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Abstract— A precise theoretical model for the thermal 

sensitivity of Love wave mode is significant in the structure 

design, temperature compensation, and the prediction of thermal 

behavior. This paper proposes a weak form nonlinear model to 

calculate the thermal sensitivity of Love waves on arbitrary 

layered structures. The third-order material constants, as well as 

the thermal stress and strain tensors between the substrate, 

electrodes, and wave-guiding layer, are taken into account in the 

model. The 9×9 effective elastic matrix and the 3×9 effective 

piezoelectric matrix are imported into the nonlinear constitutive 

equations and boundary conditions using weak form expressions. 

A temperature-compensated Love wave mode resonator on a 

layered ZnO/IDT/quartz structure is obtained. The theoretical 

model is verified through the comparison of experimental and 

analytical results. The model is beneficial for the design of Love 

wave devices and sensors. 

Index Terms— Love wave; third-order constants; frequency 

temperature characteristic; thermal sensitivity 

I. INTRODUCTION  

Ingle-port Love wave mode sensors have the promising 

potential of being wireless sensing platforms for 

measuring physical or chemical parameters, such as gas and 

liquid sensing [1], [2]. Love waves are shear waves that 

propagate in a layered structure consisting of a substrate and a 

film layer. The film acts as a wave-guiding layer deposited on 

the substrate. The condition for the Love wave mode is that 

the shear velocity of the wave-guiding layer is smaller than 

that of the substrate. The substrate can be quartz, LiNbO3, 

LiTaO3 or other piezoelectric materials. On one hand, the 

sensitive film is deposited directly on the wave-guiding layer 

as an active sensing layer, which enhances the sensing areas 

and thus improves the sensitivity to surface disturbances. On 

the other hand, the interdigital transducer (IDT) and reflector 

gratings are naturally protected by the insulating wave-

guiding layer [3]. However, the frequency fluctuation of the 

Love wave mode caused by the environmental temperature is 

a crucial factor affecting the measurement performance. In 

order to accurately predict the thermal behavior, design a new 

structure of Love wave mode devices, and optimize the 

temperature compensation, a precise theoretical model for the 

thermal sensitivity of Love wave mode attracts much attention.  

Apart from the experimental studies on the thermal 

sensitivities of Love waves on quartz substrates [4]-[6], 

several theoretical models have been investigated. Jakoby et 

al. have numerically analyzed the rotated quartz cuts and 

guiding layer thicknesses for Love wave devices using the 

propagator matrix approach, and a zero temperature 

coefficient of frequency (TCF) Love wave device at 35 ℃ is 

obtained [7], [8]. Josse has derived the effective permittivity 

function of the film-substrate interface to study the frequency-

temperature characteristics of Love wave devices without 

considering the internal stress of the substrate by the overlay. 

The frequency variation of 80 ppm is measured over a 

temperature range -30 °C to 40 °C, which is greater than the 

shift predicted by theoretical calculations [9]. The frequency-

temperature characteristics of Love wave mode on quartz 

have been investigated using the numerical Campbell and 

Jones method [10], [11]. The frequency shift in the 

temperature range from 20 ℃ to 80 ℃ is 170 ppm, and the 

zero TCF is obtained at 25 ℃ [11]. A finite element analysis/ 

boundary element method (FEA/BEM) has been investigated 

for the thermal sensitivity based on a material coefficient 

perturbation according to Campbell & Jones approach [10], 

[12]. The experimental turnover temperature occurs 20 ℃ 

below the theoretical temperature [12]. It is not a general 

model for the analysis of thermal effects on surface acoustic 

waves [13]. 

The perturbation theory is a mathematical method for 

finding approximate solution to a problem. It is widely used 

in various areas including the study for the thermal behavior 

of surface acoustic waves [14]. Sinha and Tiersten have 

presented the perturbation theory to calculate the temperature-

velocity characteristics for surface acoustic wave resonators 

[15]. Ballandras et al. have extended the perturbation theory 

to take into account the influence of metallization on the 

thermal sensitivity of Rayleigh wave for periodic grooves and 

metal strip gratings [16]. The thermal stress and strain 

distributions among the substrate, layer, and electrodes are 

dependent on temperatures. In a layered structure, the thermal 
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expansion of the substrate, the layer, and electrodes is 

different. The thermal stress and strain induced by the 

temperature are important and non-negligible in the 

calculation of the thermal sensitivity. In addition, because of 

the anisotropy of some substrates and layers, the thermal 

expansions are also anisotropic. Therefore, the boundary 

conditions for the calculation of surface acoustic waves are 

complicated and need to be considered with the thermal stress 

and strain tensors arising from the differential thermal 

expansion among the substrate, the layer, and electrodes in 

layered structures. 

The purpose of this paper is to develop a weak form 

nonlinear model for computing the thermal sensitivity of the 

Love wave mode on the quartz substrates accurately. This 

model presented in the paper combines the perturbation 

theory and the finite element method (FEM) for the thermal 

sensitivity of the Love wave mode. The FEM solver is 

utilized to accurately model the thermal stress and strain 

tensors of the film, substrate, and electrodes, as well as the 

interfaces between them. The nonlinear constitutive equations 

and boundary conditions are modified using weak form 

expressions with the combination of the contribution of 

thermal stress and strain tensors, as well as the influence of 

the third-order material constants of the substrate, electrodes, 

and layers. The thermal properties of Love wave mode on the 

quartz substrate are studied to verify the model. The 

calculations of frequency-temperature characteristics match 

well with the experiment results. By optimizing the thickness 

of the wave-guiding layer, a temperature-compensated Love 

wave resonator with an enhanced electromechanical coupling 

factor is obtained, with the relative frequency shift less than 

50 ppm in the temperature range of 25 ℃ to 60 ℃. This 

model improves the prediction accuracy of the frequency-

temperature characteristics and is beneficial for the design of 

temperature-compensated Love wave devices.  

The remaining of the paper is organized as follows: In 

section Ⅱ, the weak form nonlinear model is analyzed for the 

temperature behavior of Love wave mode. In section Ⅲ, the 

accuracy of the model is verified by experiments. Conclusions 

are discussed in section Ⅳ. 

II. MODEL ANALYSIS  

The three-dimensional model of a layered wave-guiding 

layer/IDT/quartz structure is established, as shown in Fig. 1. 

The symbol x is the propagation direction, and y is the 

aperture direction. The perfectly matched layer is applied to 

the bottom of a quartz substrate to reduce the wave reflection 

at the bottom and the model size. The thermal field, solid 

mechanical field, and static electric field are added into the 

model. The mesh is dynamically adaptive to the material 

deformation. 

 
Fig. 1. The three-dimensional layered Love wave structure on quartz. 

The thermal sensitivity analysis is based on the weak form 

expressions in a Lagrange description, as shown in Fig. 2. 

Firstly, the model is set in a natural state with no deformation 

at the reference temperature Θ0. Then, a thermal biasing field 

at the given temperature Θ is applied in an intermediate state, 

resulting in the thermal expansion [17]. The thermal stresses 

and strains mainly concentrate on the interfaces between the 

electrode, wave-guiding layer, and substrate according to the 

results of the stationary analysis. Finally, the thermal stress 

and strain tensors of the structure are superimposed in the 

final state. The displacement distribution and resonance 

frequency of the Love wave mode are obtained based on the 

modal analysis.  
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Fig. 2. The schematic diagram of the thermal deformation in Lagrange 

description. 

In the model, the fundamental elastic, piezoelectric, and 

dielectric constants are replaced by the effective material 

constants dependent on the thermal biasing field. The third-

order material constants are imported into effective material 

constants. At a given temperature Θ, because of the different 

thermal expansion coefficients of the wave-guiding layer, 

electrode, and substrate, the thermal strain tensors of mesh 

nodes are diverse from each other. The boundary conditions 

of interface surfaces are complicated, which increases the 



difficulty in calculating the thermal sensitivity by solving the 

nonlinear piezoelectric constitutive equations.  

 In order to accurately solve the thermal sensitivity of 

surface acoustic waves on the layered structure in a thermal 

field, the weak form partial differential equation (PDE) in 

finite element analysis modifies the nonlinear constitutive 

equations flexibly using numerical integration of the original 

form PDE. The mesh nodes are integrated by weak form 

equations in the solution domain, which reduces the 

maximum order of the spatial derivatives with the advantage 

of the fewer continuity boundary condition requirements 

compared to the original form piezoelectric PDE. The weak 

form nonlinear piezoelectric constitutive equations are 

defined as follows： 
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where Gij , Rik , Nij  are the effective elastic constant, effective 

piezoelectric constant, and effective dielectric constant in 

Lagrange coordinate, respectively. Ω denotes the solution 

domain of the substrate and wave-guiding layer. δ represents 

the mesh node in the solution domain. ui
δ, φk

δ , Tδ , T


and Dδ 

are the displacement, electric potential, the second Piola-

Kirchhoff stress tensor, initial stress tensor, and electric 

displacement of the node, respectively. v is the test function 

utilizing the Lagrange multiplier.  

 The effective piezoelectric constants of metal electrodes 

are set to zero due to non-piezoelectric property. Therefore, the 

weak form expressions are defined as follows: 
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Fig. 3 presents the thermal strain and stress distributions in the 

meshes. The thermal strains mostly distribute in the electrode. 

Simultaneously, the thermal stresses primarily distribute in the 

wave-guiding layer and electrode. The stress and strain 

distributions of all mesh nodes are integrated using Lagrange 

interpolation in the solution domain. 

 
(a)                              (b) 

 
(c)                                     (d) 

 
(e)                                     (f) 

Fig. 3. The thermal stress and strain distributions in the x direction (a and b). 

The thermal stress and strain distributions in the y direction (c and d). The 

thermal stress and strain distributions in the z direction (e and f). 

The effective material constants under a thermal biasing field 

are defined by： 

 

0 1 0 0 0

, ,

0 1 0 0

0 1 0

L M L M L M L M AB AB LKM K L KM K

ij ij ij ijk k ij

ij ij ij ijk k

G c c c S c w c w

R e e e S e w

N E

   

           

  

   

= + + + +

= + + +

= + +

(3) 

where ΔΘ=Θ-Θ0 ,
0

L Mc   , 0

ije , 0

ij , 0

L M ABc   , 0

ijke , and 0

ijk are the 

fundamental elastic constants, piezoelectric constants, 

dielectric constants, the third-order elastic, the third-order 

piezoelectric, and dielectric constants, respectively. 1

L Mc   , 1

ije , 

and
1

ij are the first-order temperature derivatives of the 

fundamental elastic constants, piezoelectric constants, and 

dielectric constants, respectively. 
kS  , w , and

kE  are the 

thermal strain, displacement gradient, and initial electrical field 

of each mesh node in the calculation domain, which are 

multiplied by the third-order constants and fundamental 

constants as nonlinear dynamic increments caused by the 

thermal field. Therefore, each node has its own effective 

material constants. It is noteworthy that the thermal stress and 

strain tensors of each mesh node in the substrate, wave-guiding 

layer and electrodes are calculated using the stationary analysis 

at a given temperature Θ.  

 The effective elastic and piezoelectric constants have lower 

symmetry than fundamental constants due to the third-order 

nonlinear components. Therefore, the effective elastic constant 

is a 9×9 matrix G9×9 , and the effective piezoelectric constant 

is a 3×9 matrix R3×9 [18]. However, the general dimensions of 

the elastic matrix and piezoelectric matrix in the FEM 

piezoelectric coupling module are 6×6 and 3×6, which do not 

meet the requirements for the effective elastic matrix and 

effective piezoelectric matrix. In this model, the dimensions of 

the effective elastic and piezoelectric matrixes with nonlinear 

terms are defined flexibly using weak form expressions. The 

effective elastic matrix, the effective piezoelectric matrix, and 



the rules employed to compress indexes for the effective 

elastic matrix are elucidated in the appendix.  

 The thermal expansion effect with geometric nonlinearity 

is added into the model based on the coupling of the thermal 

field and solid mechanical field. The interfaces among the 

substrate, layer, and electrodes are defined as follows:  

 qAl q Al =    (4) 

 ql q layer =    (5) 

 lAl layer lAl =    (6) 

The stress-free boundary condition is applied at the top surface 

of the wave-guiding layer. Continuous boundary conditions 

are applied to the displacements and stresses at the interfaces 

of the substrate, electrode, and wave-guiding layer as follows: 
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The wave propagation is solved based on the simultaneous 

solution of the nonlinear piezoelectric constitutive equations 

and the motion equation. The weak form equation is integrated 

by parts to convert a body integration to a surface integration 

over a solution domain Ω. The interface boundary conditions 

are imported into the weak form equations as follows: 
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where ρ and ω are the density and angular frequency. TГ is the 

surface stress, which is continuous across the interface of 

different materials. Г is the surface area of the domain Ω. 

Therefore, boundary conditions of the substrate, electrode, and 

layer are specified in the weak form equations. In the same 

way, the weak form electrical boundary conditions are 

imported as follows: 
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where σГ is the surface electric charge at the interfaces. 

Descriptions of the key modeling steps are given as follows: 

1. Defining the material properties, including the effective 

elastic constants (9×9 matrix), effective piezoelectric constants 

(3×9 matrix) and effective dielectric constants, which are 

functions of the temperature. The environmental temperature 

and thermal expansion coefficients are also set. 

2. Defining the weak form PDEs for piezoelectric and elastic 

materials, including the stress and strain tensors (1×9 vector) 

in Lagrange coordinate.  

3. Updating the thermal stress and strain tensors resulting from 

the stationary analysis at the given temperature.  

4. Using the modal analysis, the relative frequency shift caused 

by temperature is calculated. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

In the following part, 25℃ is set as the reference 

temperature. The fundamental material constants, the third-

order material constants and temperature coefficients of 

quartz, ZnO, SiO2 and aluminum are taken from the 

references [19]-[25].  

A. SiO2/35.2°YX+90°-cut quartz 

The frequency-temperature characteristic of the Love wave 

mode at the resonance frequency on SiO2/35.2°YX+90°-cut 

quartz structure is shown in Fig. 4. SiO2 works as a wave-

guiding layer. The wavelength is 48.4 μm. The thickness of 

the aluminum electrode is 150 nm, and the metallization ratio 

is 0.5. SiO2 thickness is 1 μm. The experimental data are taken 

from [9]. In this section, the FEM Campbell model, referred 

to the FEM model using the temperature coefficients of quartz 

according to the Campbell method [10], [26], is also 

calculated for comparison. This model considers the variation 

of material constants with temperature and the impact of the 

thermal expansion on the propagation of surface acoustic 

waves. It is seen that the simulation results of the weak form 

nonlinear model are more consistent with the experimental 

data than that of the FEM Campbell model. The first-order 

TCF of Love wave mode is 0.47 ppm/℃, and the turnover 

temperature is 0 ℃. Although the relative frequency shift is 

less than 100 ppm in a temperature range from -40 ℃ to 

40 ℃, the frequency shift increases rapidly over the room 

temperature. When the temperature increases from 50 ℃ to 

100 ℃, the relative frequency shift decreases from -100 ppm 

to -600 ppm. When the SiO2 thickness is 3.158 μm, the 

frequency-temperature dependence of the resonance frequency 

is shown in Fig. 5. The turnover temperature rises to 60 ℃. 

The computed turnover temperature of FEM Campbell model 

is 20 ℃ below the experimental turnover temperature. The 

theoretical data of the weak form model match well with the 

experimental results. However, the electromechanical 

coupling coefficient K2 is only 0.07% due to the non-

piezoelectricity of the SiO2 layer. 



 
Fig. 4. Comparison of theoretical and experimental frequency-temperature 

characteristics of Love wave on SiO2/35.2ºYX+90º-cut quartz. The SiO2 

thickness is 1 μm. 

 
Fig. 5. Comparison of theoretical and experimental frequency-temperature 

characteristics of Love wave on SiO2/35.2ºYX+90º-cut quartz. SiO2 thickness 

is 3.158 μm. 

B. ZnO/ST+90°-cut quartz 

Compared to the SiO2 wave-guiding layer, a ZnO thin film 

has the advantages of piezoelectric property and lower 

acoustic velocity. The velocity of shear wave in the ZnO thin 

film is 2578 m/s, slower than the quartz substrate’s. Thus, a 

ZnO film is employed as a wave-guiding layer to confine the 

Love wave energy near the surface. 

The shear-horizontal (SH) wave mode at the resonance 

frequency on ST+90°-cut quartz has a positive first-order TCF 

around +30 ppm/℃, as shown in Fig. 6. The results of weak 

form model are consistent with the experimental data. Fig. 7 

depicts the measured S11 of the Al/ST+90°-cut quartz 

resonator. It can be seen that the resonance frequency is 

483.48 MHz at the room temperature. There is an obvious 

resonance frequency shift when the temperature increases 

from 25 ℃ to 60 ℃. The resonance frequency increases to 

483.99 MHz at 60 ℃, confirming the positive TCF value of 

ST+90°-cut quartz. Thus, to achieve a zero TCF structure, the 

negative TCF of the ZnO layer is compensated by the positive 

TCF value of the ST+90°-cut quartz. Fig. 8 illustrates the 

electromechanical coupling coefficient K2 and the first-order 

TCF for the Love wave mode as a function of the normalized 

ZnO film thickness on the ZnO/ST+90°-cut quartz structure. 

The wavelength (λ) is 10 μm. It is found that K2 increases to 

the maximum value of 0.29% at hZnO=0.03λ and then 

decreases. The first-order TCF decreases with the growth of 

ZnO thickness due to the negative temperature coefficients of 

ZnO elastic constants. The zero TCF is obtained when ZnO 

thickness is 0.05λ, and K2 is 0.25%. The phase velocity 

decreases from 4870 m/s to 3660 m/s with the increase of 

ZnO thickness from 0.02λ to 0.1λ. 

 
Fig. 6. Theoretical and experimental frequency-temperature characteristics 

of SH wave on ST+90º-cut quartz. The Al electrode thickness is 100 nm. 

 
Fig. 7. The measured S11 of the Al electrodes/ST+90°-cut quartz resonator. 

 



Fig. 8. The electromechanical coupling coefficient and phase velocity of 

Love wave mode on ZnO/ST90°-cut quartz as a function of the normalized 

ZnO thickness, hAl=0.01λ, r=0.5.  

When the ZnO thickness is 0.05λ, the thermal strains of the 

interfaces in ZnO/ST+90°-cut quartz structure are illustrated in 

Fig. 9. The symbol x is the propagation direction, and y is the 

aperture direction. The thermal strain at the interface of layers 

is determined by the thermal expansions of surrounding 

materials. At the reference temperature of 25 ℃, the thermal 

strains of all nodes are zero. Due to the anisotropy of quartz, 

the thermal strains in the x, y, z directions are different. The 

thermal strains of the interfaces increase with the temperature 

increasing or decreasing far away from 25 ℃, which affects 

the nonlinear components in the effective constants. In 

addition, the thermal strains of the interface ГqAl are all larger 

than those of interface ГlAl and interface Гql, because the 

thermal expansion coefficients of the quartz (α11=13.71×10-

6/℃, α33=7.48×10-6/℃) and the Al electrode (α11=18×10-6/℃) 

are larger than that of ZnO thin film (α11=4×10-6/℃, 

α33=2.1×10-6/℃) [19], [20]. The thermal expansion 

coefficients of quartz, Al, and ZnO are on the same order of 

magnitude, and none of them are negligible. The thermal strain 

of the interface ГqAl in y direction is the maximum at a fixed 

temperature. 

 
Fig. 9. Thermal strains of interfaces versus the temperature on ZnO/ST+90°-

cut quartz. hZnO=0.05λ, hAl=0.01λ, r=0.5. 

 The average thermal stresses of the interfaces are 

illustrated in Fig. 10. At the reference temperature 25 ℃, the 

thermal stresses are zero. They increase with the temperature 

changes far away from 25 ℃. It is found that the thermal 

stresses mainly concentrate on the surface of the metal 

electrode, especially on the interface between the electrode and 

quartz in the aperture direction. The thermal stress in the 

aperture direction of an interface is larger than those in other 

directions. Moreover, the thermal stress on the interface ГqAl 

between the quartz and electrode in y direction is twice that on 

the interface ГlAl between the ZnO layer and electrode in the 

aperture direction.  

 
Fig. 10. Thermal stress of interfaces on ZnO/ST+90°-cut quartz. hZnO=0.05λ, 

hAl=0.01λ, r=0.5. 

Based on the simulation results of the model, one-port 

Love wave mode resonators on the ZnO/ST+90°-cut quartz 

structure have been fabricated. Realizations are done using 

conventional ultraviolet (UV) lithography and lift-off 

technique. The wavelength of the fabricated device is 10 μm. 

The thickness of the aluminum electrode is 100 nm, and the 

metallization ratio is 0.5. The number of IDT pairs is 100, and 

the number of reflective gratings is 200 on both sides of the 

IDTs. The aperture length of the resonator is 566 μm. 

Subsequently, a ZnO layer of 500 nm was deposited, and 

patterned by a maskless lithography process and lift-off. The 

ZnO film was obtained by radio-frequency (RF) sputtering of 

a 4 inch oxygen rich target at 150 W with 3×10-3 mbar and 8 

cm3/min flow rate of both argon (Ar) and oxygen (O2). 

As shown in Fig. 11, the calculated thermal sensitivity of 

the Love wave model at the resonance frequency is consistent 

with the experimental result. The solid line represents the 

simulation data, and the dotted lines indicates the increasing 

and decreasing temperatures for the two experimental curves. 

The arrows indicate the temperature up and down. A stable 

frequency-temperature characteristic is obtained with the first-

order TCF -1.26 ppm/℃. The relative frequency shift is less 

than 50 ppm in a temperature range from 25 ℃ to 60 ℃. The 

measured S11 parameters of the Love wave device at the room 

temperature and at 60 ℃ are shown in Fig. 12. The resonance 

frequency is 409.68 MHz at the room temperature. It can be 

seen that there is little shift of the resonance frequency when 

the temperature increases from 25 ℃ to 60 ℃, confirming the 

near zero TCF of the achieved structure. 



 
Fig. 11. The simulation and experimental frequency temperature curves of 

Love wave mode on ZnO/ST+90°-cut quartz with ZnO thickness 500 nm.  

 
Fig. 12. The measured S11 of the ZnO/ST+90°-cut quartz resonator. 

A multi-layered structure of ZnO/(IDT+SiO2)/-

52°YX+90°-cut quartz with embedded electrodes is considered 

for temperature compensation to design a Love wave device 

with a wider range of thermal stability. Considering that the 

SH wave resonator on -52°YX+90°-cut quartz reduces the 

frequency temperature fluctuation to a half of the ST-cut 

quartz [27], this cut provides the possibility of achieving a 

better temperature stability for Love wave devices. Amorphous 

SiO2 is filled between the electrodes, and the upper surface of 

SiO2 is polished to keep flat. The ZnO is deposited on the 

polished flat SiO2 layer.  Temperature compensation is 

obtained with an optimized combination of ZnO and SiO2 

layers. The wavelength (λ) is 10 μm. ZnO thicknesses is 

0.024λ. SiO2 and aluminum electrode thicknesses are both 

0.03λ. The metallization ratio is 0.5. The calculated frequency 

temperature curve of the resonance frequency is shown in Fig. 

13. The relative frequency shift is less than 20 ppm over a 

wide temperature range of -40 ℃-60 ℃. Its temperature 

stability is superior to that of the ZnO/ST+90°-cut quartz. The 

enhanced of thermal stability could be explained by the 

positive temperature coefficients of added SiO2 layer. 

However, the reflective coefficient of this structure is 0.00051. 

It is smaller than that of ZnO/ST+90°-cut quartz (0.055). 

 
Fig. 13. The frequency temperature curve on ZnO/(IDT+SiO2)/-52°YX+90°-

cut quartz.  

IV. CONCLUSION 

The weak form nonlinear model is developed to accurately 

compute the thermal sensitivity of the Love wave mode on the 

quartz substrates. The third-order material constants, thermal 

strains, and stresses are taken into account with the coupling of 

thermal and mechanical fields. The temperature behavior of 

the Love wave device is calculated. The effect of ZnO 

thickness on the frequency-temperature characteristics of Love 

wave mode is studied for temperature compensation. The 

analytical results of weak form model are in good agreement 

with the experimental data. The results contribute to designing 

the Love wave resonators as wireless sensors with a wide and 

stable operating temperature range. 

APPENDIX 

Table I lists the rule used to compress indexes for the 

effective elastic matrix. 

TABLE I.  INDEX ABBREVIATION RULE [18] 

11→1 22→2 33→3 

23→4 31→5 12→6 

32→7 13→8 21→9 

 

 The rotated YX+90°-cut quartz is adopted as the substrate 

in this model. The effective elastic matrix of rotated YX+90°-

cut quartz is defined as follows: 

11 12 13 15 18

12 11 13 25 28

13 13 33 35 38

44 46 47 49

15 25 35 55 58

46 66 67 69

47 67 77 79

18 28 38 58 88

49 69 79 99

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

G G G G G

G G G G G

G G G G G

G G G G

G G G G G G

G G G G

G G G G

G G G G G

G G G G

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 



The effective piezoelectric matrix of rotated YX+90°-cut 

quartz is defined as follows: 

16 17 1914

21 22 23 25 28

34 36 37 39

0 0 0 0 0

0 0 0 0

0 0 0 0 0

R R RR

R R R R R R

R R R R

 
 

=  
    

The effective elastic matrix of ZnO wave-guiding layer is 

defined as follows: 

11 12 13

12 11 13

13 13 33

44 47

44 58

66 69

47 44

58 44

69 66
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0 0 0 0 0 0 0
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G G G
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 
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 
   

The effective elastic matrix of aluminum electrode is defined 

as follows: 

11 12 12

12 11 12

12 12 11

66 66

66 66

66 66

66 66

66 66

66 66

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
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G G G

G G G

G G G

G G
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 
 
 
 
 
 
 
 
 
 
 
 
 
   
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