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Optimization-Based Control Allocation for Driving/Braking Torque
Vectoring in a Race Car*

Moad Kissai1, Bruno Monsuez1, Xavier Mouton2 and Adriana Tapus1

Abstract— Most of recent researches on the automotive field
focus on autonomous vehicles. These vehicles are equipped with
conventional chassis systems. The goal is to control the vehicle’s
traction, brakes, and front steering. This paper discusses the
importance of advanced chassis systems, as driving/braking
torque vectoring, for both autonomous and non-autonomous
vehicles, especially in a race mode. Reliable co-simulation
results show that expanding the vehicle’s potential leads to
high performances and safety with respect to severe situations
when optimal control allocation is ensured. Therefore, future
passenger cars shall not only be equipped with additional
sensors, but also by advanced systems along with adequate
control algorithms.

I. INTRODUCTION

The ground vehicle has always been subject to people’s
fascination. From the very beginning, passenger cars were
considered not only as a transportation device, but also
as an object of luxury and pleasure. Car manufacturers
and equipment suppliers are always racing to propose new
technologies in order to improve the cars’ performances
while keeping an acceptable level of safety. This competition
is about to become fiercer with the upcoming autonomous
vehicles. Not only every car manufacturer and every equip-
ment supplier is working on this new generation of passenger
cars, but even additional stakeholders are taking part in
this race. This is mainly due to the fact that autonomous
vehicles would require additional knowledge such as artificial
intelligence, sensor fusion, cyber-security, and so on, which
is not included in the know-how of the automotive industry.

One common practice to validate a new system, is to test
it at its limits. In this context, researchers in [1] use simple
clothoids to generate the trajectory that should be followed
while respecting the friction constraints considered as the
major limits [2]. Authors in [3] took over these methods to
test an autonomous vehicle at the limits of handling. Results
showed good performance by using an a priori knowledge of
friction and a robust controller to deal with surface variations.
However, these results remain far from the real potential of
ground vehicles. One of the reasons of these limitations is
the use of only the front steering capability of the vehicle
to turn. Today’s vehicles are already equipped with various

*This work was supported by the Group Renault
1Moad Kissai, Bruno Monsuez, and Adriana Tapus are with Insti-

tut Polytechnique de Paris, ENSTA Paris, Autonomous Systems and
Robotics Lab, Department of Computer and System Engineering (U2IS),
828 Boulevard des Marchaux, 91120 Palaiseau, France {moad.kissai,
bruno.monsuez, adriana.tapus}@ensta-paris.fr

2Xavier Mouton is with the Group Renault, Chassis Systems
Department, 1 Avenue du Golf, 78280 Guyancourt, France
xavier.mouton@renault.com

chassis systems and Advanced Driver Assistance Systems
(ADAS). For example, the 4-Wheel Steering (4WS) system
has been introduced in 1987, which makes the rear wheels
steer and help the driver turn the vehicle [4]. A few years
after, in 1992, the Electronic Stability Program (ESP) makes
its entry [5]. This system detects an avoidance situation and
use a differential braking between left and right wheels to
create a yaw moment and steer back the vehicle lest its
loss of control. This technology showed the relevance of
making use of the four tires to handle severe scenarios as
obstacle avoidance. While the ESP activates only in specific
scenarios, one could think of using differential braking in
more additional hazardous situations. However, using the
brakes repetitively while the driver does not ask for it could
be annoying and would deteriorate the tires faster. Another
way to take advantage of the potential of the four tires is
Torque Vectoring (TV). Here, it is the drive torque that is
split between right and left wheels.

Several researches focus on the Torque Vectoring in the
literature. In [6], combined yaw stability and velocity regu-
lation are proposed by means of an electric rear axle Torque
Vectoring. The controller consists of an LQR, and the drive
torque is split between left and right rear wheels using a
limited slip differential calculated at steady-states conditions.
As long as tires are not used longitudinally and laterally at
the same time, no combined slip phenomena is considered
at the tire level. But in order to expand the vehicle potential,
we believe that Torque Vectoring should be used also at
the front tires by taking into account the combined slip
for better coordination. In [7], authors tackled the problem
of the four-wheel independently actuated electric vehicle.
A hierarchical control architecture is adopted to enhance
the vehicle stability. As a high-level controller, a Sliding
Mode Control (SMC) scheme is adopted to determine the
desired longitudinal and lateral forces and yaw moment. In
the low-level control, an optimization algorithm is adopted
to allocate the driving/braking torques to each in-wheel
motor by means of the Sequential Quadratic Programming
(SQP). Good performances are exhibited in few standardized
scenarios. The longitudinal velocity however is not very high
and do not vary in the middle of the maneuvers. Moreover,
the SMC uses only the sign function for the reaching law,
which causes shattering and may accelerate tire wear. In
order to represent a real life situation and attract the different
stakeholders, different severe scenarios should be tested.

In this paper, we follow almost the same hierarchical
control architecture as the one described in [7]. In contrast,
we use an H∞ controller as the high-level controller, and



the Weighted-Least Square (WLS) formulation with Active
Set Algorithm (ASA) as a solver for the control allocation
problem that distributes drive torques and also brake torques.
The overall architecture is then tested by co-simulation
of Matlab/Simulink R© that inhabits the control logic, and
Simcenter Amesim R© that contains a high-fidelity vehicle
model and a reproduction in 3D of a real race road located
in Magny-Cours in France. The front steering wheel angle
and the speed target are generated by a Model Predictive
Controller provided by Amesim R© that can represents either
a driver or an autopilot. The purpose of this paper is to
compare a vehicle without Torque Vectoring and a vehicle
with the Torque Vectoring system in a race road. We increase
the speed target progressively until the loss of stability to
determine the limits of each vehicle. As expected, the vehicle
equipped with the TV stayed stable for higher speed values.
This enabled the vehicle to complete the race faster ensuring
higher performance and safety at the same time. We believe
that this may facilitate future vehicles control and expand
their potential by adding additional degrees of freedom, and
therefore accelerate their development.

The rest of the paper is structured as follows: We start
in Section II by exposing the dynamics modeling of the
equipped vehicle. In Section III, the control architecture is
described. The control allocation scheme is briefly detailed
in Section IV. Section V presents results obtained by co-
simulation of Matlab/Simulink R© and Amesim R©. Conclusions
and future works are outlined in Section VI.

II. SYSTEM MODELING

In [8], a review of integrated vehicle dynamics control
architectures is provided. It has been shown that a multi-
hierarchical architecture is more relevant for future over-
actuated vehicles for its advantages in terms of extensibility,
fault-tolerance, openness, and so on. In this paper, a similar
architecture is developed. In order to develop each layer
apart, modeling of the vehicle’s Center of Gravity (CoG)
motion is separated from tire modeling.

A. Vehicle’s CoG Motion Modeling

The considered vehicle is equipped with an Electric
Power-Assisted Steering (EPAS) system, in-wheel motors
enabling Torque Vectoring (TV) feature, and a braking-based
Vehicle Dynamics Control (VDC) system that enables brak-
ing each wheel apart1. Suspensions are considered passive.
Regarding the vehicle’s center of gravity motions, vertical
motions will be then ignored. The vertical loads are more
relevant to the tire model [2]. Therefore, only a planar vehicle
model is considered [9]. Nevertheless, as long as torque
distribution between right and left wheels is considered, a
four-wheeled vehicle model should be considered (see Fig.
12).

1This system resembles therefore the ESP system, but can be activated
also in different scenarios than ESP helping maintaining steering control in
oversteer/understeer situations.

2The Figure shows a generalized 4-wheeled vehicle model. In our case,
the vehicle is equipped with a 4-wheel steering system, but it is not activated
for this study.

Fig. 1. The four-wheeled planar vehicle model (adapted from [9])

Using Newton’s second law of motion, we can find the
following state-representation [9]:
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With:
• Vx : longitudinal velocity of the vehicle,
• Vy : lateral velocity of the vehicle,
• ψ̇ : yaw rate of the vehicle,
• Fxtot : sum of longitudinal forces applied at the vehicle’s

Center of Gravity (CoG),
• Mztot : sum of yaw moments applied at the vehicle’s CoG,
• M : vehicle’s overall mass,
• Izz : vehicle’s yaw moment of inertia.

Where:
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With:
• Fx f ,r : front-right longitudinal force,
• Fx f ,l : front-left longitudinal force,
• Fxr,r : rear-right longitudinal force,
• Fxr,l : rear-left longitudinal force,
• δ f : front steering angle,
• l f : distance between the front axle and the CoG,
• t : vehicle’s track.

Note that we have considered only controllable forces to
distribute by the control allocation algorithm. In fact, the
lateral force induced by the front steering is controlled by
the MPC. Introducing this force also in the vehicle motion
control induces request conflicts. As aerodynamic forces,
these can be considered as disturbances to reject.

B. Tire Modeling

As front tires steers and ask for lateral tire force, a
reasonable torque distribution should take into account this
phenomenon to solicit more rear traction torques in case of
large lateral force demand. A combined slip model is then



needed but should remain as simple as possible to be used for
control synthesis. In this paper, we use the linear tire model
with varying parameters developed in [10] that fulfill these
requirements. The forces are expressed as the following:

Fx = C∗s (α, µ, Fz) κ (4)
Fy = C∗α (κ, µ, Fz)α (5)

where:
• κ : the longitudinal slip,
• α : the side-slip,
• µ : the friction coefficient,
• Fz : the vertical load,
• C∗s (α, µ, Fz) : the tire varying longitudinal stiffness

with respect to the side-slip α, µ, and Fz,
• C∗α (κ, µ, Fz) : the tire varying cornering stiffness with

respect to the longitudinal slip κ, µ, and Fz.
Detailed expressions of C∗s (α, µ, Fz) and C∗α (κ, µ, Fz) can be
found in [10].

In order to respect the friction ellipse concept [2], dynamic
constraints are added [10]:

Fx ≤

√
(µFz)2 − F2

y (6)

Fy ≤

√
(µFz)2 − F2

x (7)

Here, we suppose that µ can be estimated as in [11] or [12].
Regarding the vertical load, it can be defined as in [9].

III. CONTROL ARCHITECTURE

As we have mentioned, today’s vehicles are over-actuated.
This presents additional opportunities as the vehicle’s po-
tential is extended, but presents at the same time several
complexities regarding the control synthesis procedure. Typ-
ically, the torque vectoring increases the over-actuation. In
[8], it is claimed that by separating the vehicle’s CoG motion
control from the control distribution problem, we can both
simplify the control synthesis and make the overall archi-
tecture extensible to additional chassis systems and ADAS.
This is of a major importance for future vehicles as their
control architecture is not standardized yet, and should be
therefore flexible enough. The control architecture adopted
in this paper is illustrated in Fig 2.

A. Control Logic Description

In the architecture, illustrated in Fig. 2, the front steering
angle δ f and the speed target or speed of reference Vre f is
generated by means of a Model Predictive Controller (MPC)
provided by Amesim R©. Details about the MPC controller
fall beyond the scope of this paper. We focus here more on
the downstream control process. The MPC controller can be
considered as an autopilot or a driver following a trajectory.

Once δ f and Vre f are generated, a yaw rate reference
can be generated. We use the steady-state bicycle model to
generate the yaw rate target [13]:

ψ̇re f =
Vx

L +
MV2

x

LCα f Cαr

(
Cαr lr −Cα f l f

)δ f (8)

where:
• Cα f : initial cornering stiffness of front axle when no

longitudinal slip is considered,
• Cαr : initial cornering stiffness of rear axle when no

longitudinal slip is considered,
• lr : distance between the rear axle and the CoG,
• L : vehicle’s wheelbase
Due to parameters uncertainties regarding the vehicle’s

mass, inertia, tires’ stiffness, and so on, we synthesized
an H∞ controller to ensure the robustness of the control
logic. However, equation (1) shows the existence of the
varying parameter Vy. This introduces a non-linearity that
could be overcome by a nonlinear controller as the SMC
or Gain-Scheduling. The SMC suffers from the shattering
problem, which makes it unsuitable for mechanical actuators
[14]. Even though this problem can be elevated by choosing
adequate switch functions, the design method still lacks the
flexibility and standardization that the H∞ offers, which is
essential for industrial applications. The Gain-Scheduling
pass muster only for scheduling parameters that vary slowly
[15]. As we aim to control a vehicle in a race mode, we
have noticed fast variations of Vy by simulations which
might destabilize the vehicle dynamics. Subsequently, here
we only take into account the linearized nominal model at the
operating point Vye = 0 to synthesize a simple H∞ controller.
This latter generates therefore the generalized commands Ftot

and Mtot. A second controller can be added to ensure Vy

remains null. Through our investigations, we found out that
this does not have considerable effects, and therefore is not
justified especially since Vy is hard to estimate in real time.

The generalized commands should be distributed into the
four tires. The control allocator ensures this operation by
means of optimization-based control allocation algorithms
that are detailed in Section IV. The low-level control layer
transforms the tire forces into torques. Equations are pro-
vided below. The different brake and drive torques commands
are then sent to the Amesim R© high-fidelity vehicle model to
modify the vehicle behavior during the co-simulation.

B. High-Level Control

The main drawback in an H∞ control design is the high
order of the resulting controller. The order of the controller
resulting is equal to the number of states in the plant
plus the number of states in the requirements weights plus
twice the number of states in the feedthrough matrix [16].
Here a different methodology is adopted. We add a fixed-
structure of the controller as a new requirement to the
control design problem. The PI structure is chosen for each
controllable variable due to their integral characteristic at
higher frequencies. The optimal design algorithm is operated
using Matlab R©. In this latter, to mitigate the risk of local
minima, one could run several optimizations started from
randomized initial values of tunable parameters [17].

Regarding performance weighting functions, closed loop
shaping is used for defining control design requirements as in
[18]. Two objectives are selected: tracking performance, and
commands moderation. For tracking performance, we choose



Fig. 2. The global control architecture

a steady-state offset less than 1%, a closed-loop bandwidth
higher than 1Hz, and an amplification of high-frequency
noise less than a factor 3, which gives the following weight-
ing function:

Wper f =
1
3

s
2π

+ 3

s
2π

+ 0.01
(9)

With s is the Laplace operator. Regarding commands mod-
eration, we use a static gain representing the inverse of the
maximum effort, which gives:

Wact =
1

Mg
(10)

Here, we suppose that the maximum friction coefficient is
equal to 1. The optimization algorithm gives the minimum
H∞ norm γ = 1.16, which proves that the different con-
straints are respected and the high-level controller is stable.

C. Low-Level Control

The low-level control layer corresponds to the most inner
loop. It should be therefore the fastest. Moreover, this layer
accepts tire forces as an input. These forces are not measured
in commercial sportive vehicles. For these two reasons, an
open-loop control is preferred at this level. Let us note:
• Tbi, j : brake torque at the i− j where i = f for “front” or

r for “rear”, and j = l for “left” or r for “right”wheel,
• Tdi, j : driving torque at the i − j wheel,
• Ri : wheels’ effective radius of axle “i”.
For simplicity, and in order to avoid adding any lag to the

overall control logic, the Algorithm 1 is adopted.
Doing so, the commands reach the corresponding block at

the right moment. Fig. 3 clarifies the latency at each step in
the control logic.

IV. CONTROL DISTRIBUTION

The high-level controller determines the generalized forces
that should be applied at the vehicle’s CoG in order to realize
a specific motion. Tire forces combination should ensure
the application of such forces. As long as tire forces are

Algorithm 1 Torques calculation
Let Tdi j0

Tbi j0
be starting values

1: Tdi j0
← 0

2: Tbi j0
← 0

3: if Fxi j > 0 then
4: Tdi j ← RiFxi j

5: Tbi j ← 0
6: else
7: Tdi j ← 0
8: Tbi j ← −RiFxi j

9: end if

Fig. 3. Magny-Cours trajectory with the maximum performance of a
vehicle without torque vectoring.

more numerous than the generalized forces, the system is
considered over-actuated.

The problem has been tackled differently in the literature.
Either the coordination is ensured downstream or upstream
the different actuators [8]. In the downstream approach,
Fuzzy logic using rule-based coordination functions has been
used for example in [19]. The rules are developed with
respect to some specific situations studied offline. Artificial
Neural Networks have also been investigated to handle this
problem downstream the systems in [20]. Here also, the
network should be trained with respect to some relevant
situations determined in a pre-study of vehicle dynamics.
As the number of scenarios might not be scalable, the
downstream approach cannot be generalized. In contrast,
the upstream approach consists on formalizing the system



interactions, describe the problem as an optimization one,
and then solve it using an online optimization solver.

A. Problem Definition

The control allocation problem can be defined as follows
[21]: find the control vector, ~u ∈ Rn such that

Beff~u = ~vdes (11)

subject to

~umin ≤ ~u ≤ ~umax (12)

~̇u ≤ ~̇umax (13)

where Beff ∈ Rm×n is a control effectiveness matrix, ~umin ∈ Rn

and ~umax ∈ Rn are the lower and upper position limits, respec-
tively, ~̇u ∈ Rn is the control rate, ~̇umax ∈ Rn is the maximum
control rate, ~vdes ∈ Rm are the desired accelerations, n is the
number of control effectors, and m is the number of axes to
control.

Regarding the TV-VDC coordination case, the control
vector is the following:

~u =


Fx f l

Fx f r

Fxrl

Fxrr

 (14)

~umin and ~umax reflect tire limits with respect to the friction
ellipse concept (6) and (7). Vertical loads variation are taken
into account here using equations exposed in [22].

The desired acceleration ~vdes in this case is:

~vdes =

[
Fxtot

Mztot

]
(15)

The effectiveness matrix related to control allocation pre-
cision Beff is:

Beff =
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)
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1 1
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t
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t
2
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(
δ f

)
−

t
2

cos
(
δ f

)
,

• b2,2 = l f sin
(
δ f

)
+

t
2

cos
(
δ f

)
.

B. Problem Solving

Several solvers can be in the literature. Sequential Least
Squares (SLS) uses a two stage Active Set Algorithm (ASA)
to handle two optimization problems [23]. The Weighted
Least Squares (WLS) solves the bounded least squares prob-
lem using one stage ASA after few matrix transformations by
means of different weights [23]. Other techniques not based
on ASA can be cited as Cascading Generalized Inverses
(CGI) [24] and the Fixed-Point Iteration (FPI) [25]. We
choose here the WLS based on ASA for its flexibility to
express multiple objectives and tune their priorities, and for

its relative rapidity due to its one stage formulation. The
optimal solution is then:

~uopt = arg min
~umin≤~u≤~umax

∑
l

γi

∥∥∥Wi
(
Bi~u −~vi

)∥∥∥2
(17)

• ~uopt : optimal control vector,
• l : number of objectives,
• γi : weight of the ith objective,
• Wi : non-singular weighting matrices defining pref-

erences of each axis,
• ~vi : desired vector of the ith objective,
• Bi : effectiveness matrix relating the control vector to

the desired ith objective.
The solver is based on Active Set Algorithm (ASA). For

details regarding this algorithm, refer to [23]. Nevertheless,
it should be noted that in order to use this solver, one should
rewrite the cost function following the ASA formulation:

~uopt = arg min
~umin≤~u≤~umax

∥∥∥∥A~u − ~b
∥∥∥∥ (18)

So in case of a multi-objective problem, A and ~b represent
vertical vectors with different specifications depending on the
chosen objective. Here, to simplify, only control allocation
precision is considered. No modifications are needed as the
problem is naturally formulated as an ASA:

~uopt = arg min
~umin≤~u≤~umax

∥∥∥Wca
(
Beff~u −~vdes

)∥∥∥2
(19)

The weighting matrix Wca enables prioritizing the yaw rate
control or the longitudinal speed control. Here, a matrix
unity is considered as both controllable states are considered
cardinal. For real-time maneuvers, number of iterations are
limited to a finite value. A sub-optimal solution could then
be generated rather than an optimal one.

V. CO-SIMULATION RESULTS

The selected scenario is the approved race road of the
Magny-Cours area in France. This track contains bridges,
hills, slopes, and the curvatures are refined to make it look
like the real one. For good measure, in the MPC controller,
driver parameters have been identified using a learning pro-
cedure. Dedicated maneuvers are adopted including steady-
state, transient and steering feel oriented maneuvers. A
nonlinear transfer function is then computed between the
yaw rate and the steering wheel angle to be identified by
a simple bicycle model. The computed front steering angle
respects then the driver constraints regarding the steering
wheel amplitude and speed.

A. Simulation Setup

The co-simulation uses the solver of Simulink R© as Mas-
ter and Amesim R© as Slave (Fig. 4). For co-simulation in
Simulink, Amesim models are exported as S-functions.

The vehicle model with its mechatronic actuators but
without the control strategy is constructed in Amesim. Ex-
perimentally identified parameters of a Renault race car,
as the nominal mass, inertia, tire stiffness and so on, are
adopted. The aim of the presented control strategy is in fact



Fig. 4. Co-simulation in Simulink: Amesim as Slave, Simulink as Master.

its use in industrial applications. A 15 degrees of freedom
chassis model is developed jointly with our collaborators at
Renault. The vehicle model contains different interconnected
modules as the suspension, antiroll bar, tire, engines, brakes,
steering system and so on, all of them connected to the
central module of the chassis. This model is dedicated
for simultaneous longitudinal and lateral dynamics cross-
couplings. The 15 degrees of freedom are due to the fact
of using a multibody approach with kinematic constraints
between the bodies. Complex axle kinematics are introduced
to model the specific joint between sprung and unsprung
masses. It should be noted that the complex kinematic tables
determined empirically are provided by the car manufacturer
and will depend on the type of the car. All the inertia matrix
has been identified with three moments of inertia and three
products of inertia. The non-controlled actuators are also well
detailed. For example, even steering rack mass is modeled in
Amesim. In all the following simulations, we use the carbody
frame depicted in Fig. 5. Regarding the equation of motion,
the basic Newton-Euler’s law is applied.

Fig. 5. Carbody frame.

The control architecture described in Section III is imple-
mented in Simulink. The optimization-based control distri-
bution IV is coded in Matlab. The vehicle model is called
in Simulink environment as an S-function, and the whole
set is co-simulated in a closed-loop using Simulink solver.

The only requirement for Windows users is the necessity of
using Microsoft Visual C++ since it is the only compiler
that can generate S-Functions for Simulink. Linux users
need an ANSI C Compiler that is supported by Simulink.
The different PI controllers and control logics have been
discretized considering a sampling time of only 10ms. We
made all the necessary preparations to make the code work
in real time. We first present the results of a vehicle not
equipped with in-wheel motors and pushing it to its limits,
then we provide the same maneuver but with a vehicle
equipped with the Torque Vectoring system to show how
much these limits can be exceeded.

B. Without Torque Vectoring

In this situation, the vehicle contains only one engine at
the front axle. This engine acts equally on both front tires.
Rear tires do not have any driving capabilities. Regarding the
brakes, the command is only distributed between the front
and rear axle by considering the static difference between
the front and rear mass. As in this case the engine is located
at the front axle, 60% of the brake command is allocated to
the front wheels, and 40% to the rear wheels.

The maximum performance that we can get without desta-
bilizing the vehicle is depicted in Fig. 6.

Fig. 6. Magny-Cours trajectory with the maximum performance of a
vehicle without torque vectoring.

The vehicle completes the Magny-Cours trajectory in
about 124.2s. Exceeding the velocity by 0.01m/s results on
the situation illustrated in Fig 7.

The loss of control happens in Section C (see Figure 6).
Among all the difficult sections, this is the only section
where the vehicle was actually accelerating. In fact, the
need for powertrain torque is too high for the grip capacity
especially in this section. This causes front wheel spin, which
leads to a global understeer behavior. This explains also the
need of a steering angle value. The speed target is then
reduced by the MPC, which activates the brakes. As the
front wheel grip recovers, this leads to a significant load
transfer that causes rear wheel blocking. As a consequence,
the vehicle oversteers. Normally, a countersteering action
is programmed in the MPC that consists in changing the
steering wheel sign with respect to the sideslip when the
latter increases too much. As this action allows the vehicle
to recover its path for a maximum speed of 49.14 km/h,
it remains insufficient for higher speed values. A video



Fig. 7. Case of vehicle’s loss of control when no torque vectoring is
ensured.

showing the loss of control of the vehicle in this case can
be visualized at the following link: Co-simulation without
torque vectoring. Next, we demonstrate how an additional
capability, namely the Torque Vectoring, enables exceeding
this speed maximum and provides higher performances.

C. With Torque Vectoring

Here, the vehicle is equipped with in-wheel motors and the
brakes can be controlled separately. The control architecture
described in Fig. 2 is implemented in Matlab/Simulink R©. The
generated commands are then transferred to Amesim R© in a
co-simulation procedure.

Fig. 8 shows the maximum speed tracking before loosing
control. We can see that the vehicle has been able to enter

Fig. 8. Maximum speed tracking with Torque Vectoring.

the severe Section C at a speed of almost 60 km/h. In fact,
the Torque Vectoring enables supplementary yaw moment
than the amount provided by only the front steering. The
driving-based Torque Vectoring is especially pertinent when
the vehicle is accelerating, which makes it a suitable solution
for the problem encountered in Section C (Fig. 9). The

braking-based VDC is more relevant when the vehicle is
decelerating (Fig. 10). Putting together both systems, larger
values of yaw rate can be tracked (Fig. 11).

Fig. 9. Motor torques distribution at Magny-cours.

Fig. 10. Braking torques distribution at Magny-cours.

Fig. 11. Maximum yaw rate tracking with Torque Vectoring.

Thanks to this additional potential, the equipped vehicle
finished the Magny-Cours circuit at only 108.2s, making a
benefit of 16s. The impressive vehicle behaviour in this case,
especially in Section C, can be visualized following this link:
Co-simulation with torque vectoring.

Additional chassis systems with an optimal coordination
give simply expanded performances. This can include real-
izing difficult dynamic maneuvers or complex trajectories by
means of for example a 4-Wheel Steering system. Fig. 12
shows that the more numerous the chassis systems get, the
more performances we can get.

https://drive.google.com/file/d/1VQLmtHz1ZlBkRZPhxghDkX8F248YdmFh/view?usp=sharing
https://drive.google.com/file/d/1VQLmtHz1ZlBkRZPhxghDkX8F248YdmFh/view?usp=sharing
https://drive.google.com/file/d/1PZen5dyKr6U5ev6VMaIiDnOI23O_XHJF/view?usp=sharing


Fig. 12. Influence of integrated systems coordination on tyre utilization.
Regions: I - without control; II - integration of active suspension and Active
Front Steering (AFS) and ARS; III - integration of traction control and AFS
and ARS; IV - integration of ABS and AFS and ARS [26].

VI. CONCLUSIONS

In this paper, we compared two different vehicles. The
first contains no Torque Vectoring features, while the second
one is equipped with both a driving-based Torque Vectoring
and a braking-based one. The additional chassis systems
enabled the vehicle to deal with severe situations whereas
the vehicle with no torque vectoring lost control at an
earlier stage. Advanced chassis systems when optimally
coordinated exhibit higher performances and safety. This
represent additional opportunities for vehicle motion control.
As we have separated trajectory tracking from dynamics
control, this remains valid for both autonomous and non-
autonomous vehicles. We believe that autonomous vehicles
would have a big potential with an advanced intelligence,
but a bigger one with additional mechatronic systems.

The authors recognize the need of experimental results.
Systems’ operation in real time could add few technical
limitations. These systems are also very expensive. The
number of systems that can be implemented within the
same vehicle would be limited. It should be noted that the
car manufacturer provides the vehicle with its intelligent
actuators and sensors. These latter has their own physical
limits. Our work is to ensure that we can benefit from the
maximum potential of the car while respecting its physical
limits by providing an optimal control strategy. Our ongoing
work consists on experimenting optimization-based control
allocation for a few set of chassis systems, and continue
to test by co-simulation different chassis systems than the
ones presented here to help car manufacturers adopt the
right system combination. We expect at the end to provide
standardizations to car manufacturers to fit their needs to a
specific set of systems with an extensible vehicle dynamics
control architecture.
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