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We consider a chain of particles connected by an-harmonic springs, with a boundary force (tension) acting on the last particle, while the first particle is kept pinned at a point. The particles are in contact with stochastic heat baths, whose action on the dynamics conserves the volume and the momentum, while energy is exchanged with the heat baths in such way that, in equilibrium, the system is at a given temperature T . We study the space empirical profiles of volume stretch and momentum under hyperbolic rescaling of space and time as the size of the system growth to be infinite, with the boundary tension changing slowly in the macroscopic time scale. We prove that the probability distributions of these profiles concentrate on L 2 -valued weak solutions of the isothermal Euler equations (i.e. the non-linear wave equation, also called p-system), satisfying the boundary conditions imposed by the microscopic dynamics. Furthermore, the weak solutions obtained satisfy the Clausius inequality between the work done by the boundary force and the change of the total free energy in the system. This result includes the shock regime of the system.

Introduction

Boundary conditions in hyperbolic systems of conservation laws introduce challenging mathematical problems, in particular for weak solutions that are not of bounded variations. The solution may depend on the particular approximation used, and reflects different microscopic origins of the equation. Recently (cf. [START_REF] Marchesani | On the existence of L 2 -valued thermodynamic entropy solutions for a hyperbolic system with boundary conditions[END_REF]) we have considered L 2valued weak solution to the isothermal Euler equation in Lagrangian coordinates on [0, 1] (also called in the literature non-linear wave equation or p-system):

∂ t r -∂ x p = 0 ∂ t p -∂ x τ (r) = 0 , (1.1) 
with the following boundary conditions: p(t, 0) = 0 (the material is attached to a fixed point on the left side), τ (r(t, 1)) = τ (t) (a time dependent force τ (t) is acting on the right side). The precise sense an L 2 -valued solution satisfies the boundary condition is given in Definition 2.2. In [START_REF] Marchesani | On the existence of L 2 -valued thermodynamic entropy solutions for a hyperbolic system with boundary conditions[END_REF] we consider viscous approximations of (1.1), that requires two extra boundary conditions. We choose these extra boundary conditions to be of Neumann type (i.e. conservative). Adapting the L 2 -version of the compensated-compactness argument of Shearer [START_REF] Shearer | Global existence and compactness in L p for the quasi-linear wave equation[END_REF] and [START_REF] Serre | Convergence with physical viscosity for nonlinear elasticity[END_REF], we prove in [START_REF] Marchesani | On the existence of L 2 -valued thermodynamic entropy solutions for a hyperbolic system with boundary conditions[END_REF] the existence of vanishing viscosity solutions to the p-system. Furthermore, these solutions satisfy the usual Lax-entropy production characterisation and the thermodynamic Clausius inequality, which relates the change of the total free energy to the work done by the boundary force (see Section 5). We call such weak solutions thermodynamic entropy solutions.

In the present article we study the microscopic statistical mechanics origin of (1.1). We want to understand how equation (1.1) emerges in a hydrodynamic limit, i.e. a hyperbolic space-time rescaling of a microscopic dynamics. We consider a chain of N + 1 particles connected by N anharmonic springs (see Figure 1). The first particle on the left is fixed at a point, while on the rightmost particle is acting a time-dependent force (tension). The Hamiltonian dynamics of this system is perturbed by the action of stochastic heat baths at temperature T . Each heat bath is acting, independently from the others, between two springs connected by a particle, randomly exchanging momenta and volume stretch. The energy of the particles is not conserved but exchanged with the heath baths in such a way that, in equilibrium, the system is at temperature T . The intensity of the action of the heat baths is such that it does not affect the macroscopic equation directly, but sufficiently strong to provide the required regularity at certain microscopic scales and establish an isothermal macroscopic evolution. In this sense these heat baths act like a stochastic viscosity, vanishing after the space-time hyperbolic rescaling. The conservative nature of these stochastic heat baths also provides at the boundaries the analogue of the extra Neumann conditions as used in [START_REF] Marchesani | On the existence of L 2 -valued thermodynamic entropy solutions for a hyperbolic system with boundary conditions[END_REF].

We rescale space and time using N as parameter in such a way that the timedependent external force is changing on the macroscopic scale (i.e. very slowly on the microscopic time scale). We prove that the probability distributions of the random profiles of volume stretch and momenta concentrate on the L 2 -valued weak solutions of (1.1) (in the sense of Definition 2.2), that satisfy the Clausius inequality. Proving uniqueness would complete the convergence theorem. Unfortunately, uniqueness for such weak solutions is a well known and challenging open problem. The proof of the convergence to the weak solutions is adapted from the stochastic version of compensated compactness developed by Fritz in [START_REF] Fritz | Microscopic theory of isothermal elastodynamics[END_REF] for the same dynamics but without boundaries (see also Fritz and Toth [START_REF] Fritz | Derivation of the Leroux system as the hydrodynamic limit of a two-component lattice gas[END_REF] for a different two component dynamics). In a previous work [START_REF] Marchesani | Hydrodynamic limit for an anharmonic chain under boundary tension[END_REF], we considered the same problem as here, but we proved that (1.1) were satisfied only in the bulk by the limit profiles, without giving any information of the boundary conditions, nor on the entropic properties of these solutions.

The main new contributions of the present article are the followings:

• the limit profiles obtained are L 2 -valued weak solutions that satisfy the boundary conditions, in the sense of Definition 2.2;

• the work done by the boundary force is larger than the change in the total free energy (Clausius inequality).

The proof of the Clausius inequality is the content of Section 5. It uses the variational characterisation of the (microscopic) relative entropy in order to connect it to the macroscopic free energy and estimate its time derivative. In other words, Clausius inequality follows from the microscopic entropy production.

The Model and the Main Theorem

We study a one-dimensional Hamiltonian system of N + 1 particles of unitary mass. The position of the i-th particle (i = 0, 1, . . . , N ) is denoted by q i ∈ R and its momentum by p i ∈ R. We assume that particle 0 is kept fixed, i.e. (q 0 , p 0 ) ≡ (0, 0), while on particle N is applied a time-dependent force, τ (t).

Denote by q = (q 0 , . . . , q N ) and p = (p 0 , . . . , p N ). The interaction between particles i and i -1 is described by the potential energy V (q i -q i-1 ) of an anharmonic spring, where V is a uniformly convex function that grows quadratically at infinity: there exist constants c 1 and c 2 such that for any r ∈ R:

0 < c 1 ≤ V (r) ≤ c 2 .
(2.1)

Moreover, there are some positive constants V + , V -, α and R such that

V (r) -V + ≤ e -αr , r > R (2.2) V (r) -V -≤ e αr , r < -R. (2.3)
For τ ∈ R and β > 0 we define the canonical Gibbs function as

G(τ ) := log +∞ -∞
e -βV (r) + βτ r dr.

(2.4)

For ∈ R, the free energy is given by the Legendre transform of G:

F ( ) := sup τ ∈R τ -β -1 G(τ ) , (2.5) 
so that its inverse is

G(τ ) = β sup ∈R {τ -F ( )} . (2.6)
Note that we neglect to write the dependence of F and G on β, as it shall be fixed throughout the paper. We denote by (τ ) and τ ( ) the corresponding convex conjugate variables, that depend parametrically on β and satisfy

(τ ) = β -1 G (τ ), τ ( ) = F ( ).
(2.7)

We identify τ ( ) with the equilibrium tension of the system of length , and we assume that the potential V , besides satisfying the assumptions above, is such that τ is strictly convex (i.e. τ ( ) > 0 for all ∈ R).

Remark. At the present time, we do not know a general condition on V that yield a strictly convex tension, but as example (cf [START_REF] Marchesani | Hydrodynamic limit for an anharmonic chain under boundary tension[END_REF], Proposition A.7) one may take V to be a mollification of the function

r -→ 1 2 (1 -κ)r 2 + 1 2 κr|r| + , (2.8) 
where |r| + = max{r, 0} and κ ∈ (0, 1/3).

Define the Hamiltonian:

H N (q, p, t) := N i=0 p 2 i 2 + V (q i -q i-1 ) -q N τ (t), (2.9) 
where τ (t) is the external tension. Since the interaction depends only on the distance between particles, we define

r i := q i -q i-1 , i = 1, . . . , N.
(2.10)

Consequently, recalling that p 0 ≡ 0, the configuration of the system is given by (r, p) := (r 1 , . . . , r N , p 1 , . . . , p N ) and the phase space is R 2N . Thus, the Hamiltonian reads

H N (r, p, t) = N i=1 p 2 i 2 + V (r i ) -τ (t)r i . (2.11)
We add to the Hamiltonian dynamics physical and artificial noise. Thus, the full dynamics of the system is determined by the generator

G τ (t) N := N L τ (t) N + N σ S N + Sτ(t) N .
(2.12) σ = σ(N ) is a positive number that tunes the strength of the noise. We take it such that lim

N →∞ σ N = lim N →∞ N σ 2 = 0. (2.13) The Liouville operator L τ (t) N is given by L τ (t) N = N i=1 (p i -p i-1 ) ∂ ∂r i + N -1 i=1 (V (r i+1 ) -V (r i )) ∂ ∂p i + (τ (t) -V (r N )) ∂ ∂p N , (2.14) 
together with p 0 ≡ 0. Note that the time scale in the tension is chosen such that it changes smoothly on the macroscopic scale.

The operators S N and Sτ(t)

N generate the stochastic part of the dynamics, modelling the interaction with a heat bath at constant temperature β -1 , and are defined by

S N := - N -1 i=0 D * i D i , Sτ(t) N := - N i=1 D * i Di , (2.15) 
where, for i = 1, . . . , N -1,

D i := ∂ ∂p i+1 - ∂ ∂p i , D * i := p i+1 -p i -β -1 D i (2.16) Di := ∂ ∂r i+1 - ∂ ∂r i , D * i := V (r i+1 ) -V (r i ) -β -1
Di .

(2.17)

The extra boundary operators were first considered in [START_REF] Marchesani | Hydrodynamic limit for a diffusive system with boundary conditions[END_REF] and are given by

D 0 := ∂ ∂p 1 , D * 0 := p 1 -β -1 D 0 , (2.18) DN := - ∂ ∂r N , D * N := τ (t) -V (r N ) -β -1 DN . (2.19)
On the one-particle state space R 2 we define a family of probability measures

λ β,p,τ (dr, dp) := 1 2πβ -1 e - β 2 
(p -p) 2 -βV (r) + βτ r -G(β, τ ) dr dp.

(2.20)

The mean elongation and momentum are r dλ β,p,τ = (τ ), p dλ β,p,τ = p.

(2.21)

We also have the relations

V (r) dλ β,p,τ = τ, p 2 dλ β,p,τ -p2 = β -1 , (2.22) 
that identify τ as the tension and β -1 as the temperature. Define the family of product measures

λ N t = λ N β,0,τ (t) where λ N β,p,τ (dr, dp) = N i=1 λ β,p,τ (dr i , dp i ). (2.23) Notice that L τ (t)
N is antisymmetric with respect to λ N t , while S N and Sτ(t) N are symmetric. It follows that, in the case τ is constant in time, λ N β,0,τ is the unique stationary measure for the dynamics. This is the canonical Gibbs measure at a temperature β -1 , pressure τ and velocity 0.

Define the discrete gradients and Laplacian by

∇a i := a i+1 -a i , ∇ * a i := a i-1 -a i , (2.24) ∆a i := -∇∇ * a i = -∇ * ∇a i = a i+1 + a i-1 -2a i .
(2.25)

The time evolution of the system is described by the following system of stochastic differential equations

                   dr 1 = N p 1 dt + σN ∇V (r 1 )dt -2β -1 σN d w 1 dr i = -N ∇ * p i -dt + σN ∆V (r i )dt + 2β -1 σN ∇ * d w i , 2 ≤ i ≤ N -1 dr N = -N ∇ * p N dt + σN (τ (t) + V (r N -1 ) -2V (r N )) + 2β -1 σN ∇ * d w N , dp 1 = N ∇V (r 1 )dt + σN (p 2 -2p 1 ) dt + 2β -1 σN ∇ * dw 1 , dp j = N ∇V (r j )dt + σN ∆p j dt + 2β -1 σN ∇ * dw j , 2 ≤ j ≤ N -1 dp N = N (τ (t) -V (r N ))dt -σN ∇p N -1 dt + 2β -1 σN dw N -1 (2.26) Here {w i } ∞ i=0 , { w i } ∞
i=1 are independent families of independent Brownian motions on a common probability space (Ω, P). The expectation with respect to P is denoted by E.

Notice that the noise introduced by the heat bath respects the boundary conditions V (r N +1 (t)) = τ (t) and p 0 (t) = 0 already present in the Hamiltonian part of the dynamics, while it introduces the Neumann type boundary conditions r 0 (t) = r 1 (t) and p N +1 (t) = p N (t). In this sense these boundary conditions are the microscopic analogous of those taken in the viscous approximation used in reference [START_REF] Marchesani | On the existence of L 2 -valued thermodynamic entropy solutions for a hyperbolic system with boundary conditions[END_REF].

Thanks to the assumptions we made on the interaction V , it is possible to show (cf [START_REF] Fritz | Microscopic theory of isothermal elastodynamics[END_REF] or Appendix A of [START_REF] Marchesani | Hydrodynamic limit for an anharmonic chain under boundary tension[END_REF]) the following Proposition 2.1. For any fixed β > 0, the application τ : R → R is smooth and has the following properties:

i) c -1 2 ≤ τ ( ) ≤ c -1 1 for all ∈ R; ii) τ , τ ∈ L 2 (R) ∩ L ∞ (R).
Furthermore, we assume τ ( ) > 0 for all ∈ R.

Remark. The condition τ ≥ c -1 2 > 0 is a condition of strict hyperbolicity. On the other hand, τ > 0 is a condition of genuine nonlinearity, and it is easy to see that it rules out symmetric interactions (V (-r) = V (r)). Nevertheless, such a condition may be relaxed as in [START_REF] Serre | Convergence with physical viscosity for nonlinear elasticity[END_REF] and we can allow τ to vanish at most at one point, which is compatible with having a symmetric interaction.

Denote by µ N t the probability measure of the system a time t. Then, the density f N t of µ N t with respect to λ N t solves the Fokker-Plank equation

∂ ∂t f N t λ N t = G τ (t), * N f N t λ N t .
(2.27)

Here G τ (t), * N = -N L τ (t) N + N σ S N + S τ (t) N (2.28) is the adjoint of G τ (t) N
with respect to λ N t . We define the relative entropy

H N (t) := f N t log f N t dλ N t , (2.29) 
and require that the initial distribution f N 0 is such that H N (0) ≤ CN for some C independent of N .

We are interested in the macroscopic behaviour of the volume stretch and momentum of the particles, at time t, as N → ∞. Note that t is already the macroscopic time, as we have already multiplied by N in the generator. We shall use Lagrangian coordinates, that is our space variables will belong to the lattice {1/N, . . . , (N -1)/N, 1}. Consequently, we set u i := (r i , p i ). For a fixed macroscopic time T , we introduce the empirical measures on [0, T ] × [0, 1] representing the space-time distributions on the interval [0, 1] of volume stretch and momentum:

ζ ζ ζ N (dx, dt) := 1 N N i=1 δ x - i N u i (t)dx dt.
(2.30)

We expect that the measures ζ ζ ζ N (dx, dt) converge, as N → ∞ to an absolutely continuous measure with density (r(t, x), p(t, x)), satisfying the following system of conservation laws:

∂ t r(t, x) -∂ x p(t, x) = 0 ∂ t p(t, x) -∂ x τ (r(t, x)) = 0 , p(t, 0) = 0, τ (r(t, 1)) = τ (t) r(0, x) = r 0 (x) p(0, x) = p 0 (x)
.

(2.31) Since (2.31) is a hyperbolic system of nonlinear partial differential equations, its solutions may develop shocks in a finite time, even if smooth initial data are given. Therefore, we shall look for weak solutions, which are defined even if discontinuities appear.

Definition 2.2. Fix T > 0 and let 

Q T = [0, T ] × [0, 1]. We say that (r, p) ∈ L 2 (Q T ) is a weak solution of (2.
for all functions ϕ, ψ ∈ C 2 (Q T ) such that ϕ(t, 1) = ψ(t, 0) = 0 for all t ∈ [0, T ]. Denote by Q N the probability distribution of ζ ζ ζ N on M(Q T ) 2 . Observe that ζ ζ ζ N ∈ C([0, T ], M([0, 1]) 2 )
, where M([0, 1]) is the space of signed measures on [0, 1], endowed by the weak topology. Our aim is to show the convergence

ζ ζ ζ N (J) → T 0 1 0 J(t, x)r(t, x)dxdt, T 0 1 0 J(t, x)p(t, x)dxdt , (2.34) 
where r(t, x) and p(t, x) satisfy (2.32)-(2.33). Since we do not have uniqueness for the solution of these equations, we need a more precise statement.

Theorem 2.3 (Main theorem). Assume that the initial distribution satisfies the entropy condition H N (0) ≤ CN . Then sequence Q N is compact and any limit point of Q N has support on absolutely continuous measures with densities r(t, x) and p(t, x) solutions of (2.32)-(2.33) and belonging to L ∞ (0, T ; L 2 (0, 1)).

Moreover, if the system at time t = 0 is at a local equilibrium, namely if

f N 0 (r, p) := N i=1 e β τ r 0 i N -τ (0) r i + p 0 i N p i -G τ r 0 i N + G(τ (0)) - β 2 p 0 i N 2 , (2.35) 
then we have the following Clausius inequality

E Q T 0 1 0 [F(t, y) -F(0, y)]dy ≤ E Q T 0 W (t)dt , (2.36) 
where

F(t, x) := p(t, x) 2 2 + F (r(t, x)) (2.37)
is the free energy and

W (t) := - t 0 τ (s) 1 0 r(s, y)dy + τ (t) 1 0 r(t, y)dy -τ (0) 1 0 r 0 (y)dy (2.38)
is the work done by the tension τ .

Notice that in the case the total length L(t) = 1 0 r(t, y)dy is time differentiable, the definition of work coincide with the usual one: W (t) := t 0 τ (s)L (s)ds.

Some bounds from Relative entropy and Dirichlet forms

Define the Dirichlet forms

D N (t) := f N t (-S N log f N t )dλ N t = 1 f N t ∂f N t ∂p 1 2 + N -1 i=1 ∂f N t ∂p i+1 - ∂f N t ∂p i 2 dλ N t , D N (t) := f N t (- Sτ(t) N log f N t )dλ N t = 1 f N t N -1 i=1 ∂f N t ∂r i+1 - ∂f N t ∂r i 2 + ∂f N t ∂r N 2 dλ N t .
(3.1)

Proposition 3.1. The following inequality holds for any t ≥ 0:

H N (t) -H N (0) ≤ -β t 0 τ (s) N i=1 r i (s)f N s dλ N s + N β t 0 τ (s) (τ (s))ds. (3.2)
Moreover, there is C(t) independent of N such that

H N (t) + N σβ -1 t 0 D N (s) + DN (s) ds ≤ C(t)N. (3.3) Proof. dH N (t) dt = ∂ t (f N t λ N t ) log f N t drdp + λ N t ∂ t f N t drdp (3.4) = G τ (t), * N f N t log f N t dλ N t -f N t ∂ t λ N t drdp + ∂ t f t dλ N t (3.5) = f N t G τ (t) N log f N t dλ N t -β τ (t) [q N -N (τ (t))] f N t dλ N t (3.6) = -N σβ -1 D N (t) + DN (t) -β τ (t) [q N -N (τ (t))] f N t dλ N t , (3.7) 
since

f N t L τ (t) N log f N t dλ N t = 0, by the antisymmetry of L τ (t)
N . Thus, (3.2) follows after an integration in time and recalling that q N = N i=1 r i and that the Dirichlet forms are non-negative.

By the entropy inequality and the strict convexity of G(τ ) we have, for any α > 0,

-β τ (t) [q N -N (τ (t))] f N t dλ N t ≤ α -1 H N (t) + α -1 log e -αβ τ (t)[q N -N (τ (t))] dλ N t = α -1 H N (t) + α -1 N [G(τ (t) -ατ (t)) -G(τ (t)) + ατ (t) (τ (t))] ≤ α -1 H N (t) + ατ (t) 2 N C G . (3.8) 
By choosing α = |τ (t)| -1 we obtain the bound

d dt H N (t) + N σβ -1 D N (t) + DN (t) ≤ |τ (t)| (H N (t) + N C G ) . (3.9) 
By Gronwall's inequality we get

H N (t) + N σβ -1 t 0 D N (s) + DN (s) ds ≤ H N (0)e t 0 |τ (s)|ds + N C G t 0 |τ (s)|e t s |τ (u)|du ds ≤ C(t)N. (3.10) 
Observe that C(t) in this proposition is equal to C 0 if τ (t) = 0, and that can be chosen independent of t if τ (t) = 0 for t > t 0 for some t 0 .

The energy bound is a standard consequence of the bound on the relative entropy.

Proposition 3.2 (Energy estimate). For any t ≥ 0

N i=1 p 2 i 2 + V (r i ) f N t dλ N t ≤ C(t)N, (3.11) 
and the constant C(t) can be chosen independent of t in the case τ (t) = 0 for t ≥ t 0 .

Proof. By the entropy inequality and for 0 < α < β,

N i=1 p 2 i 2 + V (r i ) f t dλ t ≤ 1 α H N (t) + 1 α log e α N i=1 p 2 i 2 + V (r i ) dλ N t (3.12) = 1 α H N (t) + N α log e (α -β) p 2 1 2 + V (r 1 ) + β τ (t)r 1 -G(τ (t)) dr 1 dp 1 2πβ -1 .
Note that thanks to our choice of α the last integral is convergent and bounded with respect to t. Thus, the conclusion follows as a consequence of Proposition 3.1.

4 The hydrodynamic limit

4.1 Microscopic solutions Let (r i (t), p i (t)) N i=1 be solutions of (2.26). Let ϕ, ψ ∈ C 2 (Q T ) be such that ϕ(t, 1) = ψ(t, 0) = 0 for all t ∈ [0, T ], and let ϕ i (t) := ϕ t, i N , ψ i (t) := ψ t, i N , i = 1, . . . , N. (4.1) 
We set V i := V (r i ) and evaluate

1 N N i=1 ϕ i (T )r i (T ) - 1 N N i=1 ϕ i (0)r i (0) = T 0 1 N N i=1 φi (t)r i (t)dt+ (4.2) + T 0 p 1 ϕ 1 - N -1 i=2 ∇ * p i ϕ i + ∇ * p N ϕ N dt+ + σ T 0 ϕ 1 ∇V 1 + N -1 i=2 ϕ i ∆V i + ϕ N (τ (t) + V N -1 -2V N ) dt+ + 2β -1 σ N T 0 -ϕ 1 d w1 + N -1 i=2 ϕ i ∇ * d wi + ϕ N ∇ * d wN .
We use the summation by parts formula

N -1 i=2 ϕ i ∇ * a i = N -1 i=1 a i ∇ϕ i + ϕ 1 a 1 -ϕ N a N -1 (4.3) with a i = p i , a i = V i+1 -V i and a i = d wi in order to obtain 1 N N i=1 ϕ i (T )r i (T ) - 1 N N i=1 ϕ i (0)r i (0) = T 0 1 N N i=1 φi (t)r i (t)dt - T 0 N -1 i=1 ∇p i ϕ i dt + T 0 ϕ N p N dt+ (4.4) -σ T 0 N -1 i=1 ∇ϕ i ∇V i dt + σ T 0 ϕ N (τ (t) -V N )dt+ + 2β -1 σ N T 0 N -1 i=1 ∇ϕ i d wi = T 0 1 N N i=1 φi (t)r i (t)dt - T 0 N -1 i=1 ∇ϕ i p i dt -σ T 0 N -1 i=1 ∇ϕ i ∇V i dt+ (4.5) + 2β -1 σ N T 0 N -1 i=1 ∇ϕ i d wi ,
as ϕ N (t) = ϕ(t, 1) = 0. After a second summation by parts we obtain

- N -1 i=1 ∇ϕ i ∇V i = N -1 i=1 V i ∆ϕ i + V 1 ∇ϕ 0 -V N ∇ϕ N -1 (4.6)
so that we can write

1 N N i=1 ϕ i (T )r i (T ) - 1 N N i=1 ϕ i (0)r i (0) = T 0 1 N N i=1 φi (t)r i (t)dt - T 0 N -1 i=1 p i ∇ϕ i dt + RN , (4.7) 
with RN =σ

T 0 N -1 i=1 V i (t)∆ϕ i dt + 2β -1 σ N T 0 N -1 i=1 ∇ϕ i (t)d wi (t) (4.8) + σ T 0 V 1 (t)∇ϕ 0 dt -σ T 0 V N (t)∇ϕ N -1 dt. Lemma 4.1. E[| RN | 2 ] → 0. Proof. Since ϕ ∈ C 2 ([0, 1]), we can estimate |∆ϕ i | ≤ ∂ 2 xx ϕ ∞ N -2 . Moreover, since c 1 ≤ V (r) ≤ c 2 we have |V (r)| 2 ≤ C (1 + r 2 )
, and

E   T 0 σ N -1 i=1 V i ∆ϕ i dt 2   ≤ σ 2 T N -1 i=1 (∆ϕ i ) 2 T 0 E N -1 i=1 (V i (t)) 2 dt (4.9) ≤ C σ 2 T N 3 T 0 E N -1 i=1 1 + r 2 i (t) dt ≤ C(T ) σ 2 N 2 .
Since the Brownian motions d wi are independent, we evaluate

E   2σ βN T 0 N -1 i=1 ∇ϕ i d wi 2   ≤ 2σ βN T 0 N -1 i=1 (∇ϕ i ) 2 dt ≤ CT σ N 2
In order to evaluate the boundary terms in (4.8), we estimate, for any i = 1 and i = N ,

(V i ) 2 f N t dλ N t = τ (t)V i f N t dλ N t + (V i -τ (t))V i f N t dλ N t (4.10) = τ (t)V i f N t dλ N t + V (r i )f N t dλ N t + V i ∂f N t ∂r i dλ N t ≤ C + α (V i ) 2 f N t dλ N t + ∂f N t ∂r i
2 1

f N t dλ N t ,
where we have used Cauchy-Schwartz twice and used the boundedness of τ (t) and V .

Here we can choose C > 0 and 0 < α < 1 such that do not depend on t or N , so that we have

(V i ) 2 f N t dλ N t ≤ C 1 + ∂f N t ∂r i 2 1 f N t dλ N t For i = N this gives directly (1 -α) (V i ) 2 f N t dλ N t ≤ C 1 + DN (t) . For i = 1, by writing ∂f N t ∂r 1 2 = - N -1 j=1 ∂f N t ∂r j+1 - ∂f N t ∂r j + ∂f N t ∂r N 2 (4.11) ≤ N N -1 j=1 ∂f N t ∂r j+1 - ∂f N t ∂r j 2 + ∂f N t ∂r N 2 we obtain (1 -α) (V 1 ) 2 f N t dλ N t ≤ C + N DN (t), (4.12) 
and, in turn,

T 0 (V 1 ) 2 f N t dλ N t ≤ C(T ) 1 + N σ ≤ C (T ) N σ . (4.13)
This allows us to estimate

E σ T 0 V 1 (t)∇ϕ 0 dt 2 ≤ T σ 2 N 2 E T 0 (V 1 (t)) 2 dt ≤ C T σ N , (4.14) 
which vanishes as N → ∞. In a similar way we estimate the boundary term involving

V N .
Thus, we have obtained the following

Proposition 4.2. Let ϕ ∈ C 2 (Q T ) such that ϕ(t, 1) = 0 for all t ∈ [0, T ]. Then 1 N N i=1 ϕ i (T )r i (T )- 1 N N i=1 ϕ i (0)r i (0)- T 0 1 N N i=1 φi (t)r i (t)dt+ T 0 N -1 i=1 p i ∇ϕ i dt → 0 (4.15)
in probability as N → ∞

From similar calculations and recalling that ψ 0 = 0, we evaluate

1 N N i=1 ψ i (T )p i (T ) - 1 N N i=1 ψ i (0)p i (0) (4.16) = T 0 1 N N i=1 ψi (t)p i (t)dt - N -1 i=1 V i ∇ψ i dt + T 0 ψ N τ (t)dt + R N ,
where

R N =σ T 0 N -1 i=1 p i ∆ψ i dt + 2β -1 σ N T 0 N -1 i=1 ∇ψ i dw i + (4.17) -σ T 0 p N ∇ψ N -1 dt + 2β -1 σ N T 0 ϕ 1 dw 0 ,
Similarly to Lemma 4.1, we prove the following

Lemma 4.3. E[|R N | 2 ] → 0.
Thus, we have proved

Proposition 4.4. Let ψ ∈ C 2 (Q T ) such that ψ(t, 0) = 0 for all t ∈ [0, T ]. Then 1 N N i=1 ψ i (T )p i (T ) - 1 N N i=1 ψ i (0)p i (0) - T 0 1 N N i=1 ψi (t)p i (t)dt+ (4.18) + T 0 N -1 i=1 V i ∇ψ i dt + T 0 ψ(t, 1)τ (t)dt → 0 in probability as N → ∞.

Mesoscopic solutions

For any sequence (a i ) i∈N and any l ∈ N, smoother block averages are defined as

âl,i := 1 l |j|<l l -|j| l a i-j , i ≥ l, (4.19) 
where we will choose

l = l(N ) := N 1 4 σ(N ) 1 2 
.

(4.20)

Remark. Since σ/N and N/σ 2 vanish as N → ∞, we may choose σ = N 1 2 +α , with α ∈ (0, 1/2). This means l is of order N

1 2 + α 2 . Let 1 N,i (x) be the indicator function of the interval i N - 1 2N , i N + 1 2N
, then we define functions on [0, 1] from the sequence (a i ) i∈N as âN (x) :=

N -l i=l+1 1 N,i (x)â l,i , x ∈ [0, 1]. (4.21)
Notice that for any function f on R and ϕ(x) ∈ L 1 ([0, 1]) we have

1 0 f (â N (x))ϕ(x)dx = 1 N N -l i=l+1 f (â l,i ) φi + (4.22) + f (0) l/N +1/(2N ) 0 ϕ(x)dx + 1 1-l/N -1/(2N ) ϕ(x)dx where φi = N 1 0 ϕ(x)1 N,i (x)dx = N i/N +1/(2N ) i/N -1/(2N ) ϕ(x)dx, i = 1, . . . , N -1. (4.23)
We have, by Cauchy-Schwarz inequality,

1 0 âN (x) 2 dx ≤ 1 N N -1 k=2 a 2 k Recalling that u i = (r i , p i ), we define ûN (t, x) = N -l i=l+1 1 N,i (x)û l,i (t), (t, x) ∈ Q T . (4.24)
As a consequence of (4.24) and the energy estimate given by Proposition 3.2, we have that

E Q T |û N (t, x)| 2 ≤ C T , (4.25) 
i.e. almost surely ûN (t, x) is uniformly bounded in L 2 (Q T ) and is therefore weakly convergent, up to a subsequence. The following proposition ensures us that ζ ζ ζ N (dx, dt) has the same weak limit points as ûN (t, x). Next, we note that we can neglect the first and the last l points at the boundaries. Namely, we have

1 N l i=1 u i (t)ϕ i N ≤ 1 l l i=1 ϕ i N 2 1/2 1 l l i=1 l 2 N 2 |u i (t)| 2 1/2 (4.28) ≤ C l N 1 N N i=1 |u i (t)| 2 1/2 , (4.29) so that E 1 N l i=1 u i (t)ϕ i N → 0. (4.30)
Similarly, we have

E 1 N N i=N -l+1 u i (t)ϕ i N → 0. (4.31)
Therefore, we evaluate

1 N N -l i=l+1 ûl,i φi - 1 N N -l i=l+1 u i ϕ i N = 1 N N -l i=l+1 (û l,i -u i )ϕ i N + (4.32) + 1 N N -l i=l+1 ûl,i φi -ϕ i N .
The last summation is estimated by noting that there is a point

ξ i ∈ i N - 1 2N , i N + 1 2N such that φi = ϕ(ξ i ). Thus, φi -ϕ i N ≤ ϕ ∞ ξ i - i N ≤ ϕ ∞ 2N (4.33) 
and therefore

E 1 N N -l i=l+1 ûl,i φi -ϕ i N ≤ C N E 1 N N -l i=l+1 |û l,i | 2 1/2 (4.34) ≤ C N E 1 N N i=1 |u i | 2 1/2 ≤ C N .
Finally, defining c j = l -|j| l 2 and recalling that |j|<l c j = 1, we write perform a change of variables and write

1 N N -l i=l+1 (û l,i -u i )ϕ i N = |j|<l c j 1 N N -l-j i=l+1-j u i ϕ i + j N - 1 N N -l i=l+1 u i ϕ i N (4.35) = |j|<l c j 1 N N -l i=l+1 u i ϕ i + j N -ϕ i N + O l N .
The conclusion then follows similarly to (4.34).

The proposition allows us to replace each u i with their average ûl,i . In the same way we can replace V (r i ) by the average

V l,i := 1 l |j|<l l -|j| l V (r i-j ) (4.36)
and then replace V l,i by τ (r l,i ) via the following proposition, which we shall prove in Section A.1.

Proposition 4.6 (One-block estimate). lim 

N →∞ E 1 N N -l i=l+1 T 0 V l,i -τ (r l,i ) 2 dt = 0. ( 4 
4.7. Let ϕ, ψ ∈ C 2 (Q T ) such that ϕ(t, 1) = ψ(t, 0) = 0 for all t ∈ [0, T ] and let u N (t, x) = (r N (t, x), p N (t, x)).
Then, the following convergences happen in probability as

N → ∞ 1 0 (ϕ(T, x)r N (T, x) -ϕ(0, x)r N (0, x)) dx+ (4.38) - Q T (r N (t, x)∂ t ϕ(t, x) + pN (t, x)∂ x ϕ(t, x)) dxdt → 0 and 1 0 (ψ(T, x)p N (T, x) -ψ(0, x)p N (0, x)) dx+ (4.39) - Q T (p N (t, x)∂ t ψ(t, x) + τ (r N (t, x))∂ x ψ(t, x)) dxdt + T 0 ψ(t, 1)τ (t)dt → 0

Random Young Measures and Weak Convergence

The purpose of this section is to prove that any weakly convergent subsequence will converge strongly. We use the compensated compactness argument of Fritz [START_REF] Fritz | Microscopic theory of isothermal elastodynamics[END_REF], inspired from the work of Di Perna, Serre and Shearer, properly adapted to the presence of boundaries [START_REF] Marchesani | On the existence of L 2 -valued thermodynamic entropy solutions for a hyperbolic system with boundary conditions[END_REF]. Denote by νN t,x = δ ûN (t,x) the random Young measure on R 2 associated to the empirical process ûN (t, x):

R 2 f (y)dν N t,x (y) = f (û N (t, x)) (4.40)
for any f : R 2 → R. Since ûN ∈ L 2 (Ω × Q T ), we say that νN t,x is a L 2 -random Dirac mass. The following

E Q T R 2 |y| 2 dν N t,x (y)dxdt = E Q T |û N (t, x)| 2 dxdt ≤ C T (4.41)
with C T independent of N , implies that there exists a subsequence of random Young measures (ν Nn t,x ) and a subsequence of real random variables ( ûNn L 2 (Q T ) ) that converges in law.

We can now apply the Skorohod's representation theorem to the laws of (ν Nn t,x , ûNn L 2 (Q T ) ) and find a common probability space such that the convergence happens almost surely. This proves the following proposition: Proposition 4.8. There exists a probability space ( Ω, F, P), random Young measures νn t,x , νt,x and real random variables a n , a such that νn t,x has the same law of νNn t,x , a n has the same law of ûNn L 2 (Q T ) and νn t,x * νt,x , a n → a, P-almost surely.

Remark. Since νNn t,x is a random Dirac mass and νn t,x and νNn t,x have the same law, νn

t,x
is a L 2 -random Dirac mass, too: νn t,x = δ ũn(t,x) for some ũn ∈ L 2 ( Ω × Q T ). ũn and ûNn have the same law. Since a n → a almost surely, we have that (a n ) is bounded and so ũn is uniformly bounded in L 2 (Q T ) with P-probability 1.

Since from a uniformly bounded sequence in L p we can extract a weakly convergent subsequence, we obtain the following proposition: Proposition 4.9. There exist L 2 (Q T )-valued random variables (ũ n ), ũ such that ũn and ûNn have the same law and, P-almost surely and up to a subsequence, ũn ũ in L 2 (Q T ).

The condition νn Because of Proposition 4.7 we are interested in the weak limit of τ (r N (t, x)). Since τ is linearly bounded, the main Theorem 2.3 is proved once we show that νt,x = δ ũ(t,x) , almost surely and for almost all (t, x) ∈ Q T .

We shall now prove that the support of νt,x is almost surely and almost everywhere a point. The result will then follow from the lemma: Lemma 4.10. νt,x = δ ũ(t,x) almost surely and for almost all (t, x) ∈ Q T if and only if the support of νt,x is a point for almost all (t, x) ∈ Q T . In this case, ũn → ũ in L p (Q T ) 2 -strong for all 1 ≤ p < 2.

Proof. Suppose there is a measurable function u * : Q T → R 2 such that νt,x = δ u * (t,x) for almost all (t, x) ∈ Q T . For any test function J : Q T → R 2 consider the quantity

Q T J(t, x) • ũn (t, x)dxdt = Q T R 2 J(t, x) • ydν n t,x ( 
y)dxdt. (4.43)

By taking the limit for n → ∞ in the sense of L 2 -weak first and in the sense of (4.42) then, we obtain

Q T R 2 J(t, x)• ũ(t, x)dxdt = Q T R 2 J(t, x)•ydν t,x (y)dxdt = Q T R 2 J(t, x)•u * (t, x)dxdt
(4.44) almost surely. Then ũ(t, x) = u * (t, x) for almost all (t, x) ∈ Q T follows from the fact that J was arbitrary.

Next, fix 1 < p < 2. Taking f (y) = |y| p in (4.42) gives ũn L p (Q T ) → ũ L p (Q T ) , which, together with ũn ũ in L p (Q T ) and the fact that L p (Q T ) is uniformly convex for 1 < p < ∞ implies strong convergence.

The case p = 1 follows from the result for p > 1 and Hölder's inequality.

Reduction of the Limit Young Measure

In this section we prove that the support of νt,x is almost surely and almost everywhere a point. We recall that Lax entropy-entropy flux pair for the system

∂ t r(t, x) -∂ x p(t, x) = 0 ∂ t p(t, x) -∂ x τ (p(t, x)) = 0 (4.45)
is a pair of functions η, q : R 2 → R such that

∂ t η(u(t, x)) + ∂ x q(u(t, x)) = 0 (4.46)
for any smooth solution u(t, x) = (r(t, x), p(t, x)) of (4.45). This is equivalent to the following:

∂ r η(r, p) + ∂ p q(r, p) = 0 τ (r)∂ p η(r, p) + ∂ r q(r, p) = 0 . ( 4 

.47)

Under appropriate conditions on τ , Shearer ([9]) constructs a family of entropy-entropy flux pairs (η, q) such that η, q, their first and their second derivatives are bounded (cf also [START_REF] Marchesani | On the existence of L 2 -valued thermodynamic entropy solutions for a hyperbolic system with boundary conditions[END_REF]). As shown in [START_REF] Marchesani | Hydrodynamic limit for an anharmonic chain under boundary tension[END_REF] and [START_REF] Fritz | Microscopic theory of isothermal elastodynamics[END_REF], our choice of the potential V ensures that the tension τ has the required properties, so the result of Shearer applies to our case.

In particular, following Section 5 of [START_REF] Shearer | Global existence and compactness in L p for the quasi-linear wave equation[END_REF], we have that the support νt,x is almost surely and almost everywhere a point provided Tartar's commutation relation

η 1 q 2 -η 2 q 1 , νt,x = η 1 , νt,x q 2 , νt,x -η 2 , νt,x q 1 , νt,x (4.48) 
holds almost surely and almost everywhere for any bounded pairs (η 1 , q 1 ), (η 2 , q 2 ) with bounded first and second derivatives. Obtaining (4.48) in a deterministic setting is standard and relies on the div-curl and Murat-Tartar lemma. Both of these lemmas have a stochastic extension (cf Appendix A of [START_REF] Feng | Stochastic scalar conservation laws[END_REF]) and what we ultimately need to prove in order to obtain (4.48) is that the hypotheses for the stochastic Murat-Tartar lemma are satisfied (cf [START_REF] Berthelin | Stochastic isentropic Euler equations[END_REF] , Proposition 5.6). This is ensured next theorem, for which we will give a preliminary definition. Let (η, q) ∈ C 2 (R 2 ) be a Lax entropy-entropy flux pair with bounded derivatives. We assume, without loss of generality, η(0, 0) = q(0, 0) = 0.

For ϕ ∈ H 1 0 (Q T ) ∩ L ∞ (Q T ) define the corresponding entropy production functional as

X N (ϕ, η) = - Q T (η(û N )∂ t ϕ + q(û N )∂ x ϕ) dxdt. (4.49) 
Theorem 4.11. The entropy production X N decomposes as

X N = Y N + Z N , such that (Y N ) is compact in H -1 (Q T ) and (Z N
) is uniformly bounded as a signed measure.

Namely,

E [|Y N (ϕ, η)|] ≤ a N ϕ H 1 (Q T ) with lim N →∞ a N = 0, (4.50) E [|Z N (ϕ, η)|] ≤ b N ϕ L ∞ (Q T ) with lim sup N →∞ b N < ∞, (4.51) 
where a N , b N > 0 are independent of ϕ.

Definition 4.12. We say that the random variables Y N (ϕ, η) are of type Y provided (4.50) holds for some a N independent of ϕ. We further say that the random variables Z N (ϕ, η) are of type Z provided (4.51) holds for some b N independent of ϕ.

By recalling that ϕ vanishes on ∂Q T , a direct calculation involving Ito formula we can integrate by parts in time and obtain

X N = X a,N + X s,N + Xs,N + M N + MN + Q N , (4.52)
where

X a,N (ϕ, η) = T 0 N -l i=l+1 φi ∂ p η(û l,i )∇ V l,i -∂ r η(û l,i )∇ * pl,i dt+ (4.53) + T 0 N -l i=l+1 φi [∂ r q(û l,i )∇r l,i -∂ p q(û l,i )∇ * pl,i ] dt, X s,N (ϕ, η) = σ T 0 N -l i=l+1 φi ∂ p η(û l,i )∆p l,i dt + 2σ l 3 T 0 N -l i=l+1 φi ∂ 2 pp η(û l,i )dt, (4.54) Xs,N (ϕ, η) = σ T 0 N -l i=l+1 φi ∂ r η(û l,i )∆ V l,i dt + 2σ l 3 T 0 N -l i=l+1 φi ∂ 2 rr η(û l,i )dt, (4.55) M N (ϕ, η) = -2 σ N T 0 N -l i=l+1 φi ∂ p η(û l,i )d∇ * ŵl,i , (4.56) MN (ϕ, η) = -2 σ N T 0 N -l i=l+1 φi ∂ r η(û l,i )d∇ * ŵl,i (4.57) Q N (ϕ, η) = - T 0 1 0 ∂ x ϕ(t, x)q(û N (t, x))dxdt (4.58) - T 0 N -l i=l+1 φi [∂ r q(û l,i )∇r l,i -∂ p q(û l,i )∇ * pl,i ] dt.
We shall prove Theorem 4.11 via a series of lemmas. We start with two preliminary ones.

Lemma 4.13. Let (A i ) i∈N and (B i ) i∈N be families of L 2 (R)-valued random variables such that lim sup

N →∞ E N i=1 T 0 A i (s) 2 ds E N i=1 T 0 B i (s) 2 ds < ∞. (4.59) Let ϕ ∈ L ∞ (Q T ) and let φi (t) := N 1 0 1 N,i (x)ϕ(t, x)dx = N i N + 1 2N i N -1 2N ϕ(t, x)dx (4.60) Then E N i=1 T 0 φi A i B i dt ≤ b N ϕ L ∞ (Q T ) , (4.61)
where b N is independent of ϕ such that lim sup

N →∞ b N < ∞. (4.62)
Proof.

| φi | = N 1 0 ϕ(t, x)1 N,i (x)dx ≤ ϕ L ∞ (Q T ) . (4.63)
Then, by the Cauchy-Schwarz inequality, we have

E N i=1 T 0 φi A i B i dt ≤ ϕ ∞ E N i=1 T 0 A 2 i dt 1/2 E N i=1 T 0 B 2 i dt 1/2 . (4.64) Lemma 4.14. Let (A i ) i∈N be a family of L 2 (R)-valued random variables such that lim N →∞ E 1 N N i=1 T 0 A i (s) 2 ds = 0. (4.65) Let ϕ ∈ H 1 (Q T ) and φi as in (4.60). Then E N -1 i=1 T 0 |A i ( φi+1 -φi )| dt ≤ a N ϕ H 1 (Q T ) , (4.66) 
where a N is independent of ϕ and Proof. By Cauchy-Schwarz we have

E N -1 i=1 T 0 |A i ( φi+1 -φi )| dt ≤ 1 N N -1 i=1 T 0 N 2 ( φi+1 -φi ) 2 dt 1/2 × (4.68) × E 1 N N -1 i=1 T 0 A 2 i dt 1/2 .
We write

φi+1 -φi = N 1 0 1 N,i+1 (x)ϕ(t, x)dx -N 1 0 1 N,i (x)ϕ(t, x)dx (4.69) = N 1 0 1 N,i (x) ϕ t, x + 1 N -ϕ(t, x) dx = N 1 0 1 N,i (x) x+ 1 N x ∂ y ϕ(t, y)dydx = N 1 0 1 N,i (x) 1 0 1 [x,x+ 1 N ] (y)∂ y ϕ(t, y)dydx
Thus, Cauchy-Schwarz inequality implies

| φi+1 -φi | ≤ N 1 0 1 N,i (x) 1 0 1 [x,x+ 1 N ] (y)∂ y ϕ(t, y)dy dx (4.70) ≤ N 1 0 1 N,i (x) 1 0 1 [x,x+ 1 N ] (y)dy 1/2 1 0 |∂ y ϕ(t, y)| 2 dy 1/2 dx = 1 √ N 1 0 |∂ y ϕ(t, y)| 2 dy 1/2
and so

T 0 1 N N -1 i=1 N 2 ( φi+1 -φi ) 2 dt ≤ T 0 1 0 |∂ x ϕ(t, x)| 2 dxdt (4.71) = ∂ x ϕ 2 L 2 (Q T ) ≤ ϕ 2 H 1 (Q T ) .
Remark. The same result applies if we replace ∇ φi by ∇ * φi .

In the following we shall diffusely use the following formulae, which hold for any two sequences (a i ) i∈N , (b i ) i∈N .

∇(a

i b i ) = b i+1 ∇a i + a i ∇b i (4.72) ∇ * (a i b i ) = b i-1 ∇ * a i + a i ∇ * b i (4.73) N -l i=l+1 a i ∇b i = N -l i=l+1 b i ∇ * a i + a N -l b N -l+1 -a l b l+1 (4.74)
Lemma 4.15. X a,N be defined in (4.53). Then it decomposes as X a,N = Y a,N +Z a,N such that Y a,N is of type Y and Z a,N is of type Z in the sense of Definition 4.12. Moreover, b N → 0 as N → ∞.

Proof. Since (η, q) is a Lax entropy-entropy flux pair, we have

∂ r η + ∂ p q = 0 τ (r)∂ p η + ∂ r q = 0 , ( 4 
.75) so that we can write

X a,N = T 0 N -l i=l+1 φi ∂ p η(û l,i ) ∇ V l,i -τ (r l,i )∇r l,i dt (4.76) = X 1 a,N + Z 1 a,N , (4.77) 
where

X 1 a,N = T 0 N -l i=l+1 φi ∂ p η(û l,i )∇ V l,i -τ (r l,i ) dt (4.78) Z 1 a,N = T 0 N -l i=l+1 φi ∂ p η(û l,i ) [∇τ (r l,i ) -τ (r l,i )∇r l,i ] dt (4.79)
The term Z 1 a,N is of type Z with b N → 0. This follows from Lemma 4.13, the fact that ∂ p η and τ are bounded Corollary A.7, and the following estimate,

|∇τ (r l,i ) -τ (r l,i )∇r l,i | ≤ |[τ (αr l,i + (1 -α)r l,i+1 ) -τ (r l,i )]∇r l,i | (4.80) ≤ τ ∞ (1 -α)(∇r l,i ) 2 ,
which holds for some α ∈ (0, 1).

After a summation by parts, we write

X 1 a,N = Y a,N + Z 2 a,N + Z b a,N , (4.81) 
where

Y a,N = T 0 N -l i=l+1 (∇ * φi )∂ p η(û l,i-1 )( V l,i -τ (r l,i ))dt (4.82) Z 2 a,N = T 0 N -l i=l+1 φi (∇ * ∂ p η(û l,i ))( V l,i -τ (r l,i ))dt (4.83) Z b a,N = T 0 φN-l ∂ p η(û l,N -l )( V l,N -l+1 -τ (r l,N -l+1 )dt+ (4.84) - T 0 φl ∂ p η(û l,l )( V l,l+1 -τ (r l,l+1 ))dt.
Y a,N is of type Y. This follows from Lemma 4.14, the fact that ∂ p η is bounded and Corollary A.11. Z 2 a,N is of type Z with b N → 0. This follows from Lemma 4.13, Corollary A.11 and Corollary A.7 after writing, for some intermediate ũl,i ,

∇ * ∂ p η(û l,i ) = ∂ 2 rp η(ũ l,i )∇r l,i + ∂ 2 pp η(ũ l,i )∇p l,i (4.85) 
and using the fact that the second derivatives of η are bounded. Finally, Z b a,N is of type Z with b N → 0.This follows from

|Z b a,N | ≤ ϕ L ∞ (Q T ) ∂ p η ∞ T 0 | V l,N -l+1 -τ (r l,N -l+1 )| + | V l,l+1 -τ (r l,l+1 )| dt (4.86)
and Corollary A.11.

Lemma 4.16. Let X s,N be defined in (4.54). Then it decomposes as X s,N = Y s,N + Z s,N such that Y s,N is of type Y and Z s,N is of type Z in the sense of Definition 4.12.

Proof. Write

X s,N = X 1 s,N + Z 1 s,N (4.87) 
where

X 1 s,N = σ T 0 N -l i=l+1 φi ∂ p η(û l,i )∆p l,i dt (4.88) Z 1 s,N = 2σ l 3 T 0 N -l i=l+1 φi ∂ 2 pp η(û l,i )dt (4.89) Since ∂ 2 pp η is bounded, we have that Z 1 s,N is of type Z with b N → 0. In order to evaluate X 1
s,N we sum by parts and write

X 1 s,N = Y 1 s,N + Z 2 s,N + Y b s,N , (4.90) 
where

Y 1 s,N = -σ T 0 N -l i=l+1 (∇ φi )∂ p η(û l,i+1 )∇p l,i dt (4.91) 
Z 2 s,N = -σ T 0 N -l i=l+1 φi (∇∂ p η(û l,i ))∇p l,i dt (4.92) Y b s,N = σ T 0 φN-l ∂ p η(û l,N -l )∇p l,N -l+1 dt -σ T 0 φl ∂ p η(û l,i )∇p l,l+1 dt. (4.93) 
Thanks to Lemma 4.14, Lemma 4.13 and Corollary A.7, Y 1 s,N is of type Y, and Z 2 s,N is of type Z. However, we obtain

|Z 2 s,N | ≤ b N ϕ ∞ with b N only bounded, since E N -l i=l+1 T 0 (σ(∇p l,i ) 2 + σ(∇r l,i ) 2 )dt (4.94)
is bounded but does not necessarily vanish as N → ∞. Y b s,N is of type Y. We focus only on the boundary term in l, as the boundary term in N -l is analogous. Since ϕ(t, 0) = 0 we write

φl = N 1 0 1 N,l (x)ϕ(x)dx = N 1 0 1 N,l (x) x 0 ∂ y ϕ(t, y)dy (4.95) = N 1 0 1 N,l (x) 1 0 1 [0,x] (y)∂ y ϕ(t, y)dy.
By Cauchy-Schwarz, we estimate

1 0 1 [0,x] (y)∂ y ϕ(t, y)dy ≤ √ x 1 0 |∂ y ϕ(t, y)| 2 dy 1/2 , (4.96) 
so that

| φl | ≤ 1 0 |∂ y ϕ(t, y)| 2 dy 1/2 N l N + 1 2N l N -1 2N √ xdx (4.97) = 1 0 |∂ y ϕ(t, y)| 2 dy 1/2 l N 1 + O l N .
Thus, we obtain

E σ T 0 | φl ∂ p η(û l,i )∇p l,l+1 |dt ≤ ∂ p η ∞ T 0 | φl | 2 dt 1/2 E T 0 σ 2 (∇p l,i ) 2 dt 1/2 ≤ C T 0 1 0 |∂ y ϕ(t, y)| 2 dy 1/2 l N σ 2 lσ 1/2 (4.98) ≤ C ϕ H 1 (Q T ) σ N 1/2
Similarly, we have the following Lemma 4.17. Let Xs,N be defined in (4.55). Then it decomposes as Xs,N = Ỹs,N + Zs,N such that Ỹs,N is of type Y and Zs,N is of type Z in the sense of Definition 4.12.

Lemma 4.18. Let M N be defined in (4.56). Then it decomposes as

M N = Y m,N + Z m,N such that Y m,N is of type Y and Z m,N is of type Z in the sense of Definition 4.12. Moreover, b N → 0 as N → ∞.
Proof. By a summation by parts we obtain

M N = Y m,N + Z m,N + Z b m,N , (4.99) 
with

Y m,N = -2 σ N T 0 N -l i=l+1 (∇ φi )∂ p η(û l,i+1 )d ŵl,i (4.100) 
Z m,N = -2 σ N T 0 N -l i=l+1 φi (∇∂ p η(û l,i ))d ŵl,i (4.101) Z b m,N = 2 σ N T 0 ( φN-l+1 ∂ p η(û N -l+1 )d ŵl,N-l -φl+1 ∂ p η(û l,l+1 )d ŵl,l ) . (4.102) Y m,N is of type Y.
In fact, we have

E Y 2 m,N = 2 σ N E     1 l |j|<l T 0 N -l i=l+1 (∇ φi )∂ p η(û l,i+1 )dw i-j   2   (4.103) ≤ 2σ N 1 l |j|<l l -|j| l N -l i=l+1 E T 0 ((∇ φi )∂ p η(û l,i+1 )) 2 dt ≤ 2σ N ∂ p η 2 ∞ 1 N 2 T 0 N -l i=l+1 N 2 (∇ φi ) 2 dt ≤ ϕ 2 H 1 (Q T ) 2σ N 2 ∂ p η 2 ∞ .
Thanks to the coefficient σ/N , the boundary term Z b m,N is of type Z with b N → 0. Finally, we show that Z m,N is of type Z as well, by estimating

E Z 2 m,N ≤ C ϕ 2 L ∞ (Q T ) σ N T 0 N -l i=l+1 E (∇r l,i ) 2 + (∇p l,i ) 2 dt ≤ ϕ 2 L ∞ (Q T ) C N
Similarly, we prove the following Lemma 4.19. Let MN be defined in (4.57). Then it decomposes as M N = Ỹm,N + Zm,N such that Ỹm,N is of type Y and Zm,N is of type Z in the sense of Definition 4.12.

Moreover, b N → 0 as N → ∞.

Lemma 4.20. Let Q N be defined in (4.58). Then it decomposes as

Q N = Y q,N + Z q,N such that Y q,N is of type Y and Z q,N is of type Z in the sense of Definition 4.12. Moreover, b N → 0 as N → ∞. Proof. Let φi (t) = ϕ t, i N + 1 2N . Then - T 0 1 0 ∂ x ϕ(t, x)q(û N (t, x))dxdt = - T 0 N -l i=l+1 1 0 ∂ x ϕ(t, x)1 N,i (x)dx q(û l,i )dt = T 0 N -l i=l+1 (∇ * φi )q(û l,i )dt (4.104) = T 0 N -l i=l+1 φi ∇q(û l,i )dt + T 0 φl q(û l,l+1 )+ -φN-l q(û N -l+1 ) dt.
Thus, since we may write, for some α ∈ (0, 1),

∇q(û l,i ) = ∂ r η(û α l,i )∇r l,i + ∂ p η(û α l,i )∇p l,i , (4.105) 
where ûα l,i = αû l,i + (1 -α)û l,i+1 , we obtain

Q N = Q r q,N + Q p q,N + Z b q,N , (4.106) 
where

Q r q,N = T 0 N -l i=l+1
φi ∂ r q(û α l,i )∇r l,i -φi ∂ r q(û l,i )∇r l,i dt (4.107)

Q * p q,N = T 0 N -l i=l+1 φi ∂ p q(û α l,i )∇p l,i + φi ∂ p q(û l,i )∇ * p l,i dt (4.108) Z b q,N = T 0 ( φl q(û l,l+1 ) -φN-l q(û N -l+1 )) dt. (4.109)
Since q is bounded, Z b q,N is at glance of type Z. Next, we write

Q r q,N = Y r q,N + Z r q,N , (4.110) 
where

Y r q,N = T 0 N -l i=l+1 ( φi -φi )∂ r q(û α l,i )∇r l,i dt (4.111) Z r q,N = T 0 N -l i=l+1 φi ∂ r q(û α l,i ) -∂ r q(û l,i ) ∇r l,i dt. (4.112)
In order to estimate Y r q,N we estimate

| φi -φi | = N 1 0 1 N,i (x) ϕ i N + 1 2N -ϕ(x) dx (4.113) ≤ N 1 0 1 N,i (x) 1 0 1 [x, i N + 1 2N ] (y)∂ y ϕ(t, y)dy dx ≤ N 1 0 1 N,i (x) i N + 1 2N -x 1/2 1 0 |∂ y ϕ(t, y)| 2 dy 1/2 dx = 2 3 √ N 1 0 |∂ y ϕ(t, y)| 2 dy 1/2
. Thus, by Cauchy-Schwarz,

|Y r q,N | ≤ C T 0 N -l i=l+1 ( φi -φi ) 2 dt 1/2 T 0 N -l i=l+1 (∇r l,i ) 2 dt 1/2 (4.114) ≤ C T 0 1 0 |∂ y ϕ(t, y)| 2 dydt 1/2 T 0 N -l i=l+1 (∇r l,i ) 2 dt 1/2 ≤ C ϕ H 1 (Q T ) T 0 N -l i=l+1 (∇r l,i ) 2 dt 1/2
and so Y r q,N is of type Y. Z r q,N is easily seen to be of type Z with b N → 0 since we can estimate, for some intermediate value ũl,i ,

∂ r q(û α l,i ) -∂ r q(û l,i ) = |∂ r q(αu l,i + (1 -α)û l,i+1 ) -∂ r q(û l,i )| (4.115) = |∂ 2 rr q(ũ l,i )(1 -α)∇r l,i + ∂ 2 rp q(ũ l,i )(1 -α)∇p l,i | ≤ q ∞ (1 -α) (|∇r l,i | + |∇p l,i |) .
In order to evaluate Q * p q,N we write

Q * p q,N = Q p q,N + X q,N , (4.116) 
where

Q p q,N = T 0 N -l i=l+1 φi ∂ p q(û α l,i )∇p l,i -φi ∂ p q(û l,i )∇p l,i dt (4.117) X q,N = T 0 N -l i=p+1 φi ∂ p q(û l,i ) (∇ * pl,i + ∇p l,i ) dt. (4.118)
Q p p,N is evaluated exactly as Q r p,N and so it writes as a sum of a type Y term and of a type Z term with b N → ∞. Finally, since

∇ * pl,i + ∇p l,i = ∆p l,i , (4.119) 
the term X q,N is entirely similar to the term X 1 s,N of Lemma 4.16, except the latter has an extra factor σ. Thus, X q,N writes as a sum of a type Y term and a type Z term with b N → 0.

Clausius Inequality

This section is devoted to proving the second law of Thermodynamics in the form of the Clausius inequality. We recall here the variational formula for the relative entropy

H N (t) = sup φ φdµ N t -log e φ dλ N t , (5.1) 
where the supremum is carried over all measurable function φ such that e φ dλ N t < +∞.

Lemma 5.1. Any solution ũ belongs almost surely to L ∞ (0, T ; L 2 (0, 1)).

Proof. Fix 1 ≤ p < 2. By Lemma 4.10 there exists a set A of probability 1 such that ũn → ũ in L p -strong for for any ω ∈ A. For any such ω we can find a subsequence {n ω k } such that ũn ω k (t, x) → ũ(t, x) for almost all t and x. In particular, for almost all t, the sequence ũn ω k (t, x) converges for almost all x. Thus, by Fatou lemma and the remark following Proposition 4.8 we have

1 0 |ũ(t, x)| 2 dx ≤ lim inf k→∞ 1 0 |ũ n ω k (t, x)| 2 dx ≤ C (5.2)
for almost all t.

Lemma 5.2. For any limit point 

Q of Q N T 0 lim inf N →∞ H N (t) N dt ≥ βE Q T 0 1 0 [F(t, y) -τ (t)r(t, y)] dydt + T 0 G(τ (t))dt, ( 5 
φ(r, p) = N i=1 β ( τ i (t) -τ (t))r i + p i (t)p i -G( τ i (t)) + G(τ (t)) -β p i (t) 2 2 . (5.5)
Observe that φ is such that e φ dλ N t = 1. Then using the results on the hydrodynamic limit, along a sub-sequence, we have, for almost all t, lim inf

N →∞ H N (t) N ≥ sup τ (t,•),p(t,•)∈Lip([0,1]) E Q 1 0 dy [β (τ (t, y) -τ (t)) r(t, y) + p(t, y)p(t, y)] -G(τ (t, y)) + G(τ (t)) - β 2 p(t, y) 2 = E Q 1 0 dy sup τ ∈R [βτ r(t, y) -G(τ )] -β τ (t)r(t, y) + sup p ∈R p p(t, y) - β 2 p 2 + G(τ (t)) = βE Q 1 0 dy [F(t, y) -β τ (t)r(t, y)] + G(τ (t)).
(

The conclusion then follows after a time integration. [F(0, y) -τ (0)r 0 (y)] dy + G(τ (0)).

(5.9)

This, together with the previous lemma, yields for almost all t,

βE Q 1 0 F(t, y)dy -β 1 0 F(0, y)dy ≤ lim inf N →∞ H N (t) -H N (0) N +βE Q [τ (t)r(t, y) -τ (0)r 0 (y)] dy -G(τ (t)) + G(τ (0)).
(5.10) Finally, from Proposition 3.1 we have lim inf

N →∞ H N (t) -H N (0) N ≤ -β t 0 ds E Q τ (s) 1 0 r(s, y)dy + β t 0 ds τ (s) (τ (s)) (5.11) = βE Q (W (t)) -βE Q 1 0 [τ (t)r(t, y) -τ (0)r 0 (y)] dy + β t 0 ds τ (s) (τ (s)) = βE Q (W (t)) -βE Q 1 0 [τ (t)r(t, y) -τ (0)r 0 (y)] dy + G(τ (t)) -G(τ (0)),
which, together with (5.10) and after an integration in time gives the conclusion.

Remark. Assume that the external tension varies smoothly from τ 0 at t = 0 to τ 1 as t → ∞. Assume also that the system is at equilibrium both at time zero and as t → ∞:

p 0 (x) = 0, τ (r 0 (x)) = τ 0 , ∀x ∈ [0, 1] (5.12) lim t→∞ p(t, x) = 0, lim t→∞ τ (r(t, x)) = τ 1 a.e. x ∈ [0, 1]. (5.13) 
Then, the following version of the Clausius inequality holds

F (τ 1 ) -F (τ 0 ) ≤ E Q (W ), (5.14) 
where the total work W is given by

W := - ∞ 0 τ (s) 1 0
r(s, y)dy + τ 1 (τ 1 ) -τ 0 (τ 0 ).

(5.15)

A Appendix

A.1 Microscopic estimates

In the following we will denote, for any sequence (a i ) i∈N and any l ∈ N the usual block averages

āl,i := 1 l l j=1 a i-j+1 , i ≥ l. (A.1) For 1 ≤ m ≤ i ≤ N , denote by dµ m,i,t ∈ M (R 2m
) the projection of the probability measure µ N t on {r i-m+1 , . . . , r i , p i-m+1 , . . . , p i }. This decompose in dµ m,i,t (•) = dµ m,i,t (•|r m,i , pm,i )dµ i,t (r m,i , pm,i ), where µ m,i,t (•|r m,i , pm,i ) is the measure µ m,i,t conditioned to rm,i , pm,i , while dµ i,t (r m,i , pm,i ) is the marginal distribution of (r m,i , pm,i ) under µ N t .

Correspondingly, from the measure λ N t , we define dλ m,i,t (•) = dλ m,i,t (•|r m,i , pm,i )dλ i,t (r m,i , pm,i ). For every value of , p, we can choose the corresponding regular conditional probabilities μ ,p m,i,t = µ m,i,t (•|r m,i = , pm,i = p) and λ ,p m,i,t = λ m,i,t (•|r m,i = , pm,i = p). These are probability measures on R 2m supported on the 2(m -1) hyperplane Σ m ( , p) defined by

1 m m-1 j=0 r j = , 1 m m-1 j=0 p j = p. Observe that λ ,p
m,i,t does not depend on τ (t) nor on i. Since the potential V is uniformly convex, the Bakry-Emery criterion applies and we have the following logarithmic Sobolev inequality (LSI)

Σm( ,p) g 2 log g 2 d λ ,p m ≤ C lsi m 2 m-1 j=1 Σm( ,p) (D j g) 2 + ( Dj g) 2 d λ ,p m (A.2)
for any smooth g on R 2m such that Σm( ,p) g 2 d λ ,p m = 1. Here C lsi is a universal constant depending on the interaction V only. In particular (A.2) holds for g 2 = f ,p m,i,t = dμ ,p m,i,t /dλ ,p m . Denote dµ m,i,t ( , p) the marginal distribution of rm,i , pm,i of µ t .

Lemma A.1. Let m < i < N . Then there exists a constant C such that, for any

, p ∈ R, R 2 
dµ m,i,t (r m,i , pm,i )

Σm(r m,i ,p m,i ) f rm,i ,p m,i m,i,t log f rm,i ,p m,i m,i,t dλ rm,i ,p m,i m (A.3) ≤ C lsi m 2 m-1 j=1 R 2N D i-j f N t 2 + Di-j f N t 2 f N t dλ N t Proof. Let f m,i,t = dµ m,i,t dλ m,i,t . It decomposes as f m,i,t (r i-m , p i-m , . . . , r i , p i ) = f rm,i ,p m,i m,i,t (r i-m , p i-m , . . . , r i , p i ) fi,t (r m,i , pm,i ), (A.4)
where fi,t = dµ i,t dλ i,t .

By (A.2), the left hand side of (A.3) is less or equal to

C lsi m 2 R 2 dµ i,t (r m,i , pm,i ) m-1 j=1 (D i-j f rm,i ,p m,i m,i,t ) 2 + ( Di-j f rm,i ,p m,i m,i,t ) 2 f rm,i ,p m,i m,i,t d λr i,m ,p i,m m,i,t (A.5) = C lsi m 2 R 2 f i,t (r m,i , pm,i )dλ i,t (r m,i , pm,i ) m-1 j=1 (D i-j f rm,i ,p m,i m,i,t ) 2 + ( Di-j f rm,i ,p m,i m,i,t ) 2 f rm,i ,p m,i m,i,t d λr i,m ,p i,m m,i,t = C lsi m 2 R 2 dλ i,t (r m,i , pm,i ) m-1 j=1 (D i-j f m,i,t ) 2 + ( Di-j f m,i,t ) 2 f m,i,t d λr i,m ,p i,m m,i,t = C lsi m 2 m-1 j=1 (D i-j f m,i,t ) 2 + ( Di-j f m,i,t ) 2 f m,i,t dλ m,i,t ,
and (A.3) follows by Jensen's inequality.

Proposition A.2 (One-block estimate -interior). There exists l 0 ∈ N such that, for l 0 < l ≤ N , we have

N -1 i=l+1 t 0 V l,i -τ (r l,i ) 2 dµ N s ds ≤ C N l t + l 2 σ ≤ C(T ) l 2 σ . (A.6)
Proof. Fix α > 0. By the entropy inequality and Lemma A.1:

N -1 i=l+1 αl t 0 ds V l,i -τ (r l,i ) 2 dµ N s (A.7) = N -1 i=l+1 αl t 0 ds dµ i,s (r l,i , pl,i ) V l,i -τ (r l,i ) 2 dμ rl,i ,p l,i l,i,s ≤l 3 C lsi t 0 (D N (s) + D N (s))ds + N -1 i=l+1 t 0 ds dµ i,s (r l,i , pl,i ) log e αl V l,i -τ (r l,i ) 2 d λr l,i ,p l,i l,i,t ≤C l 3 σ + N -1 i=l+1 t 0 ds dµ i,s (r l,i , pl,i ) log e αl V l,i -τ (r l,i ) 2 d λr l,i ,p l,i l
where we have used the bound on the time integral of the Dirichlet form .

We prove now that for α < (4c 0 ) -1 we have sup We take l > l 0 so that e αl V l,i -τ ( ) and the right hand side is independent of and p. Taking α = β/(4c 2 ) the expectation with respect to ξ is finite.

If we do not perform the summation over i in (A.7) and we bound the right-hand side of (A.3) by the Dirichlet forms we obtain the following Corollary A.3. There exists l 0 ∈ N such that, for l 0 < l < i < N , we have Proof. We consider a i = V (r i ), as the case a i = p i is analogous. Thanks to the identity V (r i ) -V (r j ) = -β -1 ∂λ N s ∂r i -∂λ N s ∂r j

(A.17) we compute

( V l,k+l -V l,k ) 2 f N s dλ N s = 1 l k i=k-l+1 (V (r i+l ) -V (r i ))( V l,k+l -V l,k )f N s dλ N s (A.18) = β -1 l 2 k i=k-l+1 (V (r i+l ) + V (r i ))dµ N s + + ( V l,k+l -V l,k ) β -1 l k i=k-l+1 ∂f N s ∂r i+l - ∂f N s ∂r i
dλ N s .

By using Cauchy-Schwartz inequality on the last term and the fact that V is bounded, we obtain The conclusion then follows after an integration in time.

( V l,k+l -V l,k ) 2 f N s dλ N s ≤ C 1 l + 1 l 1 f N s k i=k-l+1
Proposition A.5 (Two-block estimate). Let a i ∈ {p i , V (r i ), r i } and l 0 be as in Proposition A.2. Then, for l 0 < l ≤ N , we have Proof. We prove the statement for a i = V (r i ). From (A.19) we have The conclusion then follows after a time integration. The proof for a i = p i is analogous. Finally, since τ is bounded from below by a positive constant, we have (r l,i+l -rl,i ) 2 ≤ C (τ (r l,i+l ) -τ (r l,i )) 2 (A.22)

≤ C τ (r l,i+l ) -V l,i+l 2 + V l,i -τ (r l,i ) 2 + V l,i+l -V l,i 2 
and the statement for a i = r i follows from the fist part of the proof and Proposition A.2.

We conclude this section by showing the connection between the averages âl,i and āl,i .

Lemma A.6. For any sequence (a i ) i∈N , any l ∈ N and any i ≥ l, we have ∇â l,i = 1 l (ā l,i+l -āl,i ) (A.23)

Proof. We prove the statement by induction over l. The statement for l = 1 is obvious, since both â1,i+1 -â1,i and ā1,i+1 -ā1,i are equal to a i+1 -a i . Assume now the statement is true for some l ≥ 1. We prove it holds for l + 1 as well. We have âl+1,i+1 -âl+1,i = 1 l + 1 (a i+1-j -a i-j ). Thus,

( V l,i -V l,i ) 2 dµ N s = 1 l l-1 j=0 j l (V (r i-j ) -V (r i-j+l )) ( V l,i -V l,i )f N s dλ N s (A.30) =β -1 1 l 2 l-1 j=0 l-1 k=0 jk l 2 ∂ ∂r i-j - ∂ ∂r i-j+l (V (r i-k ) -V (r i-k+l )) f N s dλ N s + + β -1 ( V l,i -V l,i ) f N
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 221 λ ,p l ≤ C e αl V l,i -τ ( )2 dλ l β,p,τ ( ) . (A.9)Let us introduce a normally distributed random variable ξ ∼ N (0, 1) so that we can use the identitye αl V l,i -τ ( ) E ξ e ξ √ 2αl V l,i -τ ( ) (A.10)in order to writee αl V l,i -τ ( ) 2 dλ l β,p,τ ( ) = E ξ e ξ √ 2αl V l,i -τ ( ) dλ l β,p,τ ( ) (r) dλ β,p,τ ( ) l   , (A.12)It is easy to show (cf Appendix A of[START_REF] Marchesani | Hydrodynamic limit for an anharmonic chain under boundary tension[END_REF]) that, e ξ (r 1 ) dλ N β,p,τ ( )
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 4 One-and-a-half-block estimate). Let a i ∈ {p i , V (r i )}. Then, for any fixed l ≤ k ≤ N -l, we have t 0 (ā l,k+l -āl,k ) 2 dµ N s ds ≤ C

  1 -|j|)(a i+1-j -a i-j )

  .37) Therefore, combining Propositions 4.2, 4.4, 4.5 and 4.6, we obtain the following

	Proposition

  Proof. To get the lower bound for any fixed t ≥ 0 choose two Lipschitz functions τ (t, •)

	and p(t, •) on [0, 1] and define τ i (t) := τ t,	i N	and p i (t) := p t,	i N	. Then take φ in
	(5.1) as				
						.3)
	where	F(t, y) :=	p(t, y) 2 2	+ F (r(t, y)).	(5.4)
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For the first summation we can use the inductive hypothesis, while the second summation is telescopic. Therefore we obtain âl+1,i+1 -âl+1,i = 1 (l + 1) 2 l j=1 (a i+l-j+1 -a i-j+1 ) + 1 (l + 1) 2 (a i+l+1 -a i-l ) (A.25)

Combining Proposition A.5 and Lemma A.6 we get the following Corollary A.7. Let a i ∈ {p i , V (r i ), r i } and l 0 be as in Proposition A.2. Then, for

We now show that the two averages we defined are equivalent in the limit.

Proposition A.8 (One-block comparison). Let a i ∈ {p i , V (r i )}. Then, for any l ≤ i ≤ N -l, we have

Proof. We prove the statement for a i = V (r i ), the proof for a i = p i being analogous. We can write

and the conclusion follows as in the proof of Proposition A.4.

Proposition A.9 (Block average comparison). Let a i ∈ {p i , V (r i ), r i } and l 0 as in Proposition A.2. Then, for l 0 < l ≤ N we have

Proof. The statement for a i ∈ {p i , V (r i )} is obtained by the previous proposition after summing over i as in the proof of Proposition A. [START_REF] Marchesani | Hydrodynamic limit for a diffusive system with boundary conditions[END_REF].

In order to prove the statement for a i = r i we write

where |c j | < 1 and |j|<l c j = 0. Let α > 0 to be chosen later and follow the proof of Proposition A.2 in order to obtain

We introduce a normally distributed ξ ∼ N (0, 1) and write, for large enough l, e α (r l,i -rl,i )

for some intermediate value τ . But since |j|<l c j = 0, |c j | < 1 and G is bounded, we can estimate

. Note that the right-hand side of (A.36) does not depend on and p. Thus, combining (A.34) and (A.36) and choosing α < 1 12 G ∞ l leads to the conclusion.

Corollary A.10. There exists l 0 ∈ N such that, for l 0 < l < i < N -l + 1, we have

Corollary A.11. Let l 0 be as in Proposition A.2. Then, for l 0 < l < i < N -l + 1 we have

Proof. Follows from Proposition A.2, Proposition A.9 and the inequality V l,i -τ (r l,i )

+ V l,i -τ (r l,i ) 2 + (τ (r l,i ) -τ (r l,i )) 2 (A.39)

+ V l,i -τ (r l,i ) 2 + (r l,i -rl,i ) 2