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Abstract

The objective of the present work is to investigate the Rayleigh-Bénard convec-

tion in non-Newtonian fluids with arbitrary conducting boundaries. A linear

and weakly nonlinear analysis is performed. The rheological behavior of the

fluid is described by the Carreau model. As a first step, the critical Rayleigh

number and wavenumber for the onset of convection are computed as a func-

tion of the ratios ξb and ξt of the thermal conductivities of the bottom and top

slabs to that of the fluid. In the second step, the preferred convection pattern

is determined using an amplitude equation approach. The stability of rolls and

squares is investigated as a function of (ξb, ξt) and the rheological parameters.

The bounded region of (ξb, ξt) space where squares are stable decreases with

increasing shear-thinning effects. This is related to the fact that shear-thinning

effects increase the nonlinear interactions between sets of rolls that constitute

the square patterns [1]. For a significant deviation from the critical conditions,

the nonlinear convection terms and nonlinear viscous terms become stronger,

reducing overall the stability domain of squares. The largest Nusselt number,

Nu, is obtained for perfectly conducting boundaries. For a given
(

ξb, ξt
)

, the

stable solution yields the largest Nusselt number. The enhancement of heat

transfer due to shear-thinning effects is significantly reduced for poorly heat

conducting plates.
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1. Introduction

The problem of Rayleigh-Bénard convection (RBC) in Newtonian and non-

Newtonian fluids layer heated from below and cooled from above remains one of

the classical problems of fluid dynamics and heat transfer. In spite of intensive

studies made in the past and extensive research work undertaken so far to5

understand the competition between convective structures (rolls, squares and

hexagons) which are often influenced by the boundary conditions (see Holmedal

et al. [2]; Clever and Busse [3]) and other parameters such as temperature-

dependence of viscosity (see White [4]; Palm [5]; Richter [6]; Olivier and Booker

[7]; Busse and Frick [8]; Jenkins [9]), there are still many outstanding issues that10

need to be answered.

May be one of the most important question to be addressed is the effect

of conductive horizontal plates on the heat transfer and the convection pat-

terns. For instance, in geophysical problems and particularly in the context

of the Earth’s mantle convection, continents and oceans impose different ther-15

mal boundary conditions at the top of the mantle: continents act as insulators

while a fixed temperature is imposed by oceans. These different thermal bound-

ary conditions affect the convective flow and the heat transport in the Earth’s

mantle[10].

Actually, in most numerical investigations of RBC, the plates are assumed to20

be infinitely heat conducting, and a fixed temperature at the boundaries is im-

posed, while in engineering and geophysical problems as well as in laboratory

experiments the boundaries have a finite conductivity. This may lead to a dis-

crepancy between the experimental and the numerical/theoretical results. The

ratios ξb and ξt between the thermal conductivities of the bottom and top slabs25

and that of the fluid may have a significant effect and must be taken into ac-

count as additional parameters [11].
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The influence of the thermal conductivity of the boundaries on Rayleigh-Bénard

convection was first investigated in the Newtonian case by Busse and Riahi

[12] using a weakly nonlinear analysis. They considered the situation where30

ξb = ξt = ξ << 1 and found that the wavelength of convection flow becomes

very large in comparison with the height of the layer and only square patterns

are stable. This result was confirmed and extended to the fully nonlinear prob-

lem by Proctor [13] using a ‘shallow water theory’. Afterwards, Jenkins and

Proctor [14] determined the critical value of the thermal conductivities ratios35

ξb = ξt = ξc at which the preferred planform changes from square cell to roll.

For Pr > 10, they found that the preferred planform is rolls when ξ > 1,

and squares when ξ < 1. Le Gal et al. [15] carried out experiments to study

Rayleigh-Bénard convection in silicone oil confined between two glass plates. So

that ξb = ξt = ξ = 7. Near the threshold of convective instability, at ǫ < 0.021,40

where ǫ is the relative distance from the onset of instability, they observed cells

of square planforms. But when 0.024 < ǫ < 0.057, the amplitude of two mu-

tually perpendicular roll sets underwent periodic oscillations in antiphase with

another; as ǫ was increased and convection became more intense, one set became

predominant and then only roll still stable. This experiment was subsequently45

modified by Le Gal and Croquette [16] : glass was replaced by plexiglass and

water was used as the working fluid, so that ξ = 0.4. In contrast to the pre-

ceding experiment, squares were observed in a wide range of ǫ values without

any signs of destabilization. The authors think that in the first case, the sili-

cone oil behaves as a mixture and the observed features were governed by the50

thermophoresis .

Although extensive studies have been devoted to understand the influence

of the thermal boundary conditions on the Rayleigh-Bénard convection in New-

tonian fluids, only a limited number of works have dealt with complex fluids.

In comparison with the Newtonian system, the nonlinearity of the rheologi-55

cal law introduces an additional coupling in the velocity component. Recently,

Bouteraa and Nouar [17] have investigated the influence of shear-thinning ef-

fects on the convection in a horizontal layer of a shear-thinning fluid between
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two horizontal symmetric plates of finite thermal conductivity. The rheological

behavior of the fluid is described by the Carreau model. The authors found60

that: (i) the characteristic time of instability τ0 increases significantly when

ξ < 1, (ii) the critical value of the shear-thinning degree αc above which the

bifurcation becomes subcritical increases with decreasing ξ, and (iii) the critical

value ξc at which the planform changes from square-cell solution (ξ < ξc) to

two-dimensional roll solution (ξ > ξc) decreases with increasing shear-thinning65

effects.

In some experimental situations, ξt 6= ξb. For Newtonian fluids, Riahi[11] [18]

has studied this problem and demonstrated, using a linear stability analysis of

stationary flows the enormous influence of thermal boundary conditions (when

ξb 6= ξt) on the competition between the convection patterns. He found that70

squares are stable when rolls are unstable and vice versa, and always hexag-

onal patterns are unstable. No hysteresis effect is found. In addition, Riahi

[18] has also shown that square planforms are preferred in a bounded region

Ω in the (ξb, ξt)-space coordinate system and rolls are favored only outside Ω.

When Pr < 0.025, the region Ω is quite small and disappears as Pr = 0. How-75

ever, for Pr > 7, Ω is largest and nearly independent of Pr. Using nonlinear

developments, Clever and Busse [19] [3] demonstrated in the case of stress-

free nearly insulating top plate and highly conducting no-slip lower plate, that

two-dimensional rolls are stable near the onset, but become unstable at higher

Rayleigh number and are replaced by which is called hexharoll convection.80

From experimental point of view, Darbouli et al.[20] have investigated Rayleigh-

Bénard convection for viscoplastic fluids confined in a cylindrical cell. They used

two different horizontal plates of finite thermal conductivity. The bottom and

upper walls are made respectively of copper alloy and glass. They used distilled

water as Newtonian fluid to validate their experimental setup and an aqueous85

solution of Carbopol 940 as viscoplastic fluid. In these situations, the ratios ξt

and ξb are estimated to ξt = 2 and ξb = 201.6 for both fluids (authors estimated

that the solution of Carbopol 940 has the same thermal conductivity than wa-

ter). Hence, it is no longer possible to rely on the assumption that the plates
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are held at fixed and uniform temperatures, which corresponds to plates with90

infinite thermal conductivity.

The purpose of the present work is to study the influence of arbitrary

thermal-conducting top and bottom boundaries on nonlinear processes of Rayleigh

Bénard convection, and to see the influence of the shear-thinning effect on the95

preferred flow pattern. The finite conductivity of the slabs remains one expla-

nation for differences between results obtained in experiments and numerical

investigations. We hope that our findings will shed new light on the interpre-

tation of the results obtained by Darbouli et al. [20] although the fluid used is

not only shear-thinning but has also a yield stress.100

2. Physical and mathematical model

2.1. General equations and parameters

We consider a horizontal layer of a shear-thinning fluid of height d̂ con-

fined between two horizontal plates that are infinite in extent and which have

a thickness Λd̂, where Λ is of order unity. The outer surface of the bottom105

and top plates are kept at constant temperatures respectively T̂0 + ∆ T̂ /2 and

T̂0−∆ T̂ /2, with ∆T̂ > 0. The fluid has density ρ̂, thermal conductivity k̂, ther-

mal coefficient expansion (at constant pressure) β̂ and viscosity µ̂0 at zero shear

rate. The top slab has a thermal conductivity k̂tp and a thermal diffusivity κ̂t
p.

The corresponding quantities for the bottom slab are denoted k̂bp and κ̂b
p. Here110

and in what follows, (t) and (b) refer to the top and bottom and the quantities

with hat (̂.) are dimensional. Because of the thermal expansion, the tempera-

ture difference between the two plates, induces a vertical density stratification.

Heavy cold fluid is above a light warm fluid. For small ∆T̂ , the fluid remains

motionless and the heat is transferred by conduction, with a linear temperature115

profile across the fluid layer.

In the fluid, 0 < ẑ < d̂, the hydrostatic solution and the temperature profile
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are:

dP̂

dẑ
= −ρ̂0ĝ

[

1− β̂
(

T̂ − T̂0

)]

and T̂cond = T̂0 +
∆T̂

1 + Λ/ξ(b) + Λ/ξ(t)

[

1

2
−

ẑ

d̂

]

, (1)

where, ĝ is the acceleration due to gravity. Here, the z-axis is directed upwards,

with the origin located at the bottom plate. The reference temperature T̂0 is120

the temperature in the middle of the fluid layer and ρ̂0 is the fluid density at T̂0.

Here, T̂0 = T̂1 −
(

1/2 + Λ/ξb
)

∆T̂f , where T̂1 is the temperature on the outer

surface of the bottom plate and ∆T̂f the temperature difference between the

top and the bottom of the fluid layer: ∆ T̂f = ∆ T̂ /(1 + Λ/ξt + Λ/ξ(b)).

The temperature profile in the top and bottom plates are:125

T̂cond = T̂0 +
∆T̂

ξt + Λ (1 + ξt/ξb)

[

1 +
Λ

2

(

1−
ξt

ξb

)

−
1

2
ξt −

ẑ

d̂

]

, (2)

d̂ ≤ ẑ ≤ (1 + Λ)d̂

and

T̂cond = T̂0 +
∆T̂

ξb + Λ (1 + ξb/ξt)

[

1

2
ξb −

Λ

2

(

1− ξb/ξt
)

−
ẑ

d̂

]

, −Λd̂ ≤ ẑ ≤ 0. (3)

When the bottom and top plates are poor thermal conductors, a large part of

∆T̂ occurs across the plates, and remains only a small part ∆T̂f of ∆T̂ , acting

as the driving force for the convection. When ∆T̂f , exceeds a critical value, the

convection sets in and a so-called convective patterns emerge. The stability of130

the hydrostatic solution is considered by introducing temperature and pressure

perturbation as well as a fluid motion. Boussinesq approximation is adopted,

i.e., the temperature dependence of the fluid properties can be neglected except

for the temperature induced density difference in the buoyant force that drives

the flow. The heat production due to viscosity is neglected. Distances are scaled135

with d̂, velocity with κ̂/d̂, where κ̂ is the thermal diffusivity of the fluid, time

with d̂2/κ̂, temperature with ∆T̂f , pressure and stresses with κ̂µ̂0/d̂
2. Using

these scales, the dimensionless perturbation equations read:

∂∇2w

∂t
− ez · [∇×∇× [(u.∇)u]] = Pr∆2w +RaPr∇2

Hθ − (4)

Pr [∇×∇× [∇ · (µ− 1)γ̇]] · ez ,

∂θ

∂t
+ (u ·∇) θ = w +∇

2θ , (5)
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in the fluid, and

∂θ̃

∂t
=

κ̂
(b,t)
p

κ̂
∇

2θ̃ , (6)

in the bounding slabs. Here, ez denotes the unit vector in the vertical direction,140

w = u(x, t).ez is the vertical velocity field and θ(x, t) represents the temper-

ature deviations from their values in the conduction state. The temperature

perturbation in the slabs is denoted θ̃(x, t). The position vector x has com-

ponents x, y, z. The pressure was eliminated by applying twice the rotation to

the momentum balance equation. The state of the fluid is controlled by two145

dimensionless variables. These are the Rayleigh number Ra which measures the

ratio between the driving buoyancy and the damping forces, and the Prandtl

number Pr which represents the ratio between thermal and viscous diffusion

times:

Ra =
ρ̂0ĝβ̂∆T̂f d̂

3

κ̂ µ̂0
; Pr =

µ̂0

ρ̂0 κ̂
. (7)

2.2. Rheological model and parameters150

In the present study the behavior of the shear-thinning fluid is described by

the Carreau model given by:

µ̂− µ̂∞

µ̂0 − µ̂∞

=
(

1 + λ̂2 Γ̂
)

nc−1

2

with Γ =
1

2
γ̇ij γ̇ij . (8)

Here, µ̂0 and µ̂∞ are the viscosities at low and high shear rate, (nc < 1) the

power-law exponent characterizing the shear-thinning regime and λ̂ the char-

acteristic time of the fluid. The location of the transition from the Newtonian155

plateau to the shear-thinning regime is determined by λ̂, since 1/λ̂ defines the

characteristic shear rate marking the onset of shear-thinning. The infinite shear

viscosity, µ̂∞, is generally associated with a breakdown of the fluid, and is fre-

quently significantly smaller (10−3 to 10−4 times smaller) than µ̂0, see Bird et al.

[21] and Tanner [22]. The ratio µ̂∞/µ̂0 will be thus neglected in the following.160

The dimensionless effective viscosity is then

µ =
µ̂

µ̂0
=
(

1 + λ2 Γ
)

nc−1

2 with λ =
λ̂

d̂2/κ̂
. (9)
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The Newtonian behavior, µ̂ = µ̂0, is obtained by setting nc = 1 or λ̂ = 0.

For a small amplitude disturbance, the viscosity can be expanded about the

hydrostatic solution,

µ = 1 +

(

nc − 1

2

)

λ2 Γ +
1

2

(

nc − 1

2

)(

nc − 3

2

)

λ4Γ2 + ... (10)

At lowest nonlinear order, a relevant rheological parameter is the ‘degree of165

shear-thinning’

α =

∣

∣

∣

∣

dµ

dΓ

∣

∣

∣

∣

Γ=0

=
1− nc

2
λ2. (11)

2.3. Boundary conditions

For the perturbation velocity w, we imposed a realistic boundary conditions

on the top and bottom plates: The slabs are rigid, thus enforcing the no-slip

boundary conditions (NSBC), which implies170

w = Dw = 0 at z = 0, 1. (12)

For thermal boundary conditions, a constant and uniform temperature is as-

sumed on the outer surface of each plate

θ̃ = 0 at z = −Λ, 1 + Λ (13)

The continuity condition of temperature and heat flux at the interface liq-

uid/solid reads

θ = θ̃ at z = 0, 1, (14)

Dθ = ξ(b,t)Dθ̃ at z = 0, 1. (15)

Where D ≡
∂

∂z
and ξ(b,t) =

k̂
(b,t)
p

k̂
.175

Remark: Following Holmedal et al. [2], applying the transformation

(

u, v, w, p, θ, θ̃b,t, z
)

−→
(

u, v, −w, p, −θ, −θ̃b,t, 1− z
)

(16)

to Eqs. (4) - (6), (14) and (15), it can be shown that the problem is invariant

if
(

ξb, ξt
)

−→
(

ξt, ξb
)

. Therefore, the preferred convection pattern, its stability

and the heat transfer is not modified if the bottom slab is replaced by the top

slab and vice versa.180
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3. Linear stability analysis

3.1. Critical conditions and critical modes

In the linear theory, u and θ are assumed infinitesimal. The nonlinear terms

in (4)-(5) can be neglected. We obtain :

1

Pr

∂∆w

∂t
= ∆2w +Ra∆Hθ , (17)

∂θ

∂t
= w +∆θ , (18)

∂θ̃

∂t
=

κ̂
(b,t)
p

κ̂
∆θ̃. (19)

At this stage, no non-Newtonian effects enter the problem. For equations (17)-185

(19), we seek a normal mode solution

w(x, y, z, t) = F11(z)f(x, y) exp (s t) (20)

θ(x, y, z, t) = G11(z)f(x, y) exp (s t) (21)

θ̃(x, y, z, t) = G̃11(z)f(x, y) exp (s t) , (22)

where, s = sr+isi is a complex number and f(x, y) satisfies the two-dimensional

Helmoltz equation ∆Hf = −k2f . Here k is the norm of the horizontal wavenum-

ber k. Substituting (20)-(22) into (17)-(19), leads to the differential equations

s Pr−1
(

D2 − k2
)

F11 = −k2RaG11 +
(

D2 − k2
)2

F11 , (23)

sG11 = F11 + (D2 − k2)G11 , (24)

s G̃11 =
κ̂
(b,t)
p

κ̂
(D2 − k2)G̃11 . (25)

The boundary conditions are:190

F11 = DF11 = 0 at z = 0, 1 (26)

G̃11 = 0 at z = −Λ, 1 + Λ, (27)

G11 = G̃11 at z = 0, 1 (28)

DG11 = ξ(b,t)DG̃11 at z = 0, 1 . (29)
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Denoting by the superscript ∗ the complex conjugate, multiplying (23) by F ∗

11,

(24) by −k2RaG∗

11, (25) by −k2Ra
(

κ̂/κ̂b,t
)

ξ(b,t)G̃∗

11, summing and integrating

over the interval [−Λ, 1 + Λ], we have

s

[

∫ 1+Λ

−Λ

(

|DF11|
2
+ k2 |F11|

2
+ k2Ra |G11|

2
+ k2Ra ξ(b,t)

κ̂

κ̂
(b,t)
p

∣

∣

∣
G̃11

∣

∣

∣

2
)

dz

]

=

k2Ra

∫ 1+Λ

−Λ

(F11G
∗

11 + F ∗

11G11) dz − k2Ra

∫ 1+Λ

−Λ

(

|DG11|
2 + k2|G11|

2
)

dz (30)

−k2Raξ(b,t)
∫ 1+Λ

−Λ

(

|DG̃11|
2 + k2|G̃11|

2
)

dz,

with, F11 = 0 as z ∈ [−Λ, 0] ∪ [1, 1 + Λ, G11 = 0 as z ∈ [−Λ, 0[∪]1, 1 + Λ] and

G̃11 = 0 when z ∈]0, 1[. The right hand side of equation (30) is real, therefore195

si = 0: the linearized equations (23) - (25) satisfy the principle of exchange

of stability. The conduction state loses its stability to a convective stationary

state in a smooth way.

The set of differential equations (23)-(25) is an eigenvalue problem where s is

the eigenvalue and X11 = (F11, G11, G̃11) the eigenvector. It can be written200

sM ·X11 = L ·X11 . (31)

Actually, Eq. 25 can be solved analytically:

G̃11(z) = G11(z = 1)
sinh

(

k̃(t) (1 + Λ− z)
)

sinh
(

k̃(t)Λ
) ; 1 ≤ z ≤ 1 + Λ , (32)

G̃11(z) = G11(z = 0)
sinh

(

k̃(b) (Λ + z)
)

sinh
(

k̃(b)Λ
) ; −Λ ≤ z ≤ 0 , (33)

with k̃(b,t) =

√

k2 + sκ̂/κ̂
(b,t)
p . Hence, the eigenvalue problem (23)-(25) can

be restrained to the fluid domain, i.e. Eqs (23) - (24), with the boundary

conditions

DG11 = ±ξ(b,t)k̃(b,t)G11 coth
(

k̃(b,t)Λ
)

; z = 0, 1. (34)

The eigenvalue problem (23)-(24) with the boundary conditions (34) is solved205

using a Chebyshev collocation method. By setting s = 0, one obtains the
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marginal stability curve Ra(k). The minimum of this curve gives the critical

Rayleigh number Rac and the corresponding wavenumber kc. Rac allows us to

determine the critical ∆T̂f at which the system changes from the hydrostatic

state to the state of cellular motion and kc provides information about the210

horizontal periodicity of the patterns at the onset of convection. We recall that

the transition from the rest state to the convective state is independent of the

Prandtl number. Figure 1 displays the variation of Rac and kc as a function

of the ratio ξb for different values of ξt. The dimensionless thickness of the

plates is fixed at Λ = 1. As expected, the critical conditions are the same215

if the upper plate is exchanged with the lower one. We recover the following

asymptotic limits: (i) Rac = 1707.7 and kc = 3.12 for two perfectly conducting

boundaries, (ii) Rac = 720 and kc → 0 for two insulating boundaries and (iii)

Rac = 1296 and kc = 2.55 for one insulating boundary and the other one

perfectly conducting. When either ξb or ξt or both are low, the wavelength of220

the convection becomes larger and the critical Rayleigh number Rac is reduced.

Mathematically, the decrease of Rac is caused by the weakening of the thermal

boundary conditions (28),(29) for the temperature fluctuations θ as ξb or ξt or

both decrease from 103 to 10−3. These results are in very good quantitative

agreement with those obtained by Sparrow et al. [23], Proctor [13], Jenkins and225

Proctor [14], Carriere et al. [24] and Cerisier et al. [25]. From a physical point

of view, it means that when a thermal fluctuations occurs in the fluid close

to infinitely conducting boundaries, it easily relaxes. However, when either ξb

or ξt or both have a low conductivity, the wall temperature fluctuations can

persist and become a supplementary source of instability for the bulk, and then230

decreasing Rac. The experimental values of Rac and kc found by Kebiche et al.

[26] and Darbouli et al. [20] are much larger than those predicted by the linear

theory when the finite thermal conductivity of the plates is taken into account.

A possible explanation of this discrepancy is given in §5.

In Figure 2, the eigenfunctions, F11, G11 and G̃11 are presented for different235

combinations of the conductivities of the upper and lower plates. Note that

the symmetry of F11 is little influenced by the thermal boundary conditions.
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As indicated above, the temperature fluctuation doesn’t relax at the wall when

ξt,b < 1. With decreasing ξb,t, the fluctuation of the temperature gradient

decreases. When, ξt,b << 1, ∂θ/∂z → 0 and the situation of fixed heat flux240

at the boundary is recovered. Contours of the temperature perturbation are

represented in Fig. 3, for three situations. The first one (Fig.3a) represents

the classical case where the boundaries are “good heat conductor”. The second

situation (Fig.3b) corresponds to the experimental device used by Kebiche et

al. [27]. The horizontal plates are made of Polycarbonate with ξt = ξb = 0.25.245

The third situation (Fig.3c) corresponds to the experimental device used by

Darbouli et al. [20] where ξt = 2 and ξb = 201.6. As we can see, the coupling

between the temperature perturbation θ in the fluid and that in the horizontal

plates θ̃ is specific for each situation. With decreasing ξb,t, the horizontal scale of

the convection motion increases and the vertical diffusion rate becomes greater250

than the horizontal one.

3.2. Characteristic time of the instability

Near the onset of convection, the growth rate Re(s) of the perturbation may

be approximated using Taylor expansion,

s =
ǫ

τ0
+O

(

ǫ2
)

with ǫ =
Ra−Rac

Rac
. (35)

The characteristic time τ0 of instability to grow is obtained by evaluating255

(ds/dǫ)ǫ=0; s is calculated for different values of ǫ near ǫ = 0. Figure 4 shows

the variation of τ0 as a function of ξ(b,t). As it can be observed, the charac-

teristic time of instability increases significantly as the thermal conductivities

ratios decrease. This can be explained by the fact that the thermal disturbance

evolves on a very long time scale in the solid compared to that of the fluid when260

the slabs are a very poor heat conductors compared to the fluid. The follow-

ing asymptotic limits are found: (i) τ0 = 0.055 for perfectly heat conducting

boundaries (ξb > 100 and ξt > 100); (ii) τ0 = 0.1 for one insulating boundary

and the other one perfectly conducting; (iii) τ0 → ∞ for insulating boundaries.

265
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Figure 1: Critical Rayleigh number (a) and critical wavenumber (b) as function of ξb for

different values of ξt. The thick black line corresponds to the case ξt = ξb. The symbols

are the theoretical values of Rac and kc corresponding to experimental devices used in the

literature: (�) Kebiche et al. [27], (◦) Darbouli et al. [20] and (∗) Hassan et al [28].

13



Figure 2: Eigenfunctions (a) F11 (vertical velocity) and (b) G11, G̃11 (temperature per-

turbation) for different values of
(

ξb, ξt
)

: (1) ξb = ξt = 0.1; (2) ξb = ξt = 0.25; (3)

ξb = 201.6, ξt = 2; (4) ξb = ξt = 103.
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Figure 3: Temperature perturbation contours for three Rayleigh-Bénard situations : (a)

ξb = ξt = 1000 “good heat conductor”, (b) ξb = ξt = 0.25 corresponding to Kebiche et al.

[27] experimental device and (c) ξb = 201.6 ; ξt = 0.25 corresponding to Darbouli et al. [20]

experimental device.
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Figure 4: Characteristic time of instability vs thermal conductivities ratio ξb at Pr = 10 in

the case of ξt = ξb ; ξt = 10−3 ; ξt = 10−1 ; ξt = 1 and ξt = 103.

4. Weakly nonlinear stability analysis: Pattern selection

As it is known, linear stability analysis yields the onset of instability and

the critical wave number. It is unable to give unique predictions for the form

or evolution of the resulting patterns at a finite distance above the onset of

convection [29]; this is so because the eigenvalue problem is degenerate, since270

to one eigenvalue Ra there corresponds an infinite number of possible patterns

with the same wave number k [30]. The pattern selection is determined by the

nonlinear terms. A weakly nonlinear analysis is adopted as a first approach to

investigate nonlinear effects in the competition between rolls and squares [1],

[17]. Hexagons configuration is not considered here. Further calculations show275

that this three-dimensional planform is unstable when the temperature depen-

dence of the viscosity is not taken into account [1][11][18] [31].

Figure 5 shows, at critical conditions, the stability regions of square planforms

in the (ξb, ξt)-space coordinate system at Pr = 10 for a Newtonian fluid and

Carreau fluids with n = 0.5 and different values of the dimensionless constant280

time λ. Squares are stable in the region bounded by the axis and the stability

curve. Rolls are stable outside this region. In agreement with Riahi [18], sta-

bility curves are symmetric about the line ξb = ξt.
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The wide region, Φ, corresponds to the Newtonian case and can be bounded

approximately by the lines ξb + ξt ≤ 2 and ξt = ξb + 0.7. The ascertainment285

that squares are stable in this domain can be rationalized as follows. When the

walls are poor heat conductors compared to the fluid, the convection intensity

is low and the vertical velocity of the liquid w is small [32]. So, this reflects a

weak interaction between sets of rolls that constitute squares knowing that no

two rolls predominates the other. As a consequence, only squares planforms are290

stable.

By introducing the shear-thinning character, the convection intensity increases

[33] [34] [35][36], thereby increasing the interaction between the two sets of rolls

that constitute squares. As a consequence, one of the two sets of rolls nonlin-

early damps out the other and the squares become unstable contrary to rolls295

which become the preferred form of convection[1]. As illustrated in Fig.5, the

region Φ decreases with increasing shear-thinning effects.

With increasing the reduced Rayleigh number ǫ = (Ra−Rac)/Rac , the non-

linear convection terms and non linear viscous terms become stronger, reducing

the stability region of squares as illustrated in Figs. 6 and 7.300

These results are consistent with the maximum heat-transfer principle, “the

only stable solution is the one of maximum heat transport” [37]. The Nusselt

number is defined by

Nu = 1−

(

∂θ̄

∂z

)

z=0

. (36)

The overbar denotes the horizontal average.

305

Rematk : Deviating from the critical conditions, s > 0, the temperature

profile in the plates, and the boundary conditions at the interface fluid/solid, in-

volve a parameter denoted k̃ which depends on s
(

κ̂
(b,t)
p /κ̂

)

, see for instance Eqs.

(32)-(34). For the computations at ǫ > 0, we have assumed as Chapman and

Proctor [23] and Carriere et al. [24] that κ̂(b,t)
p /κ̂ = k̂(b,t)p /k̂. This assumption310

can be justified by the fact that for for several couples fluid/plate, considered in

Rayleigh-Bénard convection problems, the ratio of the thermal capacity of the
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Figure 5: Stability boundary of squares in the (ξb, ξt)-space coordinate system at Pr = 10

for a Newtonian fluid (λ = 0) and Carreau fluids with n = 0.5 two values of λ: domain Ψ,

λ = 0.01 and domain Γ, λ = 0.02 .

fluid to that of the plate remains of order 1:
(

ρ̂ Ĉp

)

fluid
/
(

ρ̂ Ĉp

)

plate
= O(1).

Therefore, the ratio of the thermal diffusivity of the plate, κ̂p, to that of the

fluid, κ̂, is mainly governed by the thermal conductivities ratio ξ.315

Figure 8 shows the variation of the Nusselt number as a function of ǫ for

different thermal boundary considered in laboratory experiments. The largest

Nusselt number is obtained for perfectly heat conducting slabs. For ξt << 1 and

ξb << 1, Nu is weakly larger for square-cell solution than for two-dimensional320

roll solution, but the difference is systematic. Shear-thinning effects reduce the

viscous friction at the wall, which leads to an increase of the convection intensity

and therefore of the Nusselt number as it is illustrated by Fig. 9. However,

the enhancement of the heat transfer by shear-thinning effects is significantly

reduced for poorly heat conducting plates.325
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Figure 7: Stability boundary of squares in the (ξb, ξt)-space coordinate system for a Carreau

fluid with n = 0.5 and λ = 0.01 at Pr = 10 and two different values of ǫ.

19



0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

0.1

ǫ

N
u
−

1

(4)

(3)

(1)

(2)

Figure 8: Nusselt number versus reduced the reduced Rayleigh number, ǫ, for a Newtonian

fluid with different thermal boundary conditions used in laboratory experiments: (1) ξt =

ξb = 0.25 (Kebiche et al. [26]); (2) ξt = ξb = 0.4 (LeGal and Croquette [15]; (3) ξt = 2 and
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Figure 9: Nu versus ǫ. Influence of shear-thinning effects for two different thermal boundary

conditions: Curves (1) and (2) correspond to ξt = 2 and ξb = 201.6; curves (3) and (4)

correspond to ξt = ξb = 1000. Newtonian fluid: curves (1) and (2); Carreau fluid with

n = 0.5, λ = 0.01, curves (2) and (4).
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5. Conclusion

In the present study we have investigated a linear and a weakly nonlinear

stability analysis of a horizontal Carreau fluid layer bounded by two horizontal

plates of arbitrary conductivity. Symmetry properties show that the the results

are unchanged if the upper slab is replaced by the lower one and vice-versa.330

The critical Rayleigh number and wavenumber associated to the onset of convec-

tion are determined as a function of the conductivities ratios ξt and ξb. When

either ξb or ξt or both are low, the wavelength of the convection becomes larger

and the critical Rayleigh number Rac is reduced.

Stability analysis of the stationary solutions of the amplitude equations indi-335

cate that near the onset, the convection pattern is either a two-dimensional roll

or a square. The influence of shear-thinning effects on the stability-domain of

squares in the plane (ξt, ξb) is highlighted. The results are in agreement with

the maximum heat transfer principle.

The heat transfer and the convection intensity are strongly reduced when the340

plates are poor heat conductors. It is therefore more difficult to detect exper-

imentally the onset of convection than in the case of ‘good heat conductors’.

This could explain the fact that Rac found by Kebiche et al. [26] and Darbouli

et al. [20] is larger that that predicted by the linear theory.

Finally, we think that the present findings are useful to experimental observa-345

tions since the finite conductivity of the walls plays a primordial role in the

Rayleigh- Bénard convection and it can be a source of divergence between ex-

perimental observations and theoretical predictions.

Subsequent developments of the present work will concern the secondary in-

stabilities of the primary pattern described here. Details on the secondary350

instabilities can be found in Ref. [38].
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