i=l+1

ûl,i

(
ϕ̄i − ϕ

(
i

N

))
.

The last summation is estimated by noting that there is a point ξi ∈
[
i

N
− 1

2N
,
i

N
+

1

2N

]
such that ϕ̄i = ϕ(ξi). Thus,∣∣∣∣ϕ̄i − ϕ( i

N

)∣∣∣∣ ≤ ‖ϕ′‖∞ ∣∣∣∣ξi − i

N

∣∣∣∣ ≤ ‖ϕ′‖∞2N
(4.33)

and therefore

E

[∣∣∣∣∣ 1

N

N−l∑
i=l+1

ûl,i

(
ϕ̄i − ϕ

(
i

N

))∣∣∣∣∣
]
≤ C

N

(
E

[
1

N

N−l∑
i=l+1

|ûl,i|2
])1/2

(4.34)

≤ C

N

(
E

[
1

N

N∑
i=1

|ui|2
])1/2

≤ C

N
.

Finally, defining cj =
l − |j|
l2

and recalling that
∑
|j|<l cj = 1, we write perform a change

of variables and write

1

N

N−l∑
i=l+1

(ûl,i − ui)ϕ

(
i

N

)
=
∑
|j|<l

cj

[
1

N

N−l−j∑
i=l+1−j

uiϕ

(
i+ j

N

)
− 1

N

N−l∑
i=l+1

uiϕ

(
i

N

)]
(4.35)

=
∑
|j|<l

cj
1

N

N−l∑
i=l+1

ui

[
ϕ

(
i+ j

N

)
− ϕ

(
i

N

)]
+O

(√
l

N

)
.

The conclusion then follows similarly to (4.34).
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The proposition allows us to replace each ui with their average ûl,i. In the same way
we can replace V ′(ri) by the average

V̂ ′l,i :=
1

l

∑
|j|<l

l − |j|
l

V ′(ri−j) (4.36)

and then replace V̂ ′l,i by τ(r̂l,i) via the following proposition, which we shall prove in
Section A.1.

Proposition 4.6 (One-block estimate).

lim
N→∞

E

[
1

N

N−l∑
i=l+1

∫ T

0

(
V̂ ′l,i − τ(r̂l,i)

)2

dt

]
= 0. (4.37)

Therefore, combining Propositions 4.2, 4.4, 4.5 and 4.6, we obtain the following

Proposition 4.7. Let ϕ, ψ ∈ C2(QT ) such that ϕ(t, 1) = ψ(t, 0) = 0 for all t ∈ [0, T ] and
let uN(t, x) = (rN(t, x), pN(t, x)). Then, the following convergences happen in probability
as N →∞ ∫ 1

0

(ϕ(T, x)r̂N(T, x)− ϕ(0, x)r̂N(0, x)) dx+ (4.38)

−
∫
QT

(r̂N(t, x)∂tϕ(t, x) + p̂N(t, x)∂xϕ(t, x)) dxdt→ 0

and ∫ 1

0

(ψ(T, x)p̂N(T, x)− ψ(0, x)p̂N(0, x)) dx+ (4.39)

−
∫
QT

(p̂N(t, x)∂tψ(t, x) + τ(r̂N(t, x))∂xψ(t, x)) dxdt+

∫ T

0

ψ(t, 1)τ̄(t)dt→ 0

4.3 Random Young Measures and Weak Convergence

The purpose of this section is to prove that any weakly convergent subsequence will
converge strongly. We use the compensated compactness argument of Fritz [3], inspired
from the work of Di Perna, Serre and Shearer, properly adapted to the presence of
boundaries [6].

Denote by ν̂Nt,x = δûN (t,x) the random Young measure on R2 associated to the empirical
process ûN(t, x): ∫

R2

f(y)dν̂Nt,x(y) = f(ûN(t, x)) (4.40)
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for any f : R2 → R. Since ûN ∈ L2(Ω × QT ), we say that ν̂Nt,x is a L2-random Dirac
mass. The following

E
[∫

QT

∫
R2

|y|2dν̂Nt,x(y)dxdt

]
= E

[∫
QT

|ûN(t, x)|2dxdt
]
≤ CT (4.41)

with CT independent of N , implies that there exists a subsequence of random Young
measures (ν̂Nnt,x ) and a subsequence of real random variables (‖ûNn‖L2(QT )) that converges
in law.

We can now apply the Skorohod’s representation theorem to the laws of (ν̂Nnt,x , ‖ûNn‖L2(QT ))
and find a common probability space such that the convergence happens almost surely.
This proves the following proposition:

Proposition 4.8. There exists a probability space (Ω̃, F̃ , P̃), random Young measures
ν̃nt,x, ν̃t,x and real random variables an, a such that ν̃nt,x has the same law of ν̂Nnt,x , an has

the same law of ‖ûNn‖L2(QT ) and ν̃nt,x
∗
⇀ ν̃t,x, an → a, P̃-almost surely.

Remark. Since ν̂Nnt,x is a random Dirac mass and ν̃nt,x and ν̂Nnt,x have the same law, ν̃nt,x
is a L2-random Dirac mass, too: ν̃nt,x = δũn(t,x) for some ũn ∈ L2(Ω̃ × QT ). ũn and ûNn
have the same law. Since an → a almost surely, we have that (an) is bounded and so ũn
is uniformly bounded in L2(QT ) with P̃-probability 1.

Since from a uniformly bounded sequence in Lp we can extract a weakly convergent
subsequence, we obtain the following proposition:

Proposition 4.9. There exist L2(QT )-valued random variables (ũn), ũ such that ũn and
ûNn have the same law and, P̃-almost surely and up to a subsequence, ũn ⇀ ũ in L2(QT ).

The condition ν̃nt,x
∗
⇀ ν̃t,x in Proposition 4.8 reads

lim
n→∞

∫
R2

f(y)dν̃nt,x(y)dxdt =

∫
R2

f(y)dν̃t,x(y)dxdt (4.42)

for all continuous and bounded f : R2 → R. By a simple adaptation of Proposition 4.2
of [1], (4.42) can be extended to a functiion f : R2 → R such that f(y)/|y|2 → 0 as
|y| → +∞.

Because of Proposition 4.7 we are interested in the weak limit of τ(r̂N(t, x)). Since
τ is linearly bounded, the main Theorem 2.3 is proved once we show that ν̃t,x = δũ(t,x),
almost surely and for almost all (t, x) ∈ QT .

We shall now prove that the support of ν̃t,x is almost surely and almost everywhere
a point. The result will then follow from the lemma:

Lemma 4.10. ν̃t,x = δũ(t,x) almost surely and for almost all (t, x) ∈ QT if and only
if the support of ν̃t,x is a point for almost all (t, x) ∈ QT . In this case, ũn → ũ in
Lp(QT )2-strong for all 1 ≤ p < 2.
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Proof. Suppose there is a measurable function u∗ : QT → R2 such that ν̃t,x = δu∗(t,x) for
almost all (t, x) ∈ QT . For any test function J : QT → R2 consider the quantity∫

QT

J(t, x) · ũn(t, x)dxdt =

∫
QT

∫
R2

J(t, x) · ydν̃nt,x(y)dxdt. (4.43)

By taking the limit for n → ∞ in the sense of L2-weak first and in the sense of (4.42)
then, we obtain∫
QT

∫
R2

J(t, x)·ũ(t, x)dxdt =

∫
QT

∫
R2

J(t, x)·ydν̃t,x(y)dxdt =

∫
QT

∫
R2

J(t, x)·u∗(t, x)dxdt

(4.44)
almost surely. Then ũ(t, x) = u∗(t, x) for almost all (t, x) ∈ QT follows from the fact
that J was arbitrary.

Next, fix 1 < p < 2. Taking f(y) = |y|p in (4.42) gives ‖ũn‖Lp(QT ) → ‖ũ‖Lp(QT ),
which, together with ũn ⇀ ũ in Lp(QT ) and the fact that Lp(QT ) is uniformly convex
for 1 < p <∞ implies strong convergence.

The case p = 1 follows from the result for p > 1 and Hölder’s inequality.

4.4 Reduction of the Limit Young Measure

In this section we prove that the support of ν̃t,x is almost surely and almost everywhere
a point.

We recall that Lax entropy-entropy flux pair for the system{
∂tr(t, x)− ∂xp(t, x) = 0

∂tp(t, x)− ∂xτ(p(t, x)) = 0
(4.45)

is a pair of functions η, q : R2 → R such that

∂tη(u(t, x)) + ∂xq(u(t, x)) = 0 (4.46)

for any smooth solution u(t, x) = (r(t, x), p(t, x)) of (4.45). This is equivalent to the
following: {

∂rη(r, p) + ∂pq(r, p) = 0

τ ′(r)∂pη(r, p) + ∂rq(r, p) = 0
. (4.47)

Under appropriate conditions on τ , Shearer ([9]) constructs a family of entropy-entropy
flux pairs (η, q) such that η, q, their first and their second derivatives are bounded (cf
also [6]). As shown in [7] and [3], our choice of the potential V ensures that the tension
τ has the required properties, so the result of Shearer applies to our case.
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In particular, following Section 5 of [9], we have that the support ν̃t,x is almost surely
and almost everywhere a point provided Tartar’s commutation relation

〈η1q2 − η2q1, ν̃t,x〉 = 〈η1, ν̃t,x〉〈q2, ν̃t,x〉 − 〈η2, ν̃t,x〉〈q1, ν̃t,x〉 (4.48)

holds almost surely and almost everywhere for any bounded pairs (η1, q1), (η2, q2) with
bounded first and second derivatives.

Obtaining (4.48) in a deterministic setting is standard and relies on the div-curl and
Murat-Tartar lemma. Both of these lemmas have a stochastic extension (cf Appendix
A of [2]) and what we ultimately need to prove in order to obtain (4.48) is that the
hypotheses for the stochastic Murat-Tartar lemma are satisfied (cf [1] , Proposition 5.6).

This is ensured next theorem, for which we will give a preliminary definition. Let
(η, q) ∈ C2(R2) be a Lax entropy-entropy flux pair with bounded derivatives. We assume,
without loss of generality, η(0, 0) = q(0, 0) = 0.

For ϕ ∈ H1
0 (QT ) ∩ L∞(QT ) define the corresponding entropy production functional

as

XN(ϕ, η) = −
∫
QT

(η(ûN)∂tϕ+ q(ûN)∂xϕ) dxdt. (4.49)

Theorem 4.11. The entropy production XN decomposes as XN = YN + ZN , such
that (YN) is compact in H−1(QT ) and (ZN) is uniformly bounded as a signed measure.
Namely,

E [|YN(ϕ, η)|] ≤ aN‖ϕ‖H1(QT ) with lim
N→∞

aN = 0, (4.50)

E [|ZN(ϕ, η)|] ≤ bN‖ϕ‖L∞(QT ) with lim sup
N→∞

bN <∞, (4.51)

where aN , bN > 0 are independent of ϕ.

Definition 4.12. We say that the random variables YN(ϕ, η) are of type Y provided
(4.50) holds for some aN independent of ϕ. We further say that the random variables
ZN(ϕ, η) are of type Z provided (4.51) holds for some bN independent of ϕ.

By recalling that ϕ vanishes on ∂QT , a direct calculation involving Ito formula we
can integrate by parts in time and obtain

XN = Xa,N +Xs,N + X̃s,N +MN + M̃N +QN , (4.52)

where

Xa,N(ϕ, η) =

∫ T

0

N−l∑
i=l+1

ϕ̄i

[
∂pη(ûl,i)∇V̂ ′l,i − ∂rη(ûl,i)∇∗p̂l,i

]
dt+ (4.53)

+

∫ T

0

N−l∑
i=l+1

ϕ̄i [∂rq(ûl,i)∇r̂l,i − ∂pq(ûl,i)∇∗p̂l,i] dt,
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Xs,N(ϕ, η) = σ

∫ T

0

N−l∑
i=l+1

ϕ̄i∂pη(ûl,i)∆p̂l,idt+
2σ

l3

∫ T

0

N−l∑
i=l+1

ϕ̄i∂
2
ppη(ûl,i)dt, (4.54)

X̃s,N(ϕ, η) = σ

∫ T

0

N−l∑
i=l+1

ϕ̄i∂rη(ûl,i)∆V̂
′
l,idt+

2σ

l3

∫ T

0

N−l∑
i=l+1

ϕ̄i∂
2
rrη(ûl,i)dt, (4.55)

MN(ϕ, η) = −
√

2
σ

N

∫ T

0

N−l∑
i=l+1

ϕ̄i∂pη(ûl,i)d∇∗ŵl,i, (4.56)

M̃N(ϕ, η) = −
√

2
σ

N

∫ T

0

N−l∑
i=l+1

ϕ̄i∂rη(ûl,i)d∇∗ ˆ̃wl,i (4.57)

QN(ϕ, η) = −
∫ T

0

∫ 1

0

∂xϕ(t, x)q(ûN(t, x))dxdt (4.58)

−
∫ T

0

N−l∑
i=l+1

ϕ̄i [∂rq(ûl,i)∇r̂l,i − ∂pq(ûl,i)∇∗p̂l,i] dt.

We shall prove Theorem 4.11 via a series of lemmas. We start with two preliminary ones.

Lemma 4.13. Let (Ai)i∈N and (Bi)i∈N be families of L2(R)-valued random variables such
that

lim sup
N→∞

(
E

[
N∑
i=1

∫ T

0

Ai(s)
2ds

]
E

[
N∑
i=1

∫ T

0

Bi(s)
2ds

])
<∞. (4.59)

Let ϕ ∈ L∞(QT ) and let

ϕ̄i(t) := N

∫ 1

0

1N,i(x)ϕ(t, x)dx = N

∫ i
N

+ 1
2N

i
N
− 1

2N

ϕ(t, x)dx (4.60)

Then

E

[∣∣∣∣∣
N∑
i=1

∫ T

0

ϕ̄iAiBidt

∣∣∣∣∣
]
≤ bN‖ϕ‖L∞(QT ), (4.61)

where bN is independent of ϕ such that

lim sup
N→∞

bN <∞. (4.62)
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Proof.

|ϕ̄i| =
∣∣∣∣N ∫ 1

0

ϕ(t, x)1N,i(x)dx

∣∣∣∣ ≤ ‖ϕ‖L∞(QT ). (4.63)

Then, by the Cauchy-Schwarz inequality, we have

E

[∣∣∣∣∣
N∑
i=1

∫ T

0

ϕ̄iAiBidt

∣∣∣∣∣
]
≤ ‖ϕ‖∞

(
E

[
N∑
i=1

∫ T

0

A2
i dt

])1/2(
E

[
N∑
i=1

∫ T

0

B2
i dt

])1/2

.

(4.64)

Lemma 4.14. Let (Ai)i∈N be a family of L2(R)-valued random variables such that

lim
N→∞

E

[
1

N

N∑
i=1

∫ T

0

Ai(s)
2ds

]
= 0. (4.65)

Let ϕ ∈ H1(QT ) and ϕ̄i as in (4.60). Then

E

[
N−1∑
i=1

∫ T

0

|Ai (ϕ̄i+1 − ϕ̄i)| dt

]
≤ aN‖ϕ‖H1(QT ), (4.66)

where aN is independent of ϕ and

lim
N→∞

aN = 0. (4.67)

Proof. By Cauchy-Schwarz we have

E

[
N−1∑
i=1

∫ T

0

|Ai (ϕ̄i+1 − ϕ̄i)| dt

]
≤

(
1

N

N−1∑
i=1

∫ T

0

N2 (ϕ̄i+1 − ϕ̄i)2 dt

)1/2

× (4.68)

×

(
E

[
1

N

N−1∑
i=1

∫ T

0

A2
i dt

])1/2

.

We write

ϕ̄i+1 − ϕ̄i = N

∫ 1

0

1N,i+1(x)ϕ(t, x)dx−N
∫ 1

0

1N,i(x)ϕ(t, x)dx (4.69)

= N

∫ 1

0

1N,i(x)

(
ϕ

(
t, x+

1

N

)
− ϕ(t, x)

)
dx

= N

∫ 1

0

1N,i(x)

∫ x+ 1
N

x

∂yϕ(t, y)dydx

= N

∫ 1

0

1N,i(x)

∫ 1

0

1[x,x+ 1
N ](y)∂yϕ(t, y)dydx
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Thus, Cauchy-Schwarz inequality implies

|ϕ̄i+1 − ϕ̄i| ≤ N

∫ 1

0

1N,i(x)

∣∣∣∣∫ 1

0

1[x,x+ 1
N ](y)∂yϕ(t, y)dy

∣∣∣∣ dx (4.70)

≤ N

∫ 1

0

1N,i(x)

(∫ 1

0

1[x,x+ 1
N ](y)dy

)1/2(∫ 1

0

|∂yϕ(t, y)|2dy
)1/2

dx

=
1√
N

(∫ 1

0

|∂yϕ(t, y)|2dy
)1/2

and so ∫ T

0

1

N

N−1∑
i=1

N2 (ϕ̄i+1 − ϕ̄i)2 dt ≤
∫ T

0

∫ 1

0

|∂xϕ(t, x)|2dxdt (4.71)

= ‖∂xϕ‖2
L2(QT ) ≤ ‖ϕ‖2

H1(QT ).

Remark. The same result applies if we replace ∇ϕ̄i by ∇∗ϕ̄i.
In the following we shall diffusely use the following formulae, which hold for any two

sequences (ai)i∈N, (bi)i∈N.

∇(aibi) = bi+1∇ai + ai∇bi (4.72)

∇∗(aibi) = bi−1∇∗ai + ai∇∗bi (4.73)

N−l∑
i=l+1

ai∇bi =
N−l∑
i=l+1

bi∇∗ai + aN−lbN−l+1 − albl+1 (4.74)

Lemma 4.15. Xa,N be defined in (4.53). Then it decomposes as Xa,N = Ya,N+Za,N such
that Ya,N is of type Y and Za,N is of type Z in the sense of Definition 4.12. Moreover,
bN → 0 as N →∞.

Proof. Since (η, q) is a Lax entropy-entropy flux pair, we have{
∂rη + ∂pq = 0

τ ′(r)∂pη + ∂rq = 0
, (4.75)

so that we can write

Xa,N =

∫ T

0

N−l∑
i=l+1

ϕ̄i∂pη(ûl,i)
[
∇V̂ ′l,i − τ ′(r̂l,i)∇r̂l,i

]
dt (4.76)

= X1
a,N + Z1

a,N , (4.77)
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where

X1
a,N =

∫ T

0

N−l∑
i=l+1

ϕ̄i∂pη(ûl,i)∇
(
V̂ ′l,i − τ(r̂l,i)

)
dt (4.78)

Z1
a,N =

∫ T

0

N−l∑
i=l+1

ϕ̄i∂pη(ûl,i) [∇τ(r̂l,i)− τ ′(r̂l,i)∇r̂l,i] dt (4.79)

The term Z1
a,N is of type Z with bN → 0. This follows from Lemma 4.13, the fact that

∂pη and τ ′′ are bounded Corollary A.7, and the following estimate,

|∇τ(r̂l,i)− τ ′(r̂l,i)∇r̂l,i| ≤ |[τ ′(αr̂l,i + (1− α)r̂l,i+1)− τ ′(r̂l,i)]∇r̂l,i| (4.80)

≤ ‖τ ′′‖∞(1− α)(∇rl,i)2,

which holds for some α ∈ (0, 1).
After a summation by parts, we write

X1
a,N = Ya,N + Z2

a,N + Zb
a,N , (4.81)

where

Ya,N =

∫ T

0

N−l∑
i=l+1

(∇∗ϕ̄i)∂pη(ûl,i−1)(V̂ ′l,i − τ(r̂l,i))dt (4.82)

Z2
a,N =

∫ T

0

N−l∑
i=l+1

ϕ̄i(∇∗∂pη(ûl,i))(V̂
′
l,i − τ(r̂l,i))dt (4.83)

Zb
a,N =

∫ T

0

ϕ̄N−l∂pη(ûl,N−l)(V̂
′
l,N−l+1 − τ(r̂l,N−l+1)dt+ (4.84)

−
∫ T

0

ϕ̄l∂pη(ûl,l)(V̂
′
l,l+1 − τ(r̂l,l+1))dt.

Ya,N is of type Y. This follows from Lemma 4.14, the fact that ∂pη is bounded and Corol-
lary A.11. Z2

a,N is of type Z with bN → 0. This follows from Lemma 4.13, Corollary A.11
and Corollary A.7 after writing, for some intermediate ũl,i,

∇∗∂pη(ûl,i) = ∂2
rpη(ũl,i)∇r̂l,i + ∂2

ppη(ũl,i)∇p̂l,i (4.85)

and using the fact that the second derivatives of η are bounded. Finally, Zb
a,N is of type

Z with bN → 0.This follows from

|Zb
a,N | ≤ ‖ϕ‖L∞(QT )‖∂pη‖∞

∫ T

0

(
|V̂ ′l,N−l+1 − τ(r̂l,N−l+1)|+ |V̂ ′l,l+1 − τ(r̂l,l+1)|

)
dt (4.86)

and Corollary A.11.
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Lemma 4.16. Let Xs,N be defined in (4.54). Then it decomposes as Xs,N = Ys,N +Zs,N
such that Ys,N is of type Y and Zs,N is of type Z in the sense of Definition 4.12.

Proof. Write

Xs,N = X1
s,N + Z1

s,N (4.87)

where

X1
s,N = σ

∫ T

0

N−l∑
i=l+1

ϕ̄i∂pη(ûl,i)∆p̂l,idt (4.88)

Z1
s,N =

2σ

l3

∫ T

0

N−l∑
i=l+1

ϕ̄i∂
2
ppη(ûl,i)dt (4.89)

Since ∂2
ppη is bounded, we have that Z1

s,N is of type Z with bN → 0. In order to evaluate
X1
s,N we sum by parts and write

X1
s,N = Y 1

s,N + Z2
s,N + Y b

s,N , (4.90)

where

Y 1
s,N = −σ

∫ T

0

N−l∑
i=l+1

(∇ϕ̄i)∂pη(ûl,i+1)∇p̂l,idt (4.91)

Z2
s,N = −σ

∫ T

0

N−l∑
i=l+1

ϕ̄i(∇∂pη(ûl,i))∇p̂l,idt (4.92)

Y b
s,N = σ

∫ T

0

ϕ̄N−l∂pη(ûl,N−l)∇p̂l,N−l+1dt− σ
∫ T

0

ϕ̄l∂pη(ûl,i)∇p̂l,l+1dt. (4.93)

Thanks to Lemma 4.14, Lemma 4.13 and Corollary A.7, Y 1
s,N is of type Y, and Z2

s,N is
of type Z. However, we obtain |Z2

s,N | ≤ bN‖ϕ‖∞ with bN only bounded, since

E

[
N−l∑
i=l+1

∫ T

0

(σ(∇p̂l,i)2 + σ(∇r̂l,i)2)dt

]
(4.94)

is bounded but does not necessarily vanish as N →∞. Y b
s,N is of type Y. We focus only

on the boundary term in l, as the boundary term in N − l is analogous. Since ϕ(t, 0) = 0
we write

ϕ̄l = N

∫ 1

0

1N,l(x)ϕ(x)dx = N

∫ 1

0

1N,l(x)

∫ x

0

∂yϕ(t, y)dy (4.95)

= N

∫ 1

0

1N,l(x)

∫ 1

0

1[0,x](y)∂yϕ(t, y)dy.
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By Cauchy-Schwarz, we estimate∣∣∣∣∫ 1

0

1[0,x](y)∂yϕ(t, y)dy

∣∣∣∣ ≤ √x(∫ 1

0

|∂yϕ(t, y)|2dy
)1/2

, (4.96)

so that

|ϕ̄l| ≤
(∫ 1

0

|∂yϕ(t, y)|2dy
)1/2

N

∫ l
N

+ 1
2N

l
N
− 1

2N

√
xdx (4.97)

=

(∫ 1

0

|∂yϕ(t, y)|2dy
)1/2√

l

N

(
1 +O

(
l

N

))
.

Thus, we obtain

E
[
σ

∫ T

0

|ϕ̄l∂pη(ûl,i)∇p̂l,l+1|dt
]
≤ ‖∂pη‖∞

(∫ T

0

|ϕ̄l|2dt
)1/2(

E
[∫ T

0

σ2(∇p̂l,i)2dt

])1/2

≤ C

(∫ T

0

∫ 1

0

|∂yϕ(t, y)|2dy
)1/2(

l

N

σ2

lσ

)1/2

(4.98)

≤ C‖ϕ‖H1(QT )

( σ
N

)1/2

Similarly, we have the following

Lemma 4.17. Let X̃s,N be defined in (4.55). Then it decomposes as X̃s,N = Ỹs,N + Z̃s,N
such that Ỹs,N is of type Y and Z̃s,N is of type Z in the sense of Definition 4.12.

Lemma 4.18. Let MN be defined in (4.56). Then it decomposes as MN = Ym,N +Zm,N
such that Ym,N is of type Y and Zm,N is of type Z in the sense of Definition 4.12.
Moreover, bN → 0 as N →∞.

Proof. By a summation by parts we obtain

MN = Ym,N + Zm,N + Zb
m,N , (4.99)

with

Ym,N = −
√

2
σ

N

∫ T

0

N−l∑
i=l+1

(∇ϕ̄i)∂pη(ûl,i+1)dŵl,i (4.100)

Zm,N = −
√

2
σ

N

∫ T

0

N−l∑
i=l+1

ϕ̄i(∇∂pη(ûl,i))dŵl,i (4.101)

Zb
m,N =

√
2
σ

N

∫ T

0

(ϕ̄N−l+1∂pη(ûN−l+1)dŵl,N−l − ϕ̄l+1∂pη(ûl,l+1)dŵl,l) . (4.102)
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Ym,N is of type Y. In fact, we have

E
[
Y 2
m,N

]
= 2

σ

N
E

1

l

∑
|j|<l

∫ T

0

N−l∑
i=l+1

(∇ϕ̄i)∂pη(ûl,i+1)dwi−j

2 (4.103)

≤ 2σ

N

1

l

∑
|j|<l

l − |j|
l

N−l∑
i=l+1

E
[∫ T

0

((∇ϕ̄i)∂pη(ûl,i+1))2

]
dt

≤ 2σ

N
‖∂pη‖2

∞
1

N2

∫ T

0

N−l∑
i=l+1

N2(∇ϕ̄i)2dt

≤ ‖ϕ‖2
H1(QT )

2σ

N2
‖∂pη‖2

∞.

Thanks to the coefficient
√
σ/N , the boundary term Zb

m,N is of type Z with bN → 0.
Finally, we show that Zm,N is of type Z as well, by estimating

E
[
Z2
m,N

]
≤ C‖ϕ‖2

L∞(QT )

σ

N

∫ T

0

N−l∑
i=l+1

E
[
(∇r̂l,i)2 + (∇p̂l,i)2

]
dt

≤ ‖ϕ‖2
L∞(QT )

C

N

Similarly, we prove the following

Lemma 4.19. Let M̃N be defined in (4.57). Then it decomposes as MN = Ỹm,N + Z̃m,N
such that Ỹm,N is of type Y and Z̃m,N is of type Z in the sense of Definition 4.12.
Moreover, bN → 0 as N →∞.

Lemma 4.20. Let QN be defined in (4.58). Then it decomposes as QN = Yq,N + Zq,N
such that Yq,N is of type Y and Zq,N is of type Z in the sense of Definition 4.12. Moreover,
bN → 0 as N →∞.
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Proof. Let ϕ̃i(t) = ϕ

(
t,
i

N
+

1

2N

)
. Then

−
∫ T

0

∫ 1

0

∂xϕ(t, x)q(ûN(t, x))dxdt =−
∫ T

0

N−l∑
i=l+1

(∫ 1

0

∂xϕ(t, x)1N,i(x)dx

)
q(ûl,i)dt

=

∫ T

0

N−l∑
i=l+1

(∇∗ϕ̃i)q(ûl,i)dt (4.104)

=

∫ T

0

N−l∑
i=l+1

ϕ̃i∇q(ûl,i)dt+

∫ T

0

(
ϕ̃lq(ûl,l+1)+

− ϕ̃N−lq(ûN−l+1)
)
dt.

Thus, since we may write, for some α ∈ (0, 1),

∇q(ûl,i) = ∂rη(ûαl,i)∇r̂l,i + ∂pη(ûαl,i)∇p̂l,i, (4.105)

where ûαl,i = αûl,i + (1− α)ûl,i+1, we obtain

QN = Qr
q,N +Qp

q,N + Zb
q,N , (4.106)

where

Qr
q,N =

∫ T

0

N−l∑
i=l+1

(
ϕ̃i∂rq(û

α
l,i)∇r̂l,i − ϕ̄i∂rq(ûl,i)∇r̂l,i

)
dt (4.107)

Q∗pq,N =

∫ T

0

N−l∑
i=l+1

(
ϕ̃i∂pq(û

α
l,i)∇p̂l,i + ϕ̄i∂pq(ûl,i)∇∗pl,i

)
dt (4.108)

Zb
q,N =

∫ T

0

(ϕ̃lq(ûl,l+1)− ϕ̃N−lq(ûN−l+1)) dt. (4.109)

Since q is bounded, Zb
q,N is at glance of type Z. Next, we write

Qr
q,N = Y r

q,N + Zr
q,N , (4.110)

where

Y r
q,N =

∫ T

0

N−l∑
i=l+1

(ϕ̃i − ϕ̄i)∂rq(ûαl,i)∇r̂l,idt (4.111)

Zr
q,N =

∫ T

0

N−l∑
i=l+1

ϕ̄i
(
∂rq(û

α
l,i)− ∂rq(ûl,i)

)
∇r̂l,idt. (4.112)
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In order to estimate Y r
q,N we estimate

|ϕ̃i − ϕ̄i| = N

∣∣∣∣∫ 1

0

1N,i(x)

(
ϕ

(
i

N
+

1

2N

)
− ϕ(x)

)
dx

∣∣∣∣ (4.113)

≤ N

∫ 1

0

1N,i(x)

∣∣∣∣∫ 1

0

1[x, i
N

+ 1
2N

](y)∂yϕ(t, y)dy

∣∣∣∣ dx
≤ N

∫ 1

0

1N,i(x)

(
i

N
+

1

2N
− x
)1/2(∫ 1

0

|∂yϕ(t, y)|2dy
)1/2

dx

=
2

3
√
N

(∫ 1

0

|∂yϕ(t, y)|2dy
)1/2

.

Thus, by Cauchy-Schwarz,

|Y r
q,N | ≤ C

(∫ T

0

N−l∑
i=l+1

(ϕ̃i − ϕ̄i)2dt

)1/2(∫ T

0

N−l∑
i=l+1

(∇r̂l,i)2dt

)1/2

(4.114)

≤ C

(∫ T

0

∫ 1

0

|∂yϕ(t, y)|2dydt
)1/2

(∫ T

0

N−l∑
i=l+1

(∇r̂l,i)2dt

)1/2

≤ C‖ϕ‖H1(QT )

(∫ T

0

N−l∑
i=l+1

(∇r̂l,i)2dt

)1/2

and so Y r
q,N is of type Y. Zr

q,N is easily seen to be of type Z with bN → 0 since we can
estimate, for some intermediate value ũl,i,∣∣∂rq(ûαl,i)− ∂rq(ûl,i)∣∣ = |∂rq(α̂ul,i + (1− α)ûl,i+1)− ∂rq(ûl,i)| (4.115)

= |∂2
rrq(ũl,i)(1− α)∇r̂l,i + ∂2

rpq(ũl,i)(1− α)∇p̂l,i|
≤ ‖q′′‖∞(1− α) (|∇r̂l,i|+ |∇p̂l,i|) .

In order to evaluate Q∗pq,N we write

Q∗pq,N = Qp
q,N +Xq,N , (4.116)

where

Qp
q,N =

∫ T

0

N−l∑
i=l+1

(
ϕ̃i∂pq(û

α
l,i)∇p̂l,i − ϕ̄i∂pq(ûl,i)∇pl,i

)
dt (4.117)

Xq,N =

∫ T

0

N−l∑
i=p+1

ϕ̄i∂pq(ûl,i) (∇∗p̂l,i +∇p̂l,i) dt. (4.118)
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Qp
p,N is evaluated exactly as Qr

p,N and so it writes as a sum of a type Y term and of a
type Z term with bN →∞. Finally, since

∇∗p̂l,i +∇p̂l,i = ∆p̂l,i, (4.119)

the term Xq,N is entirely similar to the term X1
s,N of Lemma 4.16, except the latter has

an extra factor σ. Thus, Xq,N writes as a sum of a type Y term and a type Z term with
bN → 0.

5 Clausius Inequality

This section is devoted to proving the second law of Thermodynamics in the form of the
Clausius inequality. We recall here the variational formula for the relative entropy

HN(t) = sup
φ

{∫
φdµNt − log

∫
eφdλNt

}
, (5.1)

where the supremum is carried over all measurable function φ such that
∫
eφdλNt < +∞.

Lemma 5.1. Any solution ũ belongs almost surely to L∞(0, T ;L2(0, 1)).

Proof. Fix 1 ≤ p < 2. By Lemma 4.10 there exists a set A of probability 1 such that
ũn → ũ in Lp-strong for for any ω ∈ A. For any such ω we can find a subsequence {nωk}
such that ũnωk (t, x) → ũ(t, x) for almost all t and x. In particular, for almost all t, the
sequence ũnωk (t, x) converges for almost all x. Thus, by Fatou lemma and the remark
following Proposition 4.8 we have∫ 1

0

|ũ(t, x)|2dx ≤ lim inf
k→∞

∫ 1

0

|ũnωk (t, x)|2dx ≤ C (5.2)

for almost all t.

Lemma 5.2. For any limit point Q of QN∫ T

0

lim inf
N→∞

HN(t)

N
dt ≥ βEQ

(∫ T

0

∫ 1

0

[F(t, y)− τ̄(t)r(t, y)] dydt

)
+

∫ T

0

G(τ̄(t))dt,

(5.3)
where

F(t, y) :=
p(t, y)2

2
+ F (r(t, y)). (5.4)
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Proof. To get the lower bound for any fixed t ≥ 0 choose two Lipschitz functions τ̃(t, ·)

and p̃(t, ·) on [0, 1] and define τ̃i(t) := τ̃

(
t,
i

N

)
and p̃i(t) := p̃

(
t,
i

N

)
. Then take φ in

(5.1) as

φ(r,p) =
N∑
i=1

{
β
[
(τ̃i(t)− τ̄(t))ri + p̃i(t)pi

]
−G(τ̃i(t)) +G(τ̄(t))− β p̃i(t)

2

2

}
. (5.5)

Observe that φ is such that
∫
eφdλNt = 1. Then using the results on the hydrodynamic

limit, along a sub-sequence, we have, for almost all t,

lim inf
N→∞

HN(t)

N
≥ sup

τ̃(t,·),p̃(t,·)∈Lip([0,1])

EQ

∫ 1

0

dy
{

[β (τ̃(t, y)− τ̄(t)) r(t, y) + p̃(t, y)p(t, y)]

−G(τ̃(t, y)) +G(τ̄(t))− β

2
p̃(t, y)2

}
= EQ

∫ 1

0

dy
{

sup
τ∈R

[βτr(t, y)−G(τ)]− βτ̄(t)r(t, y) + sup
p′∈R

[
p′p(t, y)− β

2
p′2
]}

+G(τ̄(t))

= βEQ

∫ 1

0

dy [F(t, y)− βτ̄(t)r(t, y)] +G(τ̄(t)).

(5.6)

The conclusion then follows after a time integration.

Theorem 5.3 (Clausius inequality).

EQ

(∫ T

0

∫ 1

0

[F(t, y)−F(0, y)]dy

)
≤ EQ

(∫ T

0

W (t)dt

)
. (5.7)

where the macroscopic work is given by

W (t) := −
∫ t

0

τ̄ ′(s)

∫ 1

0

r(s, y)dy + τ̄(t)

∫ 1

0

r(t, y)dy − τ̄(0)

∫ 1

0

r0(y)dy. (5.8)

Proof. By our assumptions on the initial conditions we have

lim
N→∞

HN(0)

N
= β

∫ 1

0

[F(0, y)− τ̄(0)r0(y)] dy +G(τ̄(0)). (5.9)

This, together with the previous lemma, yields for almost all t,

βEQ

(∫ 1

0

F(t, y)dy

)
− β

∫ 1

0

F(0, y)dy ≤ lim inf
N→∞

HN(t)−HN(0)

N

+βEQ

(∫
[τ̄(t)r(t, y)− τ̄(0)r0(y)] dy

)
−G(τ̄(t)) +G(τ̄(0)).

(5.10)
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Finally, from Proposition 3.1 we have

lim inf
N→∞

HN(t)−HN(0)

N
≤ −β

∫ t

0

ds EQ

(
τ̄ ′(s)

∫ 1

0

r(s, y)dy

)
+ β

∫ t

0

ds τ̄ ′(s)`(τ̄(s))

(5.11)

= βEQ (W (t))− βEQ

(∫ 1

0

[τ̄(t)r(t, y)− τ̄(0)r0(y)] dy

)
+ β

∫ t

0

ds τ̄ ′(s)`(τ̄(s))

= βEQ (W (t))− βEQ

(∫ 1

0

[τ̄(t)r(t, y)− τ̄(0)r0(y)] dy

)
+G(τ̄(t))−G(τ̄(0)),

which, together with (5.10) and after an integration in time gives the conclusion.

Remark. Assume that the external tension varies smoothly from τ0 at t = 0 to τ1 as
t→∞. Assume also that the system is at equilibrium both at time zero and as t→∞:

p0(x) = 0, τ(r0(x)) = τ0, ∀x ∈ [0, 1] (5.12)

lim
t→∞

p(t, x) = 0, lim
t→∞

τ(r(t, x)) = τ1 a.e. x ∈ [0, 1]. (5.13)

Then, the following version of the Clausius inequality holds

F (τ1)− F (τ0) ≤ EQ(W ), (5.14)

where the total work W is given by

W := −
∫ ∞

0

τ̄ ′(s)

∫ 1

0

r(s, y)dy + τ1`(τ1)− τ0`(τ0). (5.15)

A Appendix

A.1 Microscopic estimates

In the following we will denote, for any sequence (ai)i∈N and any l ∈ N the usual block
averages

āl,i :=
1

l

l∑
j=1

ai−j+1, i ≥ l. (A.1)

For 1 ≤ m ≤ i ≤ N , denote by dµm,i,t ∈ M (R2m) the projection of the proba-
bility measure µNt on {ri−m+1, . . . , ri, pi−m+1, . . . , pi}. This decompose in dµm,i,t(·) =
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dµm,i,t(·|r̄m,i, p̄m,i)dµi,t(r̄m,i, p̄m,i), where µm,i,t(·|r̄m,i, p̄m,i) is the measure µm,i,t condi-
tioned to r̄m,i, p̄m,i, while dµi,t(r̄m,i, p̄m,i) is the marginal distribution of (r̄m,i, p̄m,i) under
µNt .

Correspondingly, from the measure λNt , we define dλm,i,t(·) = dλm,i,t(·|r̄m,i, p̄m,i)dλi,t(r̄m,i, p̄m,i).
For every value of `, p̄, we can choose the corresponding regular conditional probabil-

ities µ̄`,p̄m,i,t = µm,i,t(·|r̄m,i = `, p̄m,i = p̄) and λ̄`,p̄m,i,t = λm,i,t(·|r̄m,i = `, p̄m,i = p̄). These are
probability measures on R2m supported on the 2(m− 1) hyperplane Σm(`, p̄) defined by
1
m

∑m−1
j=0 rj = `, 1

m

∑m−1
j=0 pj = p̄. Observe that λ̄`,p̄m,i,t does not depend on τ̄(t) nor on i.

Since the potential V is uniformly convex, the Bakry-Emery criterion applies and we
have the following logarithmic Sobolev inequality (LSI)∫

Σm(`,p̄)

g2 log g2dλ̄`,p̄m ≤ Clsim
2

m−1∑
j=1

∫
Σm(`,p̄)

[
(Djg)2 + (D̃jg)2

]
dλ̄`,p̄m (A.2)

for any smooth g on R2m such that
∫

Σm(`,p̄)
g2dλ̄`,p̄m = 1. Here Clsi is a universal con-

stant depending on the interaction V only. In particular (A.2) holds for g2 = f̄ `,p̄m,i,t =

dµ̄`,p̄m,i,t/dλ
`,p̄
m . Denote dµm,i,t(`, p̄) the marginal distribution of r̄m,i, p̄m,i of µt.

Lemma A.1. Let m < i < N . Then there exists a constant C such that, for any
`, p̄ ∈ R, ∫

R2

dµm,i,t(r̄m,i, p̄m,i)

∫
Σm(r̄m,i,p̄m,i)

f̄
r̄m,i,p̄m,i
m,i,t log f̄

r̄m,i,p̄m,i
m,i,t dλr̄m,i,p̄m,im (A.3)

≤ Clsim
2

m−1∑
j=1

∫
R2N

(
Di−jf

N
t

)2
+
(
D̃i−jf

N
t

)2

fNt
dλNt

Proof. Let fm,i,t =
dµm,i,t
dλm,i,t

. It decomposes as

fm,i,t(ri−m, pi−m, . . . , ri, pi) = f̄
r̄m,i,p̄m,i
m,i,t (ri−m, pi−m, . . . , ri, pi)f̄i,t(r̄m,i, p̄m,i), (A.4)

where f̄i,t =
dµi,t
dλi,t

.
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By (A.2), the left hand side of (A.3) is less or equal to

Clsim
2

∫
R2

dµi,t(r̄m,i, p̄m,i)
m−1∑
j=1

∫
(Di−j f̄

r̄m,i,p̄m,i
m,i,t )2 + (D̃i−j f̄

r̄m,i,p̄m,i
m,i,t )2

f̄
r̄m,i,p̄m,i
m,i,t

dλ̄
r̄i,m,p̄i,m
m,i,t (A.5)

= Clsim
2

∫
R2

fi,t(r̄m,i, p̄m,i)dλi,t(r̄m,i, p̄m,i)
m−1∑
j=1

∫
(Di−j f̄

r̄m,i,p̄m,i
m,i,t )2 + (D̃i−j f̄

r̄m,i,p̄m,i
m,i,t )2

f̄
r̄m,i,p̄m,i
m,i,t

dλ̄
r̄i,m,p̄i,m
m,i,t

= Clsim
2

∫
R2

dλi,t(r̄m,i, p̄m,i)
m−1∑
j=1

∫
(Di−jfm,i,t)

2 + (D̃i−jfm,i,t)
2

fm,i,t
dλ̄

r̄i,m,p̄i,m
m,i,t

= Clsim
2

m−1∑
j=1

∫
(Di−jfm,i,t)

2 + (D̃i−jfm,i,t)
2

fm,i,t
dλm,i,t,

and (A.3) follows by Jensen’s inequality.

Proposition A.2 (One-block estimate - interior). There exists l0 ∈ N such that, for
l0 < l ≤ N , we have

N−1∑
i=l+1

∫ t

0

∫ (
V̄ ′l,i − τ (r̄l,i)

)2
dµNs ds ≤ C

(
N

l
t+

l2

σ

)
≤ C(T )

l2

σ
. (A.6)

Proof. Fix α > 0. By the entropy inequality and Lemma A.1:

N−1∑
i=l+1

αl

∫ t

0

ds

∫ (
V̄ ′l,i − τ (r̄l,i)

)2
dµNs (A.7)

=
N−1∑
i=l+1

αl

∫ t

0

ds

∫
dµi,s(r̄l,i, p̄l,i)

∫ (
V̄ ′l,i − τ (r̄l,i)

)2
dµ̄

r̄l,i,p̄l,i
l,i,s

≤l3Clsi
∫ t

0

(DN(s) + D̃N(s))ds+
N−1∑
i=l+1

∫ t

0

ds

∫
dµi,s(r̄l,i, p̄l,i) log

(∫
eαl

(
V̄ ′l,i − τ(r̄l,i)

)2

dλ̄
r̄l,i,p̄l,i
l,i,t

)

≤C l
3

σ
+

N−1∑
i=l+1

∫ t

0

ds

∫
dµi,s(r̄l,i, p̄l,i) log

(∫
eαl

(
V̄ ′l,i − τ(r̄l,i)

)2

dλ̄
r̄l,i,p̄l,i
l

)
where we have used the bound on the time integral of the Dirichlet form .

We prove now that for α < (4c0)−1 we have

sup
`,p̄∈R

∫
eαl

(
V̄ ′l,i − τ(`)

)2

dλ̄`,p̄l ≤ C, (A.8)

and (A.15) will follow.
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We take l > l0 so that∫
eαl

(
V̄ ′l,i − τ(`)

)2

dλ̄`,p̄l ≤ C

∫
eαl

(
V̄ ′l,i − τ(`)

)2

dλlβ,p̄,τ(`). (A.9)

Let us introduce a normally distributed random variable ξ ∼ N (0, 1) so that we can
use the identity

eαl
(
V̄ ′l,i − τ(`)

)2

= Eξ
[
eξ
√

2αl
(
V̄ ′l,i − τ(`)

)]
(A.10)

in order to write∫
eαl

(
V̄ ′l,i − τ(`)

)2

dλlβ,p̄,τ(`) = Eξ
[∫

eξ
√

2αl
(
V̄ ′l,i − τ(`)

)
dλlβ,p̄,τ(`)

]
(A.11)

= Eξ

e−τ(`)ξ
√

2αl

(∫
e
ξ
√

2αl

l
V ′(r)

dλβ,p̄,τ(`)

)l
 , (A.12)

It is easy to show (cf Appendix A of [7]) that,∫
eξ
√

2αl−1V ′(r1)dλNβ,p̄,τ(`) ≤ e
c2α

β
ξ2 +

τ(`)
√

2αl

l
ξ
. (A.13)

Hence, we obtain ∫
eα
(
V̄ ′l,i − τ(`)

)2

dλlβ,p̄,τ(`) ≤ Eξ
[
e
c2α

β
ξ2
]
, (A.14)

and the right hand side is independent of ` and p̄. Taking α = β/(4c2) the expectation
with respect to ξ is finite.

If we do not perform the summation over i in (A.7) and we bound the right-hand
side of (A.3) by the Dirichlet forms we obtain the following

Corollary A.3. There exists l0 ∈ N such that, for l0 < l < i < N , we have∫ t

0

∫ (
V̄ ′l,i − τ (r̄l,i)

)2
dµNs ds ≤ C

(
1

l
t+

l

σ

)
≤ C(T )

l

σ
. (A.15)

Proposition A.4 (One-and-a-half-block estimate). Let ai ∈ {pi, V ′(ri)}. Then, for any
fixed l ≤ k ≤ N − l, we have∫ t

0

∫
(āl,k+l − āl,k)2dµNs ds ≤ C

(
1

l
t+

l

σ

)
≤ C(T )

l

σ
. (A.16)
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Proof. We consider ai = V ′(ri), as the case ai = pi is analogous. Thanks to the identity

V ′(ri)− V ′(rj) = −β−1

(
∂λNs
∂ri
− ∂λNs

∂rj

)
(A.17)

we compute∫
(V̄ ′l,k+l − V̄ ′l,k)2fNs dλ

N
s =

1

l

k∑
i=k−l+1

∫
(V ′(ri+l)− V ′(ri))(V̄ ′l,k+l − V̄ ′l,k)fNs dλNs (A.18)

=
β−1

l2

k∑
i=k−l+1

∫
(V ′′(ri+l) + V ′′(ri))dµ

N
s +

+

∫
(V̄ ′l,k+l − V̄ ′l,k)

(
β−1

l

k∑
i=k−l+1

(
∂fNs
∂ri+l

− ∂fNs
∂ri

))
dλNs .

By using Cauchy-Schwartz inequality on the last term and the fact that V ′′ is bounded,
we obtain∫

(V̄ ′l,k+l − V̄ ′l,k)2fNs dλ
N
s ≤ C

(
1

l
+

1

l

∫
1

fNs

k∑
i=k−l+1

(
∂fNs
∂ri+l

− ∂fNs
∂ri

)2

dλNs

)

= C

1

l
+

1

l

∫
1

fNs

k∑
i=k−l+1

(
i+l−1∑
j=i

(
∂fNs
∂rj+1

− ∂fNs
∂rj

))2

dλNs


≤ C

(
1

l
+

∫
1

fNs

k∑
i=k−l+1

i+l−1∑
j=i

(
∂fNs
∂rj+1

− ∂fNs
∂rj

)2

dλNs

)
(A.19)

≤ C

(
1

l
+

∫
1

fNs

k∑
i=k−l+1

N−1∑
j=1

(
∂fNs
∂rj+1

− ∂fNs
∂rj

)2

dλNs

)

≤ C

(
1

l
+ lD̃N(s)

)
.

The conclusion then follows after an integration in time.

Proposition A.5 (Two-block estimate). Let ai ∈ {pi, V ′(ri), ri} and l0 be as in Propo-
sition A.2. Then, for l0 < l ≤ N , we have

N−l∑
i=l+1

∫ t

0

(āl,i+l − āl,i)2 dµNs ds ≤ C

(
N

l
t+

l2

σ

)
≤ C(T )

l2

σ
. (A.20)
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Proof. We prove the statement for ai = V ′(ri). From (A.19) we have

N−l∑
i=l+1

∫
(V̄ ′l,i+l − V̄ ′l,i)2fsdλ

N
s ≤ C

(
N

l
+

∫
1

fNs

N−l∑
i=l

i∑
k=i−l+1

k+l−1∑
j=k

(
∂fNs
∂rj+1

− ∂fNs
∂rj

)2

dλNs

)

≤ C

(
N

l
+ l

∫
1

fNs

N−l∑
i=l

i+l−1∑
j=i−l+1

(
∂fNs
∂rj+1

− ∂fNs
∂rj

)2

dλNs

)

≤ C

(
N

l
+ l2

∫
1

fNs

N−l∑
i=l

(
∂fNs
∂ri+1

− ∂fNs
∂ri

)2

dλNs

)
(A.21)

≤ C

(
N

l
+ l2D̃N(s)

)
.

The conclusion then follows after a time integration. The proof for ai = pi is analogous.
Finally, since τ ′ is bounded from below by a positive constant, we have

(r̄l,i+l − r̄l,i)2 ≤ C (τ(r̄l,i+l)− τ(r̄l,i))
2 (A.22)

≤ C
[(
τ(r̄l,i+l)− V̄ ′l,i+l

)2
+
(
V̄ ′l,i − τ(r̄l,i)

)2
+
(
V̄ ′l,i+l − V̄ ′l,i

)2
]

and the statement for ai = ri follows from the fist part of the proof and Proposition A.2.

We conclude this section by showing the connection between the averages âl,i and
āl,i.

Lemma A.6. For any sequence (ai)i∈N, any l ∈ N and any i ≥ l, we have

∇âl,i =
1

l
(āl,i+l − āl,i) (A.23)

Proof. We prove the statement by induction over l. The statement for l = 1 is obvious,
since both â1,i+1 − â1,i and ā1,i+1 − ā1,i are equal to ai+1 − ai.

Assume now the statement is true for some l ≥ 1. We prove it holds for l+ 1 as well.
We have

âl+1,i+1 − âl+1,i =
1

l + 1

∑
|j|<l+1

l + 1− |j|
l + 1

ai+1−j −
1

l + 1

∑
|j|<l+1

l + 1− |j|
l + 1

ai−j (A.24)

=
1

(l + 1)2

∑
|j|<l+1

(l + 1− |j|)(ai+1−j − ai−j)

=
l2

(l + 1)2

1

l

∑
|j|<l

l − |j|
l

(ai+1−j − ai−j) +
1

(l + 1)2

∑
|j|<l+1

(ai+1−j − ai−j).
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For the first summation we can use the inductive hypothesis, while the second summation
is telescopic. Therefore we obtain

âl+1,i+1 − âl+1,i =
1

(l + 1)2

l∑
j=1

(ai+l−j+1 − ai−j+1) +
1

(l + 1)2
(ai+l+1 − ai−l) (A.25)

=
1

(l + 1)2

l+1∑
j=1

(ai+l−j+1 − ai−j+1)

=
1

l + 1
(āl+1,i+l+1 − āl+1,i).

Combining Proposition A.5 and Lemma A.6 we get the following

Corollary A.7. Let ai ∈ {pi, V ′(ri), ri} and l0 be as in Proposition A.2. Then, for
l0 < l < i < N − l + 1,

N−l∑
j=l+1

∫ t

0

∫
(∇âl,j)2 dµNs ds ≤ C

(
N

l3
t+

1

σ

)
≤ C(T )

1

σ
(A.26)

∫ t

0

∫
(∇âl,i)2 dµNs ds ≤ C

(
1

l3
t+

1

lσ

)
≤ C(T )

1

lσ
. (A.27)

We now show that the two averages we defined are equivalent in the limit.

Proposition A.8 (One-block comparison). Let ai ∈ {pi, V ′(ri)}. Then, for any l ≤ i ≤
N − l, we have ∫ t

0

∫
(āl,i − âl,i)2 dµNs ds ≤ C

(
1

l
t+

l

σ

)
≤ C(T )

l

σ
. (A.28)

Proof. We prove the statement for ai = V ′(ri), the proof for ai = pi being analogous.
We can write

āl,i − âl,i =
1

l

l−1∑
j=0

j

l
(ai−j − ai−j+l) . (A.29)
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Thus,∫
(V̄ ′l,i − V̂ ′l,i)2dµNs =

∫
1

l

l−1∑
j=0

j

l
(V ′(ri−j)− V ′(ri−j+l)) (V̄ ′l,i − V̂ ′l,i)fNs dλNs (A.30)

=β−1 1

l2

∫ l−1∑
j=0

l−1∑
k=0

jk

l2

((
∂

∂ri−j
− ∂

∂ri−j+l

)
(V ′(ri−k)− V ′(ri−k+l))

)
fNs dλ

N
s +

+ β−1

∫
(V̄ ′l,i − V̂ ′l,i)

√
fNs

1

l

l−1∑
j=0

j

l

1√
fNs

(
∂fNs
∂ri−j

− ∂fNs
∂ri−j+l

)
dλNs

≤β−1 1

l2

∫ l−1∑
j=0

j2

l2
(V ′′(ri−j) + V ′′(ri−j+l)) f

N
s dλ

N
s +

+
1

2

∫
(V̄ ′l,i − V̂ ′l,i)2fNs dλ

N
s +

β−2

2

∫
1

l

l−1∑
j=0

j2

l2
1

fNs

(
∂fNs
∂ri−j

− ∂fNs
∂ri−j+l

)2

dλNs .

Thus, we obtain∫
(V̄ ′l,i − V̂ ′l,i)2dµNs ≤ 2β−1‖V ′′‖∞

l
+ β−2

∫
1

l

l−1∑
j=0

1

fNs

(
∂fNs
∂ri−j

− ∂fNs
∂ri−j+l

)2

dλNs (A.31)

and the conclusion follows as in the proof of Proposition A.4.

Proposition A.9 (Block average comparison). Let ai ∈ {pi, V ′(ri), ri} and l0 as in
Proposition A.2. Then, for l0 < l ≤ N we have

N−l∑
i=l+1

∫ t

0

∫
(āl,i − âl,i)2 dµNs ds ≤ C

(
N

l
t+

l2

σ

)
≤ C(T )

l2

σ
. (A.32)

Proof. The statement for ai ∈ {pi, V ′(ri)} is obtained by the previous proposition after
summing over i as in the proof of Proposition A.5.

In order to prove the statement for ai = ri we write

r̄l,i − r̂l,i =
1

l

∑
|j|<l

cjri−j, (A.33)

where |cj| < 1 and
∑
|j|<l cj = 0. Let α > 0 to be chosen later and follow the proof of

Proposition A.2 in order to obtain

α
N−l∑
i=l+1

∫ t

0

∫
(r̄l,i − r̂l,i)2 dµNs ds ≤ C

l3

σ
+

N−l∑
i=l+1

∫ t

0

∫
log

(∫
eα (r̄l,i − r̂l,i)2

dλ̂`,p̄2l−1,i+l−1

)
dµNs ds.

(A.34)
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We introduce a normally distributed ξ ∼ N (0, 1) and write, for large enough l,∫
eα (r̄l,i − r̂l,i)2

dλ̂`,p̄2l−1,i+l−1 ≤ C

∫
eα (r̄l,i − r̂l,i)2

dλ̂Nβ,p̄,τ(`) (A.35)

= CEξ
[∫

e
√

2αξ (r̄l,i − r̂l,i)dλ̂Nβ,p̄,τ(`)

]

= CEξ

∫ e

√
2αξ

1

l

∑
|j|<l

cjri−j

dλ̂Nβ,p̄,τ(`)


= CEξ

∏
|j|<l

e
G

(
τ(`) +

√
2αξ

l
cj

)
−G(τ(`))


= CEξ

e
∑
|j|<l

(
G′(τ(`))

√
2αξ

l
cj +G′′(τ̃)

2αξ2

l2
c2
j

)
for some intermediate value τ̃ . But since

∑
|j|<l cj = 0, |cj| < 1 and G′′ is bounded, we

can estimate∫
eα (r̄l,i − r̂l,i)2

dλ̂`,p̄2l−1,i+l−1 ≤ CEξ

[
e

6α‖G′′‖∞
l

ξ2

]
= C

1√
1− 12α‖G′′‖∞

l

, (A.36)

provided
6α‖G′′‖∞

l
<

1

2
. Note that the right-hand side of (A.36) does not depend on

` and p̄. Thus, combining (A.34) and (A.36) and choosing α <
1

12‖G′′‖∞
l leads to the

conclusion.

Corollary A.10. There exists l0 ∈ N such that, for l0 < l < i < N − l + 1, we have∫ t

0

∫
(r̄l,i − r̂l,i)2 dµNs ds ≤ C

(
1

l
t+

l

σ

)
≤ C(T )

l

σ
. (A.37)

Corollary A.11. Let l0 be as in Proposition A.2. Then, for l0 < l < i < N − l + 1 we
have

N−l∑
j=l+1

∫ t

0

∫ (
V̂ ′l,j − τ(r̂l,j)

)2

dµNs ds ≤ C

(
N

l
t+

l2

σ

)
≤ C(T )

l2

σ
(A.38)

∫ t

0

∫ (
V̂ ′l,i − τ(r̂l,i)

)2

dµNs ds ≤ C

(
1

l
t+

l

σ

)
≤ C(T )

l

σ
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Proof. Follows from Proposition A.2, Proposition A.9 and the inequality(
V̂ ′l,i − τ(r̂l,i)

)2

≤ 3

[(
V̂ ′l,i − V̄ ′l,i

)2

+
(
V̄ ′l,i − τ(r̄l,i)

)2
+ (τ(r̄l,i)− τ(r̂l,i))

2

]
(A.39)

≤ C

[(
V̂ ′l,i − V̄ ′l,i

)2

+
(
V̄ ′l,i − τ(r̄l,i)

)2
+ (r̄l,i − r̂l,i)2

]
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