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Influence of pressure gradients on wall pressure
beneath a turbulent boundary layer

Elie Cohen1 and Xavier Gloerfelt1,†

1DynFluid Laboratory, Arts et Métiers ParisTech, 151 Boulevard de l’Hôpital, 75013 Paris, France 

This study investigates the effects of a pressure gradient on the wall pressure beneath
equilibrium turbulent boundary layers. Excitation of the walls of a vehicle by turbulent
boundary layers indeed constitutes a major source of interior noise and it is necessary
to take into account the presence of a pressure gradient to represent the effect
of the curvature of the walls. With this aim, large-eddy simulations of turbulent
boundary layers in the presence of both mild adverse and mild favourable pressure
gradients are carried out by solving the compressible Navier–Stokes equations.
This method provides both the aeroacoustic contribution and the hydrodynamic
wall-pressure fluctuations. A critical comparison with existing databases, including
recent measurements, is conducted to assess the influence of a free stream pressure
gradient. The analyses of wall-pressure spectral densities show an increase in
the low-frequency content from adverse to favourable conditions, yielding higher
integrated levels of pressure fluctuations scaled by the wall shear stress. This is
accompanied by a steeper decay rate in the medium-frequency portion for adverse
pressure gradients. No significant difference is found for the mean convection velocity.
Frequency–wavenumber spectra including the subconvective region are presented for
the first time in the presence of a pressure gradient. A scaling law for the convective
ridge is proposed, and the acoustic domain is captured by the simulations. Direct
acoustic emissions have similar features in all gradient cases, even if slightly higher
levels are noted for boundary layers subjected to an adverse gradient.

Key words: aeroacoustics, turbulent boundary layers

1. Introduction
Pressure fluctuations on walls under a turbulent boundary layer (TBL) have excited

considerable interest for fundamental studies, since they represent an integral imprint
of the velocity field in the boundary layer and provide indirect information on the
structure of wall turbulence, and for applied research, since they constitute the driving
force for the flow-induced noise (Blake 1986). The hydrodynamic energy associated
with the large range of turbulent motions involved in a turbulent boundary layer is
converted into acoustic waves, either directly (quadrupole noise), or indirectly, namely
the diffraction of evanescent waves by a singularity (roughness, trailing edge, . . . ) or
the structural response of the panel. In many engineering applications, the fluctuating
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pressure field may produce vibrations resulting in the generation and transmission
of noise. This is the primary source of interior noise in an aircraft cabin or in a
car in cruise conditions. Most of the studies have been primarily concentrated on
zero-pressure-gradient TBLs and few reliable results are available for the influence of
an external pressure gradient despite its significant interest in applications. Indeed the
body in motion generally has a curvilinear shape, meaning that the TBL developing
on its walls is subjected to a local free stream pressure gradient.

The question of the effects of a free stream pressure gradient on the properties
and spectrum of the wall-pressure fluctuations was first addressed in the experimental
study of Schloemer (1967). He studied both favourable and adverse gradients, and
the main findings, summarized by Willmarth (1975), were that the convective velocity
when scaled by the free stream velocity was lower for boundary layers subjected to an
adverse pressure gradient (APG) and greater in the presence of a favourable pressure
gradient (FPG). Streamwise coherence deduced from cross-spectra measurements
decayed faster for APG flows, whereas lateral decay was apparently not affected.
Due to the large transducer diameter with respect to flow properties, high frequencies,
associated with small turbulent structures in the TBL, were hardly measured. His
conclusions therefore apply only to the larger pressure-producing eddies. Schloemer
(1967) nonetheless observed higher levels of fluctuating pressure for APG flows. This
trend was corroborated by the wall-pressure power spectra provided in Bradshaw
(1967a), where equilibrium boundary layers under severe adverse pressure gradients
were studied. Bradshaw (1967b) associated the enhanced activity at low frequencies
with the ‘inactive’ motions in the inner layer (y/δ . 0.2), that is the imprint of
larger scales present in the upper part of the TBL down to the wall, which are
reinforced by adverse conditions. Bradshaw (1967a) also used a flush-mounted
pressure transducer that causes a lack of spatial resolution at high frequencies.
Burton (1973) conducted surface pressure measurements for TBL over smooth and
rough walls subjected to both adverse and favourable gradients. He used a pinhole
microphone to reduce the effective diameter of pressure sensors, but his autospectra
for FPG flows were still not resolved at high frequencies. The severe gradient in
the APG configuration yielded a highly non-equilibrium TBL close to separation,
so that it was difficult to draw firm conclusions. Overall, Burton (1973) confirmed
Schloemer’s observation about the qualitative effect of pressure gradients upon
convection velocity and streamwise coherence. McGrath & Simpson (1987) reported
clean experiments for zero-pressure-gradient (ZPG) and FPG boundary layers. The
influence of the favourable gradient on wall-pressure spectra was found to be rather
weak. They also proposed analyses of cross-spectral measurements, which led to
streamwise or spanwise coherence decays in qualitative agreement with previous
studies. However, the coherences did not decay to zero, presumably because of large
experimental uncertainties. McGrath & Simpson (1987) nonetheless indicated a lower
exponential decay rate of the lateral coherence for FPG flows with respect to the ZPG
configuration. Information for APG flows with the same experimental set-up can be
inferred from the study of Simpson, Ghodbane & McGrath (1987) for measurement
locations before separation. However the boundary layer experienced a severe gradient
and it is difficult to interpret the high levels of low-frequency fluctuations and noise
observed in pressure spectra. The first numerical attempt to study the effect of
pressure gradients on wall-pressure fluctuations beneath TBL was provided by Na &
Moin (1998), who reproduced the converging–diverging channel experiment of Spalart
& Watmuff (1993). Even if the Reynolds number is very low to allow a relevant
comparison with experiments, well-resolved autospectra were obtained for favourable
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to adverse gradients. Since the external gradient was rapidly evolving, it was however
not possible to investigate cross-spectra or frequency–wavenumber spectra.

Given the amount of uncertainty in the earlier experimental databases, new
campaigns have been recently undertaken to gain insight into the effects of a
free stream pressure gradient on the pressure statistics and to guide developments
of improved flow noise models. In the framework of the French research project
SONOBL (SOurces of NOise from Boundary Layers over vehicles), numerical and
experimental databases have been established. The numerical investigation corresponds
to the present contribution. The experimental parts were conducted in the anechoic
wind tunnel of Ecole Centrale de Lyon (Salze et al. 2014, 2015). The ceiling of
the test section could be tilted, which allowed turbulent boundary layers in the
presence of both favourable and adverse pressure gradients. A disk antenna, mounted
on a rigid flat plate, was developed to allow the determination of wall pressure
wavevector–frequency spectra thanks to the use of a rotating linear antenna of remote
microphones. Pinhole measurements were also realized for moderate APG and FPG
conditions, and for several inlet velocities between 25 and 75 m s−1. The Reynolds
numbers Reθ , based on momentum thickness, are in the range 3000 to 10 000 in
the experiments, whereas lower values between 1500 and 3000 are reachable in
the present simulations. At the same time, new measurements were carried out
for characterizing adverse-pressure-gradient TBLs by Catlett et al. (2014, 2016).
They used wedge-like airfoils with different slopes and different inflow velocities
to produce an extensive set of data, which were used to calibrate a semi-empirical
autospectra model, with a functional form similar to that proposed by Goody (2004).
Longitudinal and spanwise coherence coefficients were given in Catlett et al. (2016)
and showed a faster streamwise decay as the adverse gradient is increased. As in
Salze et al. (2014), a formula based on the work of Smol’yakov (2006) for the
frequency-dependent phase velocity was calibrated. Another experimental study of
the effects of pressure gradients on turbulent wall-pressure fluctuations was recently
published by Hu & Herr (2016). A rotatable airfoil located near the end of a flat
plate placed in the open jet of an anechoic facility at DLR Braunschweig was used to
obtain both favourable and adverse pressure gradients. Measurements of autospectra,
streamwise and spanwise coherences and phase velocities are provided for different
values of the pressure gradients, thanks to different positive and negative angles of
the airfoil. The experimental set-up did not achieve a perfect equilibrium, but the data
are well-resolved and will also be used as a comparison point in the present study.

This study presents new developments based on large-eddy simulations (LES) of the
compressible flow equations. In the past, a computational strategy has been assessed
in Gloerfelt & Berland (2013) and Gloerfelt & Robinet (2013) to provide both the
turbulent aerodynamic field and the acoustic component which is associated with
it. An original focus concerned the compressible part of wall-pressure fluctuations,
which is very difficult to estimate accurately. The acoustic part is indeed very weak
when compared to the aerodynamic contribution, but is of great importance for the
fluid–structure coupling. Mach number dependence has been studied for subsonic
flows (Mach numbers 0.3 to 0.9) (Gloerfelt & Margnat 2014). A U8-power-law
dependence of the acoustic intensities has been observed demonstrating that the wall
reflection degenerates dipolar sources into quadrupolar terms, as for free turbulence.
Consequently, the radiation efficiency is weak, explaining the great care required to
obtain the radiated field. Another study by Cohen & Gloerfelt (2015) investigated
the effect of both a favourable and an adverse pressure gradient on the wall-pressure
signature. These simulations are analysed in the present work, and will be compared
and put into perspective with the results of available databases.
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The present paper is organized as follows. The governing equations and the set-up
of the large-eddy simulations are provided in § 2. The flow results are presented in
§ 3, where the equilibrium character of the turbulent boundary layers is discussed. In
§ 4, the wall pressure is analysed for the different pressure-gradient cases. Autospectra,
mean convection velocities and frequency–wavenumber spectra are computed to shed
light on the influence of favourable or adverse pressure gradients. The direct noise
radiation is also presented. Thorough comparisons with available databases for wall
pressure in the presence of a pressure gradient are given in appendix A.

2. Set-up of large-eddy simulations
Direct noise calculations consist in computing both the turbulent aerodynamic field

and the associated acoustic fluctuations by solving the compressible flow equations
(Gloerfelt & Berland 2013). Large-eddy simulations are carried out for turbulent
boundary layers at Mach 0.5 subjected to five different pressure gradients: a strong
adverse pressure gradient (APGs), a weak adverse pressure gradient (APGw), a zero
pressure gradient (ZPG), a weak favourable pressure gradient (FPGw) and a strong
favourable pressure gradient (FPGs). Inclined plates with different slopes are used to
set the pressure gradients, which requires a curvilinear version of the flow solver as
described hereafter.

2.1. Numerical methods
The governing equations are the compressible Navier–Stokes equations written for a
curvilinear domain by using a coordinate transform. The physical space (x1, x2) is
mapped into a Cartesian regular computational space (ξ1, ξ2), and the third direction,
which corresponds to the spanwise direction z, is left unchanged. By denoting ρ the
density, ui the velocity components (u3 ≡w in the following) and E the total specific
energy, the set of equations for the unknown vector U = (ρ, ρu1, ρu2, ρu3, ρE)T is
given by

∂U
∂t
+
∂Fc

∂ξ1
+
∂Gc

∂ξ2
+
∂H
∂z
= 0, (2.1)

where the curvilinear fluxes are defined by

Fc =F
∂ξ1

∂x1
+G

∂ξ1

∂x2
=

1
J

(
F
∂x2

∂ξ2
−G

∂x1

∂ξ2

)
,

Gc =F
∂ξ2

∂x1
+G

∂ξ2

∂x2
=

1
J

(
−F

∂x2

∂ξ1
+G

∂x1

∂ξ1

)
,

 (2.2)

with J = x1,ξ1x2,ξ2 − x1,ξ2x2,ξ1 the Jacobian of the coordinate transformation. The fluxes
F=Fe −Fv, G=Ge −Gv and H=He −Hv are the sum of the inviscid (subscript e)
and visco-thermal fluxes (subscript v) given by

Fe = (ρu1, ρu2
1 + p, ρu1u2, ρu1u3, (ρE+ p)u1)

T,

Ge = (ρu2, ρu1u2, ρu2
2 + p, ρu2u3, (ρE+ p)u2)

T,

He = (ρu3, ρu1u3, ρu2u3, ρu2
3 + p, (ρE+ p)u3)

T,

Fv = (0, τ11, τ12, τ13, u1τ11 + u2τ12 + u3τ13 − q1)
T,

Gv = (0, τ12, τ22, τ23, u1τ12 + u2τ22 + u3τ23 − q2)
T,

Hv = (0, τ13, τ23, τ33, u1τ13 + u2τ23 + u3τ33 − q3)
T.


(2.3)

The specific total energy is E = p/[(γ − 1)ρ] + u2
i /2 for an ideal gas satisfying

p = ρrT , where p is the pressure, T the temperature, r the gas constant and γ the
ratio of specific heats. The viscous stress tensor τij is modelled as a Newtonian fluid
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Influence of pressure gradients on wall pressure beneath a TBL

τij = 2µSij − (2/3)µSkkδij, where Sij = (ui,j + uj,i)/2 is the strain rate tensor and
µ is the dynamic molecular viscosity. The dynamic viscosity is approximated with
Sutherland’s law and the heat flux components qi are modelled with Fourier’s law as
in Gloerfelt & Berland (2013).

Dispersion relation preserving finite differences on an eleven-point stencil optimized
by Bogey & Bailly (2004) are used for the derivatives of the convective fluxes,
whereas standard fourth-order finite differences are used for the viscous–thermal
fluxes. The equations are integrated in time using an explicit low-storage six-step
Runge–Kutta scheme optimized in the wavenumber space by Bogey & Bailly (2004).
At the last substep, a selective filtering on an eleven-point stencil (Bogey & Bailly
2004) is applied in each direction with an amplitude of 0.2 to eliminate grid-to-grid
unresolved oscillations.

Since large enough computational domains are required for the wavenumber–
frequency analysis, the grid resolutions correspond to wall-resolved LES. The present
strategy belongs to the family of implicit LES. The explicit filter, defined as part of the
numerical discretization, provides a smooth defiltering by removing the fluctuations
at wavenumbers greater than the finite-difference scheme resolvability. Moreover, the
dissipative character of the selective filtering induces a regularization. The effects
of unresolved scales are taken into account implicitly in the high-wavenumber
range thanks to the smooth truncations of the filter and finite-difference schemes
in the wavenumber space. The efficiency of this LES strategy has been previously
demonstrated for TBL flows (Aubard et al. 2013; Gloerfelt & Berland 2013).

Periodic boundary conditions are used in the spanwise direction. On the solid wall,
the no-slip conditions ui= 0 are imposed, with ∂p/∂n= 0 for the inviscid part, where
n is the direction normal to the solid surface. The finite-difference stencil for the
convective terms is progressively reduced down to the second order. At the wall, the
temperature is calculated with the adiabatic condition, and the density can be deduced
using the ideal gas law. The viscous stress terms are evaluated from the interior points
by using fourth-order backward differences.

Since the weak acoustic radiation from the TBLs is directly computed in the
simulations, great care is required to select appropriate boundary conditions. At the
upstream and upper boundaries of the computational domain, the radiation boundary
conditions of Tam & Dong (1996), using a far-field solution of the sound waves,
are applied. A large sponge zone (Gloerfelt & Lafon 2008) is furthermore added
at the downstream end of the domain so that unhindered passage of aerodynamic
perturbations is possible without the generation of spurious acoustic waves.

A critical point is to design a silent inflow technique to introduce perturbations
necessary to trigger laminar-to-turbulent transition of the boundary-layer flows, without
introducing spurious noise. To that end, a strategy based on a controlled transition has
been developed in Gloerfelt & Robinet (2013). A preliminary steady two-dimensional
simulation with the same code is performed for the flow over a backward-facing
step. At the inlet, a laminar Blasius boundary layer with a Reynolds number based
on displacement thickness Reδ∗in ' 400 is imposed ahead of the backward-facing step,
whose height h yields a Reynolds number Reh ' 462. A base flow is defined by
extracting flow variables in a vertical plane located a few points downstream of
the step and a compressible linear stability analysis is conducted to find a resonant
triad of unstable modes. Using the inlet free stream velocity U∞ and the step
height h as reference velocity and length respectively, the triad is made up of one
two-dimensional wave of frequency 0.2U∞/h and two oblique subharmonic waves of
frequency 0.1U∞/h with opposite phase angles satisfying the resonant condition of
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FIGURE 1. (Colour online) Top view close to the wall (y+'25) of the streamwise velocity
for the ZPG case showing the transition zone. A fully turbulent state is reached after the
solid line for x/h' 900.

Case α 1x+ 1y+w 1y+e 1z+ Reθ Re+ Ue (m s−1) uτ (m s−1)

APGs −11.49◦ 26.9 0.7 18.8 8.4 3125 688 158 5.30
APGw −6.05◦ 32.0 0.8 18.2 9.8 2462 692 165 6.22
ZPG 0◦ 37.6 1.0 15.6 12.6 1693 608 171 7.26
FPGw 5.66◦ 44.7 1.1 19.1 13.9 1771 745 199 8.66
FPGs 10.19◦ 45.1 1.2 18.0 14.2 1618 780 197 8.83

TABLE 1. Summary of parameters for the simulated cases at Mach 0.5 with pressure
gradients: Ue and uτ are the free stream and friction velocities at the middle of the domain
of interest. The two values for 1y+ indicate the mesh spacing at the wall (subscript w)
and at the boundary-layer edge (subscript e). α is the angle of the slanted wall used to
impose a prescribed pressure gradient.

Craik (1971). These values are close to those used in the work of Craik (1971) but
here the velocity profile exhibits an inflexion point, leading to unstable modes with
a greater amplification factor, which is favourable for developing instability waves
from a low initial amplitude. The triad of unstable modes is superimposed on the
base flow at the inlet of the three-dimensional simulations with an equal amplitude of
6×10−4U∞ for the fundamental and subharmonic waves. Details on the characteristics
(frequency, wavenumber, amplitude) of the resonant triad are given in Gloerfelt &
Robinet (2013), where it has been checked that the transition toward a turbulent state
is smooth and acoustically quiet. Figure 1 illustrates the transition pattern for the ZPG
case. A fully turbulent state with no trace of the initial disturbances is reached for
x/h & 900 and the zone of interest for the wall-pressure analyses starts downstream
of this limit. As a consequence, details of the transition are not influential for the
present study. The important point is that the strategy adopted to trigger turbulence
is sufficiently silent so that the direct acoustic radiation can be investigated.

2.2. Grid design and flow parameters
The data analysed in the paper are obtained from a series of simulations, whose
main parameters are summarized in table 1. Five values of the pressure gradient are
considered by keeping a horizontal free stream and changing the angle α of the plate.
The Mach number based on the free stream velocity is fixed at M = U∞/c∞ = 0.5.
The free stream thermodynamic quantities are p∞ = 101 300 Pa and T∞ = 298.15 K.

Side views of the grids are presented in the left column of figure 2. The ZPG mesh
is the same as that of the simulations of Gloerfelt & Margnat (2014) and is discretized
with 1440×400×400 points. Grid points are equally spaced in the spanwise direction
and are clustered near the wall using a geometric progression of 2 % for the first
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FIGURE 2. (Colour online) Two-dimensional slices of the computational grids in the left
column. Every ten points are shown and the thick dashed lines define the domain of
interest in the (x1, x2)-plane. The reference length is the height h of the backward-facing
step located upstream of the domain and involved in the turbulence triggering method.
Instantaneous views of the streamwise velocity field u in the domain of interest after
rotation in the right column for the different configurations: APGs (a), APGw (b), ZPG
(c), FPGw (d) and FPGs (e). The black isocontour corresponds to u = 140 m s−1 and
highlights the boundary-layer thickening (with a scale factor of 3 in the vertical direction).
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25 points, then with a rate of 2.5 % for the following 155 points. The distribution is
then uniform for the next 120 points and a stretching is finally applied to the last 100
points up to the top boundary (visible in figure 2c for y2/h& 600). In the streamwise
direction, the grid points are clustered near the inlet over a range of 200 points, so
that small grid sizes are used for properly entering unstable modes. The grid spacing is
then regular up to the exit zone where a grid stretching with a geometric progression
of 3 % is applied over the last 100 points to create a large sponge zone where the
flow variables are progressively filtered with a Laplacian operator at each time step
to minimize numerical reflections from the outlet.

For the non-zero-pressure-gradient cases, a curvilinear domain of 1600× 400 points
is defined and extruded in the third direction on nz=400 points. Along the x1-direction
parallel to the external free stream, a first region of horizontal plate is defined in order
to have the same inlet condition as the ZPG case. Note that the grid spacing is also
refined on the first 150 points near the inlet boundary and is maintained constant for
the next 200 points with a spacing slightly greater than the one in the zone of interest
above the ramp. This second region corresponds to an inclined plate with an angle
α from the horizontal, which is negative for the adverse-pressure-gradient cases and
positive for the favourable-pressure-gradient cases. The values of α are reported in
table 1 and are chosen to set the strength of the pressure gradient. The points are
equally spaced on the ramp region with the nominal streamwise spacing. The third
part of the mesh represents the exit zone where a horizontal plate is recovered with
a severe stretching on the last 100 points. Note that the two transitions between the
ramp and the flat portions are progressive and corresponds to a low radius of curvature
set on approximately 30 grid points. The distribution of points in the wall-normal
direction is the same as the ZPG case and the mesh is also regular in the spanwise
direction.

The wall-pressure analyses are restricted to a zone of interest where a nearly
equilibrium TBL flow is obtained. This area is defined between curvilinear abscissae
xmin and xmax and is delimited by thick dashed lines in the left column of figure 2.
These zones of interest for each cases exclude the transitional development zone,
the exit sponge zone and the upper buffer region. For the non-zero-pressure-gradient
cases, the domain of interest in the (x1, x2)-plane where the plate is inclined is
transformed into a Cartesian (x, y)-plane where the plate is horizontal using a
rotation and an interpolation of the variables. In the subsequent flow analyses,
u= cos(α)u1 + sin(α)u2 and v =− sin(α)u1 + cos(α)u2 are the x-component parallel
to the wall and y-component normal to the wall of the velocity respectively, where
u1, u2 are the components defined in the (x1, x2)-plane and used in the governing
equations (2.1). From now on, the coordinate system (x, y, z) is used and the velocity
components are denoted (u, v,w). The right column of figure 2 shows the streamwise
component u on the rotated domain restricted to the interest zone between xmin and
xmax. It is noteworthy that the grid spacing in this region is regular in the x- and
z-directions, and that the physical values of the spacings 1x, 1z and 1ymin are the
same for all simulations. They are given in table 1 in terms of wall units evaluated
at the middle of the domain of interest (based on the friction velocity uτ and the
viscous length scale `v = ν/uτ ). The subscript w is used to denote quantities evaluated
at the wall and the subscript e quantities evaluated at the edge of the boundary layer.
In the tables 1 and 2, the quantities representative of the different configurations are
taken at the middle of the domain of interest (xmax− xmin)/2, which are very close to
the values averaged over [xmin, xmax]. The streamwise length of the domain of interest
in terms of outer variables is 104.8δ∗ for APGs, 148.0δ∗ for APGw, 246.3δ∗ for ZPG,
268.3δ∗ for FPGw and 295.9δ∗ for FPGs.
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Case δ δ∗ θ H β K ∆p Λ G S Cf Π

(mm) (mm) (mm) ×107
×103

×103

APGs 1.87 0.466 0.285 1.63 1.41 −3.0 8.0 0.21 11.5 29.8 2.24 1.9
APGw 1.61 0.330 0.215 1.53 0.44 −1.6 3.0 0.16 9.2 26.5 2.83 1.1
ZPG 1.21 0.209 0.142 1.46 0 0 0 0 7.4 23.5 3.59 0.6
FPGw 1.24 0.182 0.128 1.41 −0.18 1.2 −1.6 −0.27 6.7 22.9 3.80 0.2
FPGs 1.27 0.165 0.119 1.39 −0.28 2.3 −2.6 −0.91 6.2 22.2 4.04 0.1

TABLE 2. Boundary layer properties and parameters quantifying the pressure gradient at
the middle of the domain of interest.

The time step for all simulations is 1t = CFL1ymin/(U∞ + c∞) ' 0.025h/U∞,
corresponding to a Courant–Friedrichs–Lewy number CFL= 1.5. The total simulation
time is roughly the same for the different cases, t= 20 000h/U∞. Statistical quantities
are averaged over time and the spanwise direction. Wall-pressure planes are stored
every 301t during the last 240 000 iterations, corresponding to 8000 samples and a
non-dimensional time of approximately 6000h/U∞ or 4.9(xmax − xmin)/U∞.

3. Flow results
3.1. Pressure-gradient parameters

Figure 2 shows instantaneous views of the simulated TBLs over the domain of
interest. The principal characteristics of the different simulations are summarized in
tables 1 and 2. The pressure gradient in boundary-layer flows can be characterized
by a variety of non-dimensional parameters, some of them are listed in table 2. The
Clauser pressure-gradient parameter β, the acceleration parameter K (Kline et al.
1967), the viscous-scaled pressure gradient ∆p and the Castillo & George (2001)
pressure-gradient parameter Λ are defined as

β =
δ∗

τw

dPe

dx
, K =

ν

U2
e

dUe

dx
, ∆p =

ν

ρu3
τ

dPe

dx
, Λ=

δ

ρU2
e (dδ/dx)

dPe

dx
, (3.1a−d)

where Ue and Pe are the mean streamwise velocity and local static pressure,
respectively, at the edge of the boundary layer. In the following, δ, δ∗, θ denote
the 99 %-, displacement and momentum thicknesses, τw is the wall stress, uτ the
friction velocity and ν is the kinematic viscosity. The TBL is also characterized by
its shape factor H and the defect shape factor G defined as

H =
δ∗

θ
, S=

Ue

uτ
=

√
2
Cf
, G= S

(
1−

1
H

)
. (3.2a−c)

The defect law (Clauser 1954; Coles 1956), (Ue − u)/uτ , for the mean streamwise
velocity u can be used to define the wake parameter Π , which is also a measure of the
free stream pressure gradient. The values obtained for the pressure-gradient parameters
correspond to mild intensities, which can be encountered for instance over the cockpit
of an airplane.

In the following, the mean and fluctuating aerodynamic quantities are analysed and
validated with respect to the published literature. Beforehand it has been carefully
checked that different criteria for self-similarity and equilibrium are fulfilled.

https://doi.org/10.1017/jfm.2017.898
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


 3.2. Notion of equilibrium

First we check the equilibrium character for the boundary layers subjected to a
pressure gradient. The reason is twofold. First, the analysis of the wall pressure
in the frequency–wavenumber space requires an assumption of homogeneity in the
streamwise direction. This is the case in a fully turbulent channel flow (Viazzo,
Dejoan & Schiestel 2001; Hu, Morfey & Sandham 2002, 2006) but is only an
approximation for a developing turbulent boundary layer due to its thickening.
Equilibrium flows exhibit a self-similarity of mean and turbulent velocity profiles,
so that the flow dynamics is similar over the domain of interest, and we follow the
classical assumption that the slow thickening along x can be neglected. Second, it is
well known that the flow responds differently if the force of the pressure gradient is
constant or varying in space or in time. The boundary layers subjected to an adverse
gradient are especially very dependent on the upstream history and the way the
gradient is applied. This is clearly a difficulty when comparing different databases.
We hope this limitation can be circumvented by using equilibrium TBLs.

There is not a unique definition of equilibrium. It can be defined as the fact of
obtaining a balance, that is to say the same relative weight between different terms
of the governing equations. Some equilibrium can be reached without self-similar
profiles. In fact a rigorous equilibrium is never reached for turbulent boundary layers
since they depend on two scales (inner and outer). The only exception is sink flow,
where the strength of the favourable pressure gradient leads to converging mean
streamlines, and the law of the wake vanishes so that only an inner law can describe
the mean quantities. We talk about ‘traditional’ equilibrium if a self-similarity is seen
to exist for the mean streamwise velocity and for the Reynolds stress components.
The boundary-layer thickness δ is often used as the length scale. Traditionally, the
friction velocity uτ is chosen as the velocity scale: see e.g. Coles (1956) who
successfully collapsed defect laws for different classes of flows. Castillo & George
(2001) suggested the use of Ue, but this is not a turbulent velocity scale. They also
introduced the use of the velocity scaling proposed by Zaragola & Smits (1997),
namely UZS = Ueδ

∗/δ which seems to be the best velocity scale to extend the
traditional equilibrium following Maciel, Rossignol & Lemay (2006). The latter
have tested the different scalings for strong APG or nearly separated flows, and
concluded that UZS provides an acceptable self-similarity for both the defect law and
the Reynolds stresses. Once again a rigorous equilibrium is difficult to achieve and is
rather the exception than the rule. There are more papers describing the equilibrium
conditions than experimental realizations which achieved a ‘good’ equilibrium. The
reader is referred to discussions of Clauser (1954), Coles (1956), Townsend (1961),
Rotta (1962), Mellor (1966), Kader & Yaglom (1981), Schofield (1981), Tani (1986),
Castillo & George (2001), Maciel et al. (2006). We can summarize the traditional
equilibrium conditions as follows:

(i) a power-law relation between Ue and x is necessary, i.e. Ue ∼ L−Λ0 ∼ (x− x0)
−Λ

(Townsend 1961);
(ii) as a consequence the outer length scale will vary linearly with x, i.e.

L0 ∼ (x− x0);
(iii) some of the gradient parameters β, K, ∆p, Λ defined by (3.1) or defect-law

parameters G or Π defined by (3.2) should remain constant along x.

The two last conditions (ii) and (iii) also imply that the outer length scale δ grows
linearly, the ratios δ/δ∗ and δ/θ are constant, thus δ∗ and θ also evolve as x− x0.

To determine if there exists a power-law relation between Ue and δ, we plot Ue
versus δ in a log–log plot (Castillo & George 2001; Maciel et al. 2006) in figure 3(a).
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FIGURE 3. (Colour online) Free stream velocity Ue evolution: (a) log–log plot of Ue
versus δ for APGs ( ) APGw ( ), ZPG ( ), FPGw ( ) and FPGs ( ). Solid lines are
linear fits yielding the equilibrium exponent Λ = 0.24 (APGs); 0.18 (APGw); 0 (ZPG);
−0.28 (FPGw); −0.92 (FPGs). (b) Ue versus x in non-dimensionalized form. Solid lines
represent (x− x0)

−Λ curves.

A linear regression provides the values of the exponent from 0.24 for adverse to
−0.92 for favourable case. As a comparison, Skare and Krogstad obtained Λ= 0.22
and Maciel et al. (2006) report values of 0.22 and 0.3 in experiments of Samuel &
Joubert (1974) and Marusic & Perry (1995) for non-equilibrium APG flows. Values
between 0.16 and 0.2 are reported for nearly separated TBLs. Figure 3(b) shows fair
comparisons of Ue with (x − x0)

−Λ by using the previously obtained exponent and
extrapolating the virtual origin x0.

The linear growth of the three boundary-layer thicknesses with streamwise distance
is checked in figure 4. The thicknesses are normalized by their averaged value over
[xmin, xmax]. A linear evolution is visible over a length of 30 to 40δav. In the figures,
linear fits of the data in the self-similar region are extended toward 0 to check if the
virtual origin x0 is reached. This is confirmed for the APGs flow but less good for the
other flows. δ∗ and θ have the same origin, but the slope for δ is slightly smaller. It
is most noticeable for the FPGs case since the virtual origin is around 150δav ahead
of xmin. We can indeed see in figure 5(a,b) that the ratios δ/δ∗ and δ/θ are only
approximately constant (a slight decrease is observed). The shape factor, plotted in
figure 5(c), is also relatively constant over the interest zone, with increasing values
from favourable to adverse gradients. Some authors (Hu & Herr 2016) propose to use
these values for characterizing the gradient intensity.

The streamwise evolution of the gradient parameters is depicted in figure 6.
Considering the range in ordinate axis, the constant character is more or less observed.
Discrepancies can be noted for the APGs flow, notably at the end of the interest zone.
But the variation of β from 1.23 to 1.94 can be considered as relatively weak when
compared to those encountered in experiments with adverse gradients (Kline et al.
1967; Skare & Krogstad 1994; Nagano, Tsuji & Houra 1998). For the FPGs case,
the flow is not fully established at the beginning of the interest region, as illustrated
by the acceleration parameter K. The Castillo & George (2001) parameter Λ also
exhibits non-constant values at the beginning and at the end of the selected region
for the strong gradient cases. This parameter should be equivalent to the exponent
evaluated directly in figure 3 (Castillo & George 2001). The values determined in
figure 3, corresponding to the horizontal dashed lines in figure 6(d), are indeed
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shape factor H = δ∗/θ (c). APGs ( ), APGw ( ), ZPG ( ), FPGw ( ,
cyan), FPGs ( , blue).

in very good agreement with those from the definition (3.1), at least in the centre
of the domain of interest for the strongest gradient cases. The exponent for the
two adverse-gradient flows are close (Λ = 0.24 for APGs and 0.18 for APGw).
Castillo & George (2001) found values ranging from 0.18 to 0.28 by fitting different
experimental data sets. They claim that APG boundary layers might be characterized
by a single value, Λ≈ 0.22. We feel that the value depends on the gradient intensity.
By analysing two favourable-gradient TBLs, Castillo & George (2001) conclude that
FPG boundary layers are also characterized by a single value of Λ (Λ ≈ −1.92).
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FIGURE 6. (Colour online) Streamwise evolution of the Clauser pressure gradient
parameter β (a), acceleration parameter K (b), viscous-scaled pressure gradient ∆p (c),
Castillo & George (2001) parameter Λ (d), defect shape factor G (e) and ratio S ( f ). The
horizontal dashed lines in (d) correspond to exponent values determined in figure 3(a).

In the present numerical experiment, we have found different values, namely −0.28
for FPGw and −0.92 for FPGs, invalidating their assumption. The value of Λ appears
more dependent on the pressure-gradient force for FPG flows.

Overall, compared to previous experimental databases, the range of variations of the
different pressure-gradient parameters along the interest domain is sufficiently small to
consider that we have reached equilibrium flows.

3.3. Velocity profiles and similarity scales
Figure 7 shows the mean streamwise velocity profiles scaled with inner variables
(u+ = u/uτ and y+ = yuτ/ν) for all the five pressure-gradient flows. Two notable
features can be observed. First, all the profiles collapse in the inner region (y6 0.1δ).
This was expected due to the mild magnitude of the pressure gradients imposed, as
also observed for instance by Harun et al. (2013) with moderate pressure gradients.
A deviation of the mean velocity profile from the classical log law has been reported
for stronger pressure gradients (Skare & Krogstad 1994; Nagano et al. 1998; Nagib
& Chauhan 2008; Monty, Harun & Marusic 2011). This effect is visible for instance
in the profiles of Nagano et al. (1998) plotted in figure 11(a). Note that this
feature can only be investigated if a direct evaluation of the friction velocity uτ
is performed (Nagib & Chauhan 2008). Since the present simulations use large-eddy
simulation resolutions, a direct evaluation of uτ from ∂u/∂y at the wall leads to an
underestimation of the friction velocity. To allow comparisons, we have therefore
computed uτ by fitting the profiles with analytical inner profiles. We used the law
of Musker (1979), who proposed a simple formula valid from the viscous sublayer
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FIGURE 7. (Colour online) Mean velocity profiles in wall units u+: thirteen profiles
between xmin and xmax for APGs (a), APGw (b), ZPG (c), FPGw (d) and FPGs (e).
Comparison of the five cases at similar friction Reynolds number Reτ ' 748 ( f ).

(y+< 5, where U+= y+) up to the overlap region where the log law is assumed. The
formulation of Chauhan, Monkewitz & Nagib (2009) is used:

U+inner =
1
κ

ln
(

y+ − a
−a

)
+

R2

a(4α − a)

[
(4α + a) ln

(
−

a
R

√
(y+ − α)2 + B2

y+ − a

)

+
α

B
(4α + 5a)

(
arctan

(
y+ − α

B

)
+ arctan

(α
B

))]
, (3.3)

where α = (−1/κ − a)/2, B =
√
−2aα − α2 and R =

√
α2 + B2. The value for the

parameter a is set at −10.5531 so that the constants of the log law are (κ = 0.41,
B= 5). Even if the logarithmic region is difficult to assess for low Reynolds number
turbulent boundary layers, some authors found that the log law having constants κ =
0.41 and B= 5 is a good approximation for fitting velocity profiles at low Reynolds
numbers (see Erm & Joubert (1991) and references therein). Note that using these
constants for all cases, we are not able to evaluate deviations from the classical log
law due to the presence of the pressure gradients.

The second noticeable feature, seen in figure 7( f ), is the consistent increase of the
mean velocity relative to uτ in the wake region with pressure gradient, which is a
classical feature and is better analysed by considering the defect law, as shown by
Clauser (1954) or Coles (1956). Following these authors, the mean velocity profiles
can be decomposed as the sum of an inner law and a wake law:

U+composite =U+inner +
Π

κ
W
(y
δ

)
. (3.4)

The universal form suggested by Coles (1956) being incapable of satisfying the
condition dU+/dy= 0 at the edge of the boundary layer, the wake law of Lewkowicz
(1982) is retained in the present work:

W
(y
δ

)
= 2

(y
δ

)2 (
3− 2

y
δ

)
−

1
Π

(y
δ

)2 (
1−

y
δ

) (
1− 2

y
δ

)
. (3.5)
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FIGURE 9. (Colour online) Self-similarity of the defect law with uτ -scaling (a), Ue-scaling
(b) and UZS-scaling (c) (APGs , APGw , ZPG , FPGs ). Open
symbols in (a) represent the law of the wake (3.5) that determines the wake parameter Π .

The composite profiles are depicted in figure 8 with outer scaling by δ and Ue. Here
Musker’s law (3.3) is used for U+inner. The wake parameter Π is given for each case
in the last column of table 2 and evaluated by matching computed defect law with
expression obtained using (3.5) (see figure 9a). For all pressure-gradient cases, a
very good similarity is obtained for the thirteen successive profiles over the region of
interest.

The mean streamwise velocity profiles are represented as defect laws in figure 9.
The two favourable cases are close so that the FPGw curves are omitted for clarity.
The classical defect law, where the velocity scale is the friction velocity uτ (Coles
1956), is plotted in 9(a) for thirteen successive locations along the plate. The symbols
correspond to the theoretical law (3.5) by adjusting the wake parameter Π (reported
in the last column of table 2). The increase of Π from FPG to APG conforms to
the trends in the literature, even if we noticed slightly higher values associated with
compressibility effects (Gloerfelt & Margnat 2014). It is worth noting that the self-
similarity of the defect law is perfectible, notably for the APGs case. That is why we
tried other scalings. A slight improvement is visible by using the free stream velocity
Ue as proposed by Castillo & George (2001) but a better collapse is observed with
the Zaragola & Smits (1997) velocity UZS = Ueδ

∗/δ, as suggested by Maciel et al.
(2006). Furthermore, the curves for the different gradients collapse remarkably to a
single curve.

Another necessary condition for equilibrium is the self-similarity of Reynolds
shear stress profiles and is tested in figure 10. By plotting profiles for successive
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FIGURE 10. (Colour online) Similarity of Reynolds shear stresses with Ue-scaling (a),
uτ -scaling (b), UZS-scaling (c) as a function of the outer coordinate y/δ and inner scaling
u+rms versus y+ (d). Twelve profiles between xmin and xmax for APGs ( ), APGw ( ),
ZPG ( ) and FPGs ( ) flows.

streamwise locations, the Reynolds number dependency is clearly visible using wall
coordinates (figure 10d). The use of uτ or Ue as velocity scales in figure 10(a,b)
shows a degree of self-similarity for FPG or ZPG flows, which is however less
apparent for APG flows. The scaling with UZS in figure 10(c) provides a better
collapse, confirming the improvements already observed with this velocity scale for
the defect law. The Zaragola–Smits velocity is thus an appropriate outer scale for
both velocity and turbulent intensities. Wosnik & George (2000) and Castillo & Wang
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experiments for adverse (a) and favourable (b) gradients. Present LES: APGs ( ),
APGw ( ), ZPG ( ), FPGw ( , cyan), FPGs ( , blue). (a) Comparison
with APG experiments of Nagano et al. (1998) (β = 0 , black; β = 0.7 , magenta;
β = 2.19 , red; β = 3.95 ; β = 5.32 ). (b) Comparison with FPG experiments of
Herring & Norbury (1967) (β = −0.35, x = 2 and 3 ft ) and Jones, Marusic & Perry
(2001) (K = 2.7× 107, x= 0.8 m and x= 2.2 m ).

(2004) interpret the success of the Zaragola–Smits scaling by considering that the
ratio δ∗/δ, appearing in UZS, includes a kind of Reynolds number dependence and
upstream history of the TBL.

3.4. Comparisons with experiments
Let us compare the mean velocity profiles with some experimental databases in
figures 11 and 12. For the APG boundary layers, we selected the low Reynolds
number experiments of Nagano et al. (1998), who studied the development of a
non-equilibrium adverse pressure gradient TBL. The Clauser parameter β varies
between 0 and 5.3, with Reθ ranging between 1290 and 3350. The median value
for the momentum thickness Reynolds number is roughly 2500 for APGw and 3000
for APGs. The comparison of the Reynolds stresses in figure 12(a–c) shows good
compliance for the ZPG flows, with a slight underprediction in the simulation due
to the LES resolution, notably for the spanwise root-mean-square (rms) velocity wrms.
In figure 12(b), the APGw profile (β ≈ 0.5) matches the measurements for β = 0.77,
and the APGs profile (β ≈ 1.6) is close to the profile at β = 2.19. The value of β
is not exactly the same since its evaluation is sensitive to flow history and the TBL
of Nagano et al. (1998) is not in equilibrium. The trends in our LES are thus in
very good agreement with measurements. Visual inspection of the velocity profiles
in figure 11(a) indicates that the measured profiles lie below the standard log-law
profile as the adverse gradient is increased. Such an effect is not visible in the LES
since, as explained previously, the friction velocity for wall scaling is deduced from
Musker’s law which contains implicitly the standard logarithmic law. Furthermore,
even for the ZPG TBL, the maximum mean velocity relative to uτ is greater in the
simulations. We have indeed noticed an increase of the wake parameter from 0.6 to
0.9 by increasing the Mach number from 0.5 to 0.9 in a previous study on ZPG TBLs
(Gloerfelt & Margnat 2014), whereas the commonly accepted value for incompressible
ZPG TBL is 0.55. We can thus conclude that the comparison is further complicated
by the compressibility effects at the moderate subsonic Mach number chosen in the
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FIGURE 12. (Colour online) Comparison of turbulent intensities urms (a,d), vrms (b,e),
wrms (c, f ) with experiments for adverse (a–c) and favourable (d–f ) gradients. Present
LES: APGs ( ), APGw ( ), ZPG ( ), FPGw ( , cyan), FPGs ( ,
blue). APG experiments of Nagano et al. (1998) (β = 0 , black; β = 0.77 , magenta;
β = 2.19 , red; β = 3.95 ; β = 5.32 ). FPG experiments of Jones et al. (2001)
(K = 2.7× 107, x= 0.8 m and x= 2.2 m ).

simulations (M = 0.5), whereas most of the measurements are done for low velocity
incompressible flows.

The comparison is also fair for the mean profiles in wall units for FPG LES
in figure 11(b) with the same tendency of a higher wake component in weakly
compressible cases. We selected the mild-FPG boundary layer studied by Herring &
Norbury (1967) with β=−0.35 as for FPGs case, but with a higher Reynolds number
(Reθ ∼5000–7000). The logarithmic region thus has a greater extent in the experiments
of Herring & Norbury (1967). We also compare with the well-documented sink-flow
measurements of Jones et al. (2001) with similar Reθ (ranging between 1700 and
3000) and an acceleration parameter K = 2.7 × 107, close to that of the FPGs case
(K= 2.3× 107). The almost vanishing wake component is in good agreement between
simulation and experiment. Moreover figure 12(d–f ) shows that the decrease of the
turbulent intensities in experiments is in fair agreement with FPGs boundary layer.
Vertical and spanwise components are not correctly measured close to the wall.
Further comparisons are provided in appendix A for experimental databases that
also provide wall-pressure spectra. In particular, figure 23(a–d) shows very good
compliance with the low Reynolds number direct numerical simulation (DNS) of
Spalart & Watmuff (1993). Recent measurement data of Hu & Herr (2016) and the
simulation results are also in good agreement, as illustrated in figure 26(a–c).

4. Analysis of wall-pressure fluctuations
A thorough comparison with previous experimental and numerical databases is

proposed to stress the main changes induced by the pressure gradient in a robust
way. Recent studies that specifically deal with the influence of a pressure gradient
on wall-pressure features are described in appendix A, where individual comparisons
of mean flow profiles and autospectra are carried out. Elements about the method to
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obtain adverse or favourable gradients and the apparatus to measure wall pressure are
given in appendix A to estimate the gradient intensity, the equilibrium character of
the TBL or the resolution capabilities. These are necessary to draw firm conclusions.
We concentrate on a number of specific questions related to the interpretation of
power spectral densities and wavenumber–frequency spectra. In particular, since our
computational strategy relies on direct noise calculations, we are able to provide the
levels of the acoustic component for the first time.

4.1. Wall-pressure autospectra and global properties
The frequency power spectra of wall-pressure fluctuations φ(ω) are shown in
figure 13. For each gradient case, the fluctuating pressure is stored on the wall
mesh corresponding to the region of interest defined in § 2. The 8000 time samples,
recorded every 301t, are divided into three segments with 50 % overlap, leading
to a sampling frequency fs = 1.33U∞/h. The inlet velocity U∞ and the step height
h are used for non-dimensionalization since they have the same physical values
for all cases. With inner scaling, the sampling frequency is ω+s = 2πων/u2

τ = 10.3
for ZPG case. Point spectra are evaluated at five streamwise locations along the
region of interest, namely x/h = {1300, 1500, 1700, 1900, 2100} for ZPG case and
x/h = {1500, 1700, 1900, 2100, 2300} for non-zero gradient cases (see figure 2),
by averaging over the spanwise direction and over 100 points around the reference
location in the streamwise direction. The spectra at the last location are presented in
figure 13 as one-sided spectra. There is no universal scaling that collapses the pressure
spectra of different Reynolds number flows at all frequencies. Three classical scalings
are used in the present study, specifically outer scaling (local displacement thickness
δ∗ as the length scale, edge velocity Ue as the velocity scale and dynamic pressure
qe = 0.5ρ∞U2

e as the pressure scale), mixed scaling (where the wall shear stress τw

replaces qe for the pressure scale) and inner scaling (local friction velocity uτ as the
velocity scale, viscous length scale `ν = ν/uτ and τw as the pressure scale).

Figure 13 shows only outer and mixed scalings for the five investigated pressure
gradients compared to selected measurements. Further comparisons with available
results in the literature are compiled and commented in appendix A. Overall we
found that the best scaling to collapse low and medium frequencies for TBLs
subjected to different pressure gradients is the outer scaling. This is clear by
inspection of comparisons with Na & Moin (1998) in figure 23(e), Salze et al.
(2014) in figure 24(d) or Hu & Herr (2016) in figure 26(d). A maximum is reached
around ωδ∗/Ue ≈ 0.4 and the decay rate is smooth toward low frequencies. An
approximate plateau is rather observed up to ωδ∗/Ue ∼ 1. With this scaling, its level
is dependent on the Reynolds number, with slightly lower levels as Re increases. The
spectrum roll-off is highly dependent on the Reynolds number, with an enlargement
of the intermediate-frequency range as the Reynolds number is increased. Even if the
roll-off is precipitated by the spatial cut-off in the LES, this effect is visible since the
local Reynolds number increases from FPGs to APGs due to the greater thickening
of the TBL. Finally, the approximate collapse of a large part of the spectra is no
longer valid for too strong APG or flows close to separation. The mixed scaling
in figure 13(b) allows a clear distinction of the different gradients with increasing
levels from favourable to adverse conditions. Some authors (Farabee & Casarella
1991; Goody 2004) have shown that the mixed scaling succeeds in attenuating the
Reynolds number dependence in the medium-frequency range. The large amount of
comparisons realized in the present study supports this proposal and indicates that
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FIGURE 13. (Colour online) Frequency power spectra for the case APGs ( ), APGw
( ), ZPG ( ), FPGw ( , cyan) and FPGs ( , blue) with outer (a) and
mixed (b) scalings. Comparison with selected experimental results for ZPG: Schewe (1983)
at Reθ = 1400 ; Salze et al. (2014) at Reθ = 3321 (ZPG25) , black; Farabee & Casarella
(1991) at Reθ = 6025 (Ue = 28 m s−1) ; mild APG: Salze et al. (2014) at Reθ = 5527
(APG25) , magenta; Catlett et al. (2016) at Reθ = 11 185 (7◦, U∞= 56 ft s−1) , magenta;
strong APG: Hu & Herr (2016) at Reθ = 6979 (APG6) , red; Catlett et al. (2016) at
Reθ = 12 044 (12◦, U∞ = 56 ft s−1) , red; FPG: Hu & Herr (2016) at Reθ = 2683
(FPG12) , blue; McGrath & Simpson (1987) at Reθ = 3932 (x= 4.15) . Filled symbols
correspond to databases described in appendix A and information in parentheses enable
the identification of the flow conditions. The semi-empirical model of Goody (2004) for
RT = 20 is plotted with a green dashed line, and the vertical dashed lines represent the
estimated frequency cut-off of the LES for each case.

it is also true for a given value of the pressure gradient. This representation also
highlights the different decay rates in the intermediate-frequency range. The slopes
are for instance plotted in figure 24(e) and increase from favourable to adverse
conditions. In the present simulations, we found a power law ω−0.2 for FPGs, ω−0.5

for ZPG, ω−0.8 for APGw and ω−1.2 for APGs. Good compliance is obtained with
the different spectra of Salze et al. (2014) (not all displayed for brevity). It may also
be noted that the exponent −0.5 for ZPG is lower than the commonly accepted value
of −0.7, used in some models such as Goody (2004), and lower than the theoretical
value −1 (Panton & Linebarger 1974). It appears that the value is influenced by
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the beginning of the spectral roll-off, and the slope increases with the Reynolds
number. For instance, a value −0.5 is found in ZPG LES (Re+∼ 700) and SONOBL
experiments of Salze et al. (2014) (Re+ ∼ 2500), a clear ω−0.7-law is observed for
high Reynolds numbers by Forest (2012) (Re+ ∼ 11 100). At very high Re for an
atmospheric boundary layer (Re+ ∼ 106), Klewicki, Priyadarshana & Metzger (2008)
observed a −1 slope.

Examples of inner scaling are presented in figures 23( f ) and 24( f ). The use of
viscous scales allows a collapse of the spectra at high frequencies. This finding is still
verified in the presence of a pressure gradient but the curve corresponds to higher
frequencies from favourable to adverse conditions. The trend is also visible in the
simulations even if the decay is rapid and sharp due to the grid cut-off in LES. It
seems, however, that the commonly accepted viscous decay law ω−5 (Goody 2004)
would be weakly affected by pressure gradients.

In order to compare the levels of the spectrum, the mean square of the pressure
fluctuations can be calculated by

p2 =

∫
∞

0
φ(ω) dω. (4.1)

The root-mean-square pressure fluctuation normalized by the wall shear stress is
plotted in figure 14(a) as a function of the Reynolds number Reτ =Re+= uτδ/ν. It is
compared to previously published data. Numerous points over a large Reynolds
number range are available for ZPG boundary layers. There is a clear trend
with higher levels of the normalized integrated pressure as the Reynolds number
increases, which is fairly reflected by the empirical relation proposed by Farabee &
Casarella (1991), (p+rms)

2
= 6.5+ 1.86 ln(Re+/333). A significant scatter is nonetheless

discernible among the different references, essentially due to measurement errors
(limitations at high frequencies due to the finite size of pressure sensors and at low
frequencies due to facility background noise). In the present LES, we also lost some
energy at very high frequencies due to grid cut-off. The value plotted in figure 14 for
ZPG case is p+rms = 2.43 (Re+ = 610), which can be corrected at high frequencies by
fitting a Goody (2004) model, as shown in figure 13(a). The corrected value of 2.64
(+9 %) is in very good agreement with DNS results of Spalart (1988) (p+rms = 2.71,
Re+ = 649), Jimenez et al. (2010) (p+rms = 2.59, Re+ = 692) and Schlatter & Örlü
(2010) (p+rms = 2.62, Re+ = 664). It is also in agreement with low Reynolds number
experiments of Schewe (1983) (p+rms= 2.65, Re+= 566) and Salze et al. (2014) (ZPG
with Ue = 10.8 m s−1, p+rms = 2.43, Re+ = 596). Even if few values are available with
pressure gradients, a clear pattern emerges with lower normalized levels for FPG flows
and higher levels with APG. The reduction is more moderate in FPG conditions and
it can be inferred from data of McGrath & Simpson (1987) and Salze et al. (2014)
that the levels increase with Re+ at the same rate as ZPG levels (the empirical fit of
Farabee & Casarella (1991) is plotted with an offset of −0.7 for illustration purposes).
The values for simulations FPGw (p+rms = 2.12, Re+ = 748) and FPGs (p+rms = 1.86,
Re+ = 783) are in fair agreement with Burton (1973) (p+rms = 2.15, Re+ = 653) and
Salze et al. (2014) (p+rms = 1.81, Re+ = 635). A wider dispersion is seen for APG
flows and can be related to the low values of the friction velocity as separation is
approached. For a given gradient, levels are likely to increase with Re+ (an offset of
1.3 is compatible with experiments of Salze et al. (2014)). Values in experiments of
Burton (1973) are very high due to the severe adverse gradient and levels rise rapidly
for the TBL of Simpson et al. (1987) which evolves toward separation. The use of the
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FIGURE 14. (Colour online) Root-mean-square wall-pressure fluctuations normalized by
viscous scaling p+rms (a) or scaled on the dynamic pressure (b) as a function of the
friction Reynolds number Re+ and p+rms as a function of the Reynolds number based on
momentum thickness Reθ (c). Present LES data (APGs , APGw , ZPG , FPGw ,
FPGs ); experiments of Salze et al. (2014) (APG , red; ZPG , black; FPG , blue);
experiments of Simpson et al. (1987) (APG , red); experiments of McGrath & Simpson
(1987) (FPG , black; ZPG , blue); experiments of Schloemer (1967) (APG , red; ZPG

, black; FPG , blue); experiments of Burton (1973) (APG , red; FPG , blue); ZPG
experiments of Gravante et al. (1998) , Schewe (1983) , Blake (1970) , Emmerling,
Meier & Dinkelacker (1973) , Bull & Thomas (1976) , Farabee & Casarella (1991) ,
Karangelen, Wilczynsi & Casarella (1993) ; ZPG DNS of Skote, Henningson & Henkes
(1998) , green, Spalart (1988) , green, Schlatter & Örlü (2010) , green, Jimenez et al.
(2010) , measurements from Tsuji et al. (2012) KTH , green, Melbourne , Nagoya ,
empirical law of Farabee & Casarella (1991) ( ).

outer variable qe for normalizing pressure variance is shown in figure 14(b) and can
be useful for strong APG, which would lead to almost vanishing uτ . The behaviour
of prms/qe shows the decreasing trend with increasing Reynolds number, which seems
valid in the presence of an external pressure gradient. The hierarchy from FPG to
APG conditions is however less evident. Finally, figure 14(c) shows the pressure
variance normalized by inner variables as a function of Reθ with a linear scale.
The high variations for low Reynolds numbers are better highlighted and indicate
that the present results should be extended to higher Reynolds numbers with caution.
This strong influence is related to the enlargement of the intermediate-frequency range
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FIGURE 15. (Colour online) Broadband convection velocity. (a) Present LES: APGs
( ); APGw ( ); ZPG ( ); FPGs ( ). (b) Favourable pressure gradient:
FPGs ( ), experiments of Schloemer (1967) ( , blue); Burton (1973) ( , blue); Hu
& Herr (2016) ( , cyan; , blue); and DNS of Na & Moin (1998) at x = 0.5 ( , blue).
(c) Zero pressure gradient: ZPG ( ); experiments of Schloemer (1967) ( , black); Bull
(1967) ( ); Blake (1970) ( ); Leclercq & Bohineust (2002) ( ); Hu & Herr (2016) ( );
and LES of Viazzo et al. (2001) ( ). (d) Adverse pressure gradient: APGs ( );
APGw ( ); experiments of Schloemer (1967) ( , red); Burton (1973) ( , red); Hu &
Herr (2016) ( , magenta; , red; , green); and DNS of Na & Moin (1998) ( , magenta;

, red).

as the Reynolds number is increased, which contribute significantly to integrated
levels.

Space–time correlations Rpp(ξ , η, τ ) are obtained by an inverse Fourier transform
of the wavenumber–frequency spectra, described later in § 4.2. ξ and η denote the
longitudinal and lateral separations respectively, and τ is the time lag. For brevity’s
sake, they are only reported in Cohen (2015). One interesting information that can
be deduced from correlations is the mean convection velocity (sometimes called
‘broadband’), which is one of the points discussed in previous studies about the
effects of a pressure gradient. It can be obtained by using the time shift τ of the
maximum correlation for a fixed streamwise separation ξ , yielding Uc= ξ/τ (Gloerfelt
& Berland 2013). Figure 15(a) compares the broadband convective velocities obtained
for the five gradients. At first glance the curves are almost superimposed, which is
at variance with the common opinion. Schloemer (1967) or Burton (1973) indeed
found that the convective velocity when scaled by the free stream velocity was lower
for boundary layers subjected to APG and greater in the presence of FPG. Note
that the range of non-dimensional separations ξ/δ∗ is smaller from APG to FPG
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conditions since the physical length of the plate is kept constant (∼1200 h) whereas
the boundary-layer thickness is thinner for FPG and thicker for APG with respect to
ZPG case. For instance the final value of Uc/Ue is 0.76 for APGs and 0.82 for FPGs,
which conforms to the common trend. The comparison with numerous results for ZPG
flows in figure 15(b) shows very good agreement and demonstrates that we can trust
the results for ZPG. The comparison with some FPG references in figure 15(c) shows
that, even for small separations, the convective velocities obtained by Schloemer
(1967), Burton (1973) or Hu & Herr (2016) are higher. By contrast, the numerical
results of Na & Moin (1998) follow the curve for FPGs simulation. A broad spread
of data is also observed for TBL subjected to adverse gradients in figure 15(d).
Convective velocities of Burton (1973) and Na & Moin (1998) are significantly lower,
whereas the results of Schloemer (1967) and Hu & Herr (2016) are close to ours.
The discrepancies can be related to the fact that the broadband convection velocity
includes fluctuations associated with all frequencies, and is therefore dependent on the
frequency resolution capability. The additional effect of intense favourable or adverse
gradients is also difficult to identify given the small number of available conditions.

4.2. Analysis of wavenumber–frequency spectra
The temporal and spatial properties of wall-pressure fluctuations can be expressed
in terms of wavenumber vector–frequency spectrum, which is the preferred input
of vibroacoustic codes to predict the fluid–structure coupling. This spectrum is
characterized by two main regions: the convective peak which represents the
hydrodynamic signature of turbulent structures convected in the TBL, and the acoustic
domain which encloses the supersonic wavenumbers, which are capable of radiating
acoustic waves.

Due to its practical importance, several models for wavenumber–frequency spectrum
have been proposed, e.g. Corcos (1964), Witting (1986), Chase (1987), Mellen (1994),
Smol’yakov (2006). A comparison between the models by Graham (1997) shows a
great disparity in the subconvective region. Furthermore, only Chase’s model takes into
account the acoustic domain, but the empirical constants to set the level are arbitrary
since there is no experimental work that gives these values. It is also difficult to
validate the rate of decay from the position of the convective peak, which is essential
to obtain correct levels in the subconvective region. There are indeed few available
experimental attempts to measure wavenumber–frequency spectra (Wills 1970; Blake
& Chase 1971; Panton & Robert 1994; Abraham & Keith 1998; Ehrenfried & Koop
2008; Arguillat et al. 2010), and they are hardly reliable in the subconvective region.
Moreover, they are restricted to zero-pressure-gradient TBL, with the exception of the
recent work of Salze et al. (2015).

When the wall is plane and it is assumed that the boundary layer is growing
slowly, the pressure fluctuations can be considered statistically stationary in time
and homogeneous in the streamwise (x) and spanwise (z) directions. For spatially
developing boundary layers, the pressure is not homogeneous in the streamwise
direction, but it is the commonly used assumption to obtain a frequency–wavenumber
spectrum over a limited area. To that end, a triple transform is realized as follows:
first a simple fast Fourier transform is applied in the z-direction, which is periodic.
Then a Welch’s algorithm is implemented for the time dimension: three overlapping
segments of 4000 samples are used from the 8000 samples stored every 30 iterations
of the LES. Each segment is weighted by a Hann window to reduce spectral leakage.
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To enhance the resolution for the x-dimension, which is critical due to its limited
extent, we rely on the spectral estimator of Capon (1969), given by

P̂Capon(ω, kx, kz)=
nx + 1

eH(kx)R−1
pp (ω, kz)e(kx)

, (4.2)

with e(kx) = (1eikx · · · eikx(nx−1))T the stirring vector. R−1
pp is the inverse of the

autocorrelation matrix, which has Toeplitz form and is inverted with a Cholesky
method. To avoid ill-conditioning, the modified covariance method of Kay (1988) is
used to estimate the autocorrelations. Note that the Hann window is also applied in
x-direction to reduce spectral leakage. Normalized two-sided spectra Φpp(kx, kz, ω)
are presented. The frequency resolution is the same as that for autospectra, namely
1ω ' 2.1 × 10−3U∞/h. The wavenumber resolution is 1kx = 2π/Lx = 0.0035/h for
the ZPG case and 0.0042/h for other cases, and 1kz= 2π/Lz= 0.025/h for the ZPG
case and 0.027/h for other cases. Furthermore, normalization factors for compensating
the windowing in time and x-direction are applied. We check that a triple integration
of Φpp yields the mean pressure levels, obtained either directly or by integration of
autospectra (4.1):

p2 =

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

Φpp(kx, kz, ω) dkx dkz dω. (4.3)

Slices of the frequency–wavenumber spectrum Φpp(kx, kz, ω) are shown in figure 16
with outer scaling. Similar features are observed for the five gradients. The kx-ω
slices clearly exhibit the antisymmetrical convective ridges, which is the imprint of
the vortical structures populating the boundary layer. The white dashed line represents
a mean convection speed Uc = 0.7Ue, which is in good agreement with the slope
observed in the different cases, at least for low wavenumbers, i.e. large scales. The
asymmetry with respect to this dashed line is related to the fact that the advection
speed depends on the size of a given structure and on its altitude in the layer. In this
representation, supersonic wavenumbers k =

√
k2

x + k2
z < κ0 = ω/c∞ define what we

call the acoustic domain. This simple relationship has to be modified to take the mean
flow into account. Supersonic wavenumbers then satisfy (κ0 − kxM)2 − (k2

x + k2
z ) > 0,

where M is the Mach number. The boundary of the acoustic domain is a slanted
cone, which is represented in figure 16 by the solid white lines. At the centreline
of the cone, for kz = 0 (first column), the half-line in the same direction as the
convective ridge represents acoustic waves propagating in the flow direction at the
phase speed Ue + c∞. In the five cases, a sharp peak is visible at this location. It
can easily be identified thanks to the antisymmetry with respect to the null frequency,
since the lines are only plotted in the upper half-space. In the vicinity of the half-line
Ue − c∞, it is difficult to identify a sharp peak, but rather a spread acoustic activity.
The acoustic levels are discussed thereafter but we can already notice that levels
are increasing from favourable to adverse conditions, at least with this normalization
(a logarithmic colour scale is used and the range is the same for each panel in
a column). The second and third columns of figure 16 show kx-kz slices for two
non-dimensional frequencies, ωδ/Ue= 3 and 12. In this representation, the convective
ridges look like an elongated elliptical shape, whose major axis is in the spanwise
direction. The centre of ellipses moves toward positive streamwise wavenumbers as
the frequency increases, and corresponds to the convective wavenumber kc = ω/Uc.
The trace of the acoustic domain with mean flow included is the ellipse

(kx + κ0M/β2)2/(κ0/β
2)2 + k2

z/(κ0/β)
2
= 1, (4.4)
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FIGURE 16. (Colour online) Wavenumber–frequency spectra 10 log10(Φpp(kx, kz, ω)
Ue/q2

eδ
3). Slices for kz = 0 (first column, colour scale between −310 and −70), for

ωδ/Ue= 3 (second column, colour scale −260 to −90), ωδ/Ue= 12 (third column, colour
scale −260 to −90) and for kxδ=−10 (fourth column, colour scale −360 to −110). (a)
FPGs; (b) FPGw; (c) ZPG; (d) APGw; (e) APGs.
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FIGURE 17. (Colour online) Scaling of wavenumber–frequency spectra Φpp(kx, 0, ω) for a
frequency corresponding to ωδ/Ue= 12. Outer scaling with δ (a) and δ∗ (b) as the length
scale; mixed scaling (c) for the case APGs ( ), APGw ( ), ZPG ( ), FPGw
( , cyan) and FPGs ( , blue).

with centre (−κ0M/β2, 0), major radius κ0/β
2, and minor radius κ0/β, β =

√
1−M2

being the Prandtl–Glauert parameter. This ellipse, plotted in white in the figure, is
merged in the convective crest for the lowest frequency (second column of figure 16),
whereas it clearly identifies the acoustic domain for the highest frequency (third
column). The acoustic peaks on the ellipse border will be better emphasized on
individual cuts in figures 17–20. When plotting a slice for kxδ ' −10 in the fourth
column of figure 16, the convective region that encompasses the spanwise extent
is shifted downwards. The boundaries of the acoustic domain are branches of a
hyperbola, and the levels in the lower and upper half-spaces are different due to the
mean flow effects.

As discussed thereafter, the best comparison between the five gradients is done
by using δ as length scale. Very similar plots are obtained for favourable and zero
gradient cases, but the extent of the convective ridge seems larger for the APG cases
in the frequency and in the longitudinal wavenumber directions. The kx–kz slices show
that the aspect ratio of the elliptical shape is lower for APG conditions, which is
consistent with the experimental trend (Salze et al. 2015). In the present study, the
aspect ratio is almost unaffected for favourable gradients. The scaling of the spectra
is investigated in figure 17. First, outer scaling is used in (a,b) with δ and δ∗ as the
length scale respectively. The superiority of δ over δ∗ takes place both for normalizing
the maxima of the convective hump and for reducing its extent over wavenumbers.
The two FPG and the ZPG results are very close, whereas a broadening is once again
visible for APG results. Mixed scaling is tested in figure 17(c), where uτ and τw are
the velocity and pressure viscous scales and δ∗ is the outer length scale. Note that δ
is still retained for normalizing the wavenumber axis. Mixed scaling, which has been
shown to be efficient for matching autospectra in the intermediate-frequency range,
does a good job of matching the convective peak levels.

The evolution of the quantitative levels for the hump corresponding to hydrodynamic
fluctuations and for the acoustic peaks are better appreciated on the individual spectra
of figure 18(a–e), where the non-dimensional frequency is increased from 1 to
25. It is first noted that the maxima of the convective crest diminish at the same
rate for all gradients. With the normalization by δ, the slope of the decay in the
subconvective region is decreasing from favourable to adverse pressure gradients. The
slope is however approximately constant as the frequency increases for a given case.
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FIGURE 18. (Colour online) Wavenumber–frequency spectra Φpp(kx, 0, ω) for successive
non-dimensional frequencies ωδ/Ue= 1 ( ), 5 ( ), 10 ( ), 15 ( ), 20 ( )
and 25 ( ) for cases FPGs (a), FPGw (b), ZPG (c), APGw (d) and APGs (e). Spectra
Φpp(kx, kz, ω) for ω = 0 and kxδ =−10 for the case APGs ( ), APGw ( ), ZPG
( ), FPGw ( , cyan) and FPGs ( , blue).

For the ZPG LES, we have compared wavenumber–frequency spectra with models
of Corcos (1964), Chase (1987), Mellen (1994) and Smol’yakov (2006) (not show
here for brevity) and none of the models are able to reproduce the dynamics in the
subconvective range. Furthermore, none of available experimental databases up to now
are reliable in this region due to measurement errors. Nonetheless when compared in
figure 19 to spectra computed from DNS of turbulent channel flow where streamwise
homogeneity is fulfilled (Viazzo et al. 2001; Hu et al. 2002, 2006), our LES results
exhibit the same decay rate. The decay rate in the spanwise direction is assessed
by the cut along kz plotted in figure 18( f ). The spectra are symmetrical between
negative and positive wavenumbers since there is no mean flow and the flow is
homogeneous in this direction. Furthermore, no influence of the pressure gradient
is observed when δ is used as the length scale. Second, regarding the acoustic
contribution, the peak corresponding to Ue + c∞ is well-defined for all gradients,
whereas a diffuse bump can be distinguished at Ue − c∞. This asymmetry between
waves propagating in the same direction as the mean flow or in the opposite direction
has been explained by propagation effects due to the high mean shear introduced by
the boundary layer profile (see discussion in Gloerfelt & Margnat 2014). In other
words, refraction effects attenuate sound waves propagating against the flow, whereas
channelling effects reinforce high-frequency waves in the other direction. Furthermore,
the absolute acoustic levels are slightly higher for TBL subjected to adverse gradients
than to favourable ones.

The acoustic peaks are prominently displayed in figure 20. The isocontours in the
kx–kz plane in (a) allow for the proper identification of the acoustic domain, which is
at the same location (kxδ ∼−5) for the three gradients shown. Two spanwise spectra
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FIGURE 19. (Colour online) Comparison of ZPG LES with turbulent channel flow
simulations. (a) Comparison of Φpp(kx, kz = 0, ω) with DNS of Hu et al. (2002)
for non-dimensional frequencies {1; 2.5; 5; 10; 15; 20}, corresponding to ωδ/Ue =

{0.28; 0.71; 1.41; 2.83; 4.24; 5.65} (for channel flow, Ue = umax = 18.2uτ/0.819). (b)
Comparison of Φpp(kx, kz = 0, ω) with LES of Viazzo et al. (2001) for non-dimensional
frequencies ωδ/Ue = {4.39; 5.24; 6.01; 6.94; 7.79; 8.64}.

are provided in (b,c) which corresponds to cuts along kz in the upper and lower half-
spaces in panels shown in the fourth column of figure 16 for ωδ/Ue = ±50. The
cut in the lower half-space (b) corresponds to prograde waves and shows that the
acoustic peaks are slightly increasing from favourable to adverse conditions. Note that
the mean levels in (b,c) are not the same for APGs and APGw due to the slower decay
rate of the convective ridge. The second cut makes it possible to distinguish the peaks
associated with the retrograde acoustic waves. In terms of relative levels, the picture
is reversed with respect to prograde waves.

4.3. Direct noise levels
Another original point in our simulations is that the aeroacoustic emissions from the
TBLs can be obtained directly. The radiated sound field is visualized in figure 21
on the non-rotated mesh (see § 2.2) using the same colour scale. Similar features
are observed in all gradient cases. The most striking point is the very low levels,
approximately 1 to 2 Pa for prms. This is only 0.01 % of the inlet dynamic pressure
0.5ρ∞U∞, justifying the great care taken to apply silent boundary conditions. A closer
inspection would show that the radiated field is not totally free of spurious noise due
to the inlet forcing or due to weak reflections at the outlet. But we are confident
that the wavefronts shown in figure 21 do represent direct noise from wall turbulence.
Low-frequency waves preferentially oriented in the direction opposite to the mean flow
are visible for all cases. The particular directivity has been mainly explained by the
convection effect at Mach around 0.5 (Gloerfelt & Berland 2013). The Doppler effect
for a compact source indeed decreases the wavelength upstream of the source, and
conversely increases it downstream. This is accompanied by a rise of pressure levels
upstream. The wavefronts have consequently a very large apparent wavelength and low
levels downstream of the source.
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FIGURE 20. (Colour online) Slice of Φpp(kx, kz, ω) in the kx–kz plane (a) for ωδ/Ue= 12
(four isocontour values of 10 log10(Φpp(kx, kz, ω)Ue/q2

eδ
3) in {−153, −133, −103, −91}).

Cuts of Φpp(kx, kz, ω) for kxδ =−10 and ωδ/Ue =−50 (b) and 50 (c). Simulation APGs
( ), APGw ( ), ZPG ( ), FPGw ( , cyan) and FPGs ( , blue).

A quantitative comparison between the different simulations is provided by the
power spectral densities of the fluctuating pressure at the same physical height
y/h= 408 located in the acoustic field, plotted in figure 22. The so-called reflection
theorem of Powell (1960) predicts that dipolar source terms in the acoustic analogy
formulation of Curle (1955) degenerate toward quadrupolar sources when placed
nearby an infinite plane, if viscous term sources can be neglected. By varying Mach
number for a ZPG boundary layer, we have checked in Gloerfelt & Margnat (2014)
that integrated acoustic intensities follow a eighth power law of the free stream
velocity, characteristic of quadrupolar source terms in the theory of Lighthill (1952).
The statement of Powell (1960) is thus verified for boundary-layer noise. The first
implication is that the aeroacoustic sources are rather inefficient, as for free turbulence.
Second, the U8-dependency of the acoustic power can be used as scaling law for
comparing the different gradient cases, which experience accelerations or decelerations
of the free stream flow for FPG and APG conditions, respectively +15 % for FPGs
and −9 % for APGs compared to the inlet velocity U∞. In the dimensional analysis of
Lighthill (1952) p′ ∝ ρU2M2, thus the pressure scale for non-dimensionalizing power
spectra is ρ∞U2

e M2, where the Mach number is M=Ue/c∞. Since the physical length
of the plate is the same for all cases, a global time scale is used in figure 22(a),
namely h/U∞. The broadband nature of the frequency content is clearly depicted,
and spectral shape and levels are similar, in particular for medium frequencies.
Acoustic emissions are slightly increasing from favourable to adverse conditions with
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FIGURE 21. (Colour online) Instantaneous views of the fluctuating pressure in the median
plane of the non-rotated domain for APGs (a), APGw (b), ZPG (c), FPGw (d) and FPGs
(e). Colour scale between −3 and 3 Pa for each panel. The white bullet indicates the
location where the spectra of figure 22 are evaluated.

a broader range of high frequencies for APGs. This can be related to the higher
Reynolds number obtained as the TBL grows thicker. It is even more visible when
outer scaling by δ/Ue is used in figure 22(b), since δ is increasing from FPG to APG
conditions.

5. Discussion and conclusions
A numerical experiment has been carried out to investigate the effects of an

external pressure gradient on the fluctuating surface pressure beneath a turbulent
boundary layer. This issue is a key driver of the flow-induced noise when a body
moves through a fluid, and is present in a wide variety of applications. This topic
has gained renewed interest with the reduction of other sources of noise, and thanks
to new opportunities offered by recent advances in measurement techniques and
numerical capabilities. A thorough comparison with the few available databases,
where this subject is tackled, has been conducted to assess the state of the art. In
particular, three recently published experimental data sets by Salze et al. (2014),
Catlett et al. (2016) and Hu & Herr (2016) have been compared for the first time. In
addition to bringing out pertinent points, we provided new and additional information
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FIGURE 22. (Colour online) Power spectral densities of fluctuating pressure at location
y = 408h and x = 1630h for cases APGs ( ), APGw ( ), FPGw ( , cyan)
and FPGs ( , blue) and at x= 1244h for ZPG ( ), as a function of the frequency
normalized by h/U∞ (a) and pulsation normalized by δ/Ue (b).

about two important topics. First, a wavenumber–frequency analysis was realized,
highlighting the dynamics in the subconvective region, which is particularly difficult
and tedious to predict in measurements. Secondly, we could provide for the first
time the acoustic contribution in the presence of a free stream pressure gradient and
the levels of direct noise produced by the wall turbulence by solving directly the
compressible Navier–Stokes equations for a Mach number close to 0.5.

In order to achieve this objective, large-eddy simulations (LES) were performed for
low Reynolds number nearly equilibrium TBLs subjected to five moderate pressure
gradients: two adverse gradients, referred to as APGs for the strongest gradient
and APGw for the weakest one, two favourable gradients, relatively strong FPGs
and weak FPGw, and a zero-pressure-gradient TBL, which serves as reference.
LES helped us obtain the surface pressure on large domains, which is needed to
achieve a satisfying wavenumber resolution. This approach is limited to relatively low
Reynolds numbers, with respect to values encountered in wind-tunnel experiments
or applications. The simulations are however a powerful tool to cope with the
principal limitations and uncertainties of experimental work arising from the response
of pressure sensors. The boundary-layer properties were analysed and compared
carefully to published literature to assess the quality of LES and to evaluate the
equilibrium character of the TBLs. The similarity of the mean and fluctuating velocity
profiles is a favourable point to define frequency–wavenumber spectra but a spatially
developing boundary layer is not homogeneous in the streamwise direction due to its
thickening. This limitation is ignored to obtain frequency–wavenumber spectra and
would deserve further investigations. The use of space-varying wavevector–frequency
spectra (Strawderman 1987) or spatial empirical mode decomposition (Debert et al.
2011) could help to clarify this hypothesis. Another critical point to get the acoustic
contribution is to avoid creating excessive noise in the numerical set-up. Since
sources adjacent to a plane are of quadrupolar type as for free turbulence, direct
noise emissions are rather inefficient and yield very low levels, which should not be
lost in extraneous noise. For this reason we developed a specific strategy to trigger
turbulence generating minimal spurious noise. Furthermore, non-reflecting boundary
condition were coupled with large buffer layers at the upper and outlet boundaries to
damp spurious reflections. Thanks to this apparatus, we were able to obtain the direct
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FIGURE 23. (Colour online) Comparison with DNS of Na & Moin (1998): mean u
profile (a), defect law (b) and turbulent intensities for FPG (c) and APG (d) conditions.
FPG corresponds to station x = 0.5 (experiment , blue, and DNS , blue, of Spalart
& Watmuff 1993) and APG to station x= 0.85 (experiment , red, and DNS , red, of
Spalart & Watmuff 1993). Power spectra of wall pressure for DNS of Na & Moin (1998)
(x= 0.5 , blue; x= 0.6 , cyan; x= 0.7 , black; x= 0.8 , magenta; x= 0.85 , red)
and present LES (FPGs , blue; FPGw , cyan; ZPG ; APGw ; APGs

).

noise radiation from the TBLs. It also gave confidence in the results for the acoustic
domain in the frequency–wavenumber analysis, that is to say the region of supersonic
wavenumbers corresponding to the aeroacoustic component of the wall pressure.

The main outcomes about the influence of a pressure gradient on wall pressure are
summarized. The best scales to obtain a similarity of mean and fluctuating velocity
profiles were found to be the boundary-layer thickness δ and the velocity of Zaragola
& Smits (1997), UZS = Ueδ

∗/δ. Several parameters can be defined to characterize
the intensity of the pressure gradient based on outer, inner or mixed quantities.
They were approximately constant on the region of interest for analyses, but did
not describe unambiguously the flow since other parameters, such as the Reynolds
number, the Mach number (compressibility effects) or the flow history, come into play,
making comparisons across studies difficult. That is why it was not obvious to find a
scaling for wall-pressure power spectral densities that relies on these quantities. Three
classical scalings were tested. The outer scaling was found to be the most efficient
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FIGURE 24. (Colour online) Comparison with measurements of Salze et al. (2014): mean
u profile (a), defect law (b) and turbulent intensities urms (c) for cases APG25 ( , magenta),
ZPG25 ( , black) and FPG25 ( , blue). Wall-pressure autospectra with outer (d), mixed (e)
and inner ( f ) scaling for SONOBL experiments (APG25 , magenta; APG50 , magenta;
ZPG25 , black; ZPG50 , black; FPG25 , blue) compared to LES results (FPGs ,
blue; FPGw , cyan; ZPG ; APGw ; APGs ).

to match the results for the different gradients in a wide range of frequencies, from
low to medium ones. Very good compliance with the available databases was also
observed, even if a weak Reynolds number dependence was noted for the spectral
levels in the medium-frequency range. The mixed scaling, where the wall shear
stress replaces the dynamic pressure as the pressure scale, was efficient to attenuate
the Reynolds number dependence, but the different gradients then corresponded to
distinct curves, with levels increasing from FPG to APG conditions. It is worth noting
that the slope observed for the decay at the intermediate frequencies was higher for
adverse gradients. The slopes were in fair agreement with recent measurements of
Salze et al. (2014), but they depend on the Reynolds number, which is too low in the
simulations to draw firm conclusions or attempt to interpret their values. Inner scaling
can be used to superimpose the spectra at very high frequencies representative of the
viscous–dissipative scales for a given value of the pressure gradient. The roll-off part,
sometimes approximated by a ω−5-law, was shifted toward higher frequencies from
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favourable to adverse conditions. This hierarchy was visible in the LES results, even
if the grid cut-off entailed a more rapid fall. As a consequence, some energy was lost
in the calculations in the high-frequency range. This is not critical since the behaviour
of viscous scales can be considered as quasi-universal. It was possible to reconstruct
the lost energy by matching a model of Goody (2004), and we found a correction of
9 % of the averaged pressure fluctuations in the ZPG case. The integrated value scaled
by the wall shear stress increased from FPG to APG conditions. This is consistent
with experiments, but there is a lack of data to see an emerging trend with the
value of a pressure-gradient parameter. The influence of the pressure gradient on the
convective velocity of pressure fluctuations on the wall was not very conclusive. The
view of Schloemer (1967) or Burton (1973) of a lower convection speed for APG
flows and a higher one for FPG flows was not supported by the present numerical
experiments, where Mach and Reynolds numbers are roughly constant for nearly
equilibrium TBLs. Instead, the conclusion here was that the mean convective velocity
from space–time correlations is weakly affected by the pressure gradient, except
that the range of longitudinal separations scaled by the boundary layer thickness
was reduced for APG flows due to the thickening of the TBL. The investigation of
frequency-dependent convection velocities from cross-spectral measurements would
help to establish a clearer trend. Furthermore, high-resolution wavenumber–frequency
spectra were obtained and made clear the features of the convective ridge, which is
the imprint of hydrodynamic pressure fluctuations associated with vortical motions,
and of the acoustic domain, corresponding to boundary-layer noise. In particular, it
was found that the boundary-layer thickness δ was the best length scale to compare
the different gradient cases, even if an enlargement was visible for APG conditions
in the frequency and streamwise wavenumber directions. As a result, the convective
ridge was more isotropic in adverse conditions, which is consistent with the picture
of hairpin structures that lift off the wall. The decay rate toward the subconvective
wavenumbers revealed a large dynamical range, which is hardly reproduced in
available modelling or in experiments. The trace of acoustic wavenumbers was
clearly identifiable and showed slightly higher acoustic activity for APG boundary
layers, at least when scaled with outer properties. This is consistent with the levels
of direct radiation outside the TBL. The radiation patterns were similar for the five
gradient cases and were significantly marked by mean flow propagation effects, which
will be further analysed in a future paper.
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Appendix A. Comparisons with experimental databases

This appendix contains comparisons with some existing databases dealing with wall-
pressure fluctuations in the presence of pressure gradients.
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Case Ue δ δ∗ θ H Reθ uτ Re+ Cf β K
(m s−1) (mm) (mm) (mm) (m s−1) ×103

×107

x= 0.50 7.4 12.92 1.73 1.19 1.46 586 0.38 329 5.5 −0.35 11.08
x= 0.60 7.7 13.27 1.78 1.24 1.44 633 0.39 348 5.4 −0.26 7.58
x= 0.70 7.5 15.43 2.38 1.63 1.45 814 0.36 371 4.8 0.56 −10.90
x= 0.80 7.0 19.18 3.45 2.29 1.50 1074 0.31 398 4.0 1.12 −13.52
x= 0.85 6.8 21.78 4.11 2.70 1.52 1229 0.29 424 3.6 1.53 −14.90

TABLE 3. Parameters for DNS of Na & Moin (1998), taken from experiments of
Watmuff (1988).

A.1. Comparisons with DNS of Na and Moin
Na & Moin (1998) carried out DNS to study wall-pressure fluctuations with
adverse pressure gradient and separation. We discuss their results that reproduce the
experiments of Watmuff (1988), also documented and simulated by DNS in Spalart
& Watmuff (1993). Na & Moin (1998) used an incompressible Cartesian code with
an adjusted mean vertical velocity distribution on the top boundary to reproduce
the pressure gradients in the converging–diverging channel used by Watmuff (1988).
Thanks to the low Reynolds number, the flow was accurately simulated by the DNS
of Spalart & Watmuff (1993) and Na & Moin (1998) (1x+ = 16.6 and 1z+ = 4.8).
The flow parameters for the stations where the boundary layer is subjected to a mild
favourable to adverse gradient are reported in table 3. The comparisons with the
velocity field in figure 23(a–d) used the database of Spalart & Watmuff (1993), made
available on the web. The profiles of both experiment and DNS of Spalart & Watmuff
(1993) are plotted at non-dimensional station x = 0.60 for the favourable case and
at x = 0.85 for the adverse case. Very good compliance is observed for the mean
profile and turbulent intensities with the favourable gradient between experiments
and DNS and between results of Spalart & Watmuff (1993) and LES results FPGs.
The adverse configuration is close to the APGs LES, with slight discrepancies for
the wake parameter and near the peak of streamwise velocity fluctuations, essentially
because the boundary layer is not in equilibrium in the experimental set-up and the
adverse gradient changes. Power spectra from Na & Moin (1998) for the stations
between x= 0.5 and 0.85 are compared with the different LES in figure 23(e, f ). To
match the low values of the Reynolds number in experiment/DNS, the LES spectra
are computed at the beginning of the area of interest (i.e. at x/h = 1300 for the
ZPG LES and at x/h = 1500 for the other cases). Data appear to collapse at low
and intermediate frequencies, and the spectral roll-off is in fair agreement, even
if the slopes are different since viscous dissipation implies a decrease following
roughly a ω−5 law in DNS whereas the spatial cut-off of LES entails a more rapid
fall. The spectra are presented with inner scaling in figure 23( f ). The trends are
similar but the effect of the different gradients is more pronounced in LES. This
can be related to the more progressive variations of the friction velocity uτ in DNS
since the non-equilibrium boundary layer evolves quickly from favourable to adverse
conditions.

A.2. Comparisons with SONOBL experiments
The experiments realized in the framework of the SONOBL project by Salze et al.
(2014, 2015) were conducted in the main subsonic wind tunnel of the Centre
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Case Ue δ δ∗ θ H Reθ uτ Re+ Cf β K d+

(m s−1) (mm) (mm) (mm) (m s−1) ×103
×107

FPG25 31.9 17.26 1.98 1.58 1.25 3356 1.35 1554 3.6 −0.59 2.51 45
ZPG25 25.1 18.80 2.60 2.00 1.30 3321 1.03 1279 3.4 0 0 34
ZPG50 45.2 23.40 3.30 2.50 1.32 7472 1.65 2551 2.7 0 0 45
APG25 19.0 32.30 5.93 4.14 1.43 5227 0.68 1460 2.6 0.78 −1.33 23
APG50 38.4 47.88 5.09 3.82 1.33 9739 1.37 4361 2.5 0.67 −0.66 46

TABLE 4. Parameters of the experimental database of Salze et al. (2014).

Acoustique at Ecole Centrale de Lyon. The boundary layer was measured on the
flat bottom wall of a test channel, with a length of 4 m, a height h = 0.25 m and
a width 2h, opening in an anechoic chamber. The side walls were treated using
a wire mesh and a porous liner to reduce noise generated at the channel outlet.
An adjustable ceiling made of two flat plates was used to obtain both favourable
and adverse pressure gradients. Hot-wire anemometry was used for the aerodynamic
characterization. To measure cross-spectra and obtain frequency–wavenumber spectra,
an antenna was designed by using a line of 63 remote microphones (1/4 in) on
a flush-mounted disk, whose rotation makes it possible to have a two-dimensional
exploration of wall pressure. A similar antenna was used in Arguillat et al. (2010).
Wall-pressure spectra were measured with pinhole-mounted microphones (1/8 inch
Brüel and Kjaer type 4138 microphone with a cap hole diameter d = 0.5 mm). The
observed Helmholtz resonance of the cavity below the pinhole was 21 kHz and
the calibration was efficient from 10 Hz to 50 kHz. The configuration selected for
comparisons are described in table 4, where the last column is the sensor diameter in
wall units d+=duτ/ν. Forest (2012) suggested that the dimensionless pinhole diameter
d+ should be smaller than 18 to ensure no sensor attenuation occurred for frequencies
up to ω+ = 1. The development of sensors based on microelectromechanical systems
(MEMS) (Löfdahl, Kalvesten & Stemme 1996; Löfdahl & Gad-el Hak 1999; White
et al. 2012) is a possible way to obtain very small sensors with d+< 10. In SONOBL
experiments, d+∼ 45 and Corcos correction was used to obtain the autospectra up to
ω+ = 2.

The mean and root-mean-square streamwise velocity profiles are in good agreement
with LES profiles in figure 24(a–c), keeping in mind that the Reynolds numbers are
two to three times higher in experiments. The adverse case is close to the APGw
simulation, which is coherent with the value found for the pressure-gradient parameter
β. Wall-pressure autospectra are compared with outer, mixed and inner scalings in
figures 24(d) to 24( f ), respectively. The agreement in the low- and medium-frequency
range are very good. The slightly lower levels of the experiments in outer scaling are
related to the Reynolds number influence. The slopes obtained in the overlap region
are compatible, even if the extent is reduced in the low Reynolds number simulations
(approximately from ωδ∗/Ue = 0.5 to 2 for adverse cases and from ωδ∗/Ue = 0.4 to
1 for zero gradient). The slopes, added in figure 24(e), correspond to ω−1.2 for APGs;
ω−0.8 for APGw; ω−0.5 for ZPG and ω−0.2 for FPGs. The green dashed line is the
slope ω−5 often used to model viscous dissipation at high frequencies. When scaled
with inner variables, the autospectra have still good compliance in the mid-frequency
range. In particular, the measures for the adverse cases are close to the mild APGw
LES. The mismatch at the low frequencies is a Reynolds number effect, whereas the
discrepancies at high frequencies is due to the too fast roll-off of LES spectra.
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FIGURE 25. (Colour online) Comparison with measurements of Catlett et al. (2016):
wall-pressure autospectra in outer (a) and mixed (b) scaling (APG 7◦, U∞ = 28 ft s−1 ,
magenta; APG 7◦, U∞= 56 ft s−1 , magenta; APG 7◦, U∞= 84 ft s−1 , magenta; APG
12◦, U∞ = 56 ft s−1 , red; APG 12◦, U∞ = 84 ft s−1 , red; APG 17◦, U∞ = 84 ft s−1

, green) compared to LES flows (ZPG ; APGw ; APGs ).

Case Ue δ δ∗ θ H Reθ uτ Re+ Cf β K d+

(m s−1) (mm) (mm) (mm) (m s−1) ×103
×107

APG 7◦ 7.8 74.55 13.75 9.20 1.49 4764 0.23 1145 1.8 3.94 −4.87 13
APG 7◦ 17.9 72.87 14.34 9.39 1.53 11 185 0.54 2648 1.9 3.89 −2.11 31
APG 7◦ 27.6 78.71 15.93 10.08 1.58 18 559 0.89 4651 2.1 3.90 −1.37 51
APG 12◦ 18.2 71.90 15.81 9.92 1.59 12 044 0.51 2436 1.6 15.04 −6.10 29
APG 12◦ 27.3 78.77 19.68 11.31 1.74 20 601 0.71 3711 1.3 21.77 −4.07 41
APG 17◦ 28.8 80.93 20.94 11.46 1.83 22 004 0.66 3564 1.1 41.11 −5.38 38

TABLE 5. Parameters of the experimental database of Catlett et al. (2016): APG 7◦ at
x = −0.204 m (−8.034 in) for the three inflow velocities (28, 56, 84 ft s−1), APG 12◦
at x = −0.154 m (−6.073 in) and U∞ = 56, 84 ft s−1 and APG 17◦ at x = −0.106 m
(−4.156 in) and U∞ = 84 ft s−1.

A.3. Comparisons with experiments of Catlett et al.
To investigate the effects of adverse pressure gradients on wall-pressure fluctuations,
Catlett et al. (2016) used flat airfoils with wedge-shaped trailing edges. The slopes of
the wedge, corresponding namely to angles 7, 12 and 17◦, prescribe the value of the
adverse gradient. The two-dimensional airfoils span the open jet test section, of width
2.44 m and height of roughly 1.5 m, of the anechoic flow facility at Naval Surface
Warfare Center. A three-component hot-wire probe was used for the aerodynamic
characterization and pinhole microphones are flush mounted to measure fluctuating
pressure (Knowles Electronics model FG-23742-D36). The effective diameter of
pinholes is 0.034 in (0.86 mm). The microphones have a flat frequency calibration
curve up to the high-frequency limit of 7 kHz, which is above the physical limit.
Thus, no Corcos correction is applied. Measurements are performed for three inflow
velocities, 28, 56 and 84 ft s−1, and several locations on the inclined wall of the
wedges. The selected cases for comparison are reported in table 5. We use the last
but one station before the trailing where the gradient is well established, the value of
x being measured upstream of the trailing edge (x= 0). Power spectra are plotted in
figure 25 with outer and mixed scaling. The three free stream velocities for 7◦-wedge
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FIGURE 26. (Colour online) Comparison with measurements of Hu & Herr (2016): mean
streamwise velocity profiles (a), plotted as a defect law (b) and in wall units (c) for
adverse- (APG6 , red), zero- (APG6 , black) and favourable- (FPG12 , blue) pressure
gradients. Wall-pressure autospectra in outer (d) and mixed (e) scaling (FPG14 , blue;
FPG12 , cyan; ZPG , black; APG6 , magenta; APG10 , red; APG14 , green)
compared to LES flows (FPGs , blue; FPGw , cyan; ZPG ; APGw ;
APGs ).

give an indication of Reynolds number influence. The spectra for the two highest
velocities compare favourably with APGw case when plotted with mixed scaling. The
slope in the intermediate frequencies for 12◦-wedge is close to the one for APGs
case, whereas the severe gradient corresponding to 17◦ exhibits higher levels and a
steeper slope. The Reynolds numbers in experiments of Catlett et al. (2016) are three
to ten times higher than the present simulations.

A.4. Comparisons with experiments of Hu and Herr
Hu & Herr (2016) conducted experiments in the open-jet anechoic test section
(height 1.2 m × width 0.8 m) of the Acoustic Windtunnel Braunschweig. The TBL
is measured on a flat wooden plate placed at mid-height and whose span is larger
than the jet to reduce side-edge effects. Favourable to adverse gradients are explored
by adjusting the rotation of a NACA0012 airfoil (chord 0.4 m), located just upstream
of the plate bevelled trailing edge and at a distance 0.12 m above the plate. Three
negative rotation angles, −14, −10 and −6◦, yield three values for the adverse
pressure gradient, and two positive angles, 12 and 14◦, set the intensity of the
favourable gradients. Parameters reported in table 6 correspond to the most upstream
measurement station, x = 1.21 m from the plate leading edge with the same inflow
velocity U∞ = 30.2 m s−1. Figure 26(a–c) presents the mean streamwise velocity
profiles for the mild adverse (β ' 3.8) and favourable (K ' 1.16× 10−7), which are
closest to the LES flow conditions. Good agreement is observed even if, as explained
by Hu & Herr (2016), the experimental set-up does not allow the establishment
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Case Ue δ δ∗ θ H Reθ uτ Re+ dp/dx β K Π d+

(m s−1) (mm) (mm) (mm) (m s−1) ×107

FPG14 31.1 13.8 1.28 1.01 1.26 2 040 1.47 1317 −1006 −0.5 4.21 −0.3 49
FPG12 27.2 15.9 1.96 1.52 1.29 2 683 1.24 1275 −209 −0.2 1.16 0.05 41
ZPG 30.2 19.7 3.51 2.49 1.41 4 889 1.13 1439 42 0.1 −0.20 0.8 37
APG6 30.8 24.4 5.61 3.49 1.61 6 979 0.89 1410 643 3.8 −2.75 2.2 30
APG10 30.4 28.7 7.68 4.39 1.75 8 670 0.75 1388 518 6.0 −2.32 3.3 25
APG14 29.9 35.0 12.07 5.69 2.12 11 046 0.51 1159 320 12.5 −1.51 7 17

TABLE 6. Parameters of the experimental database of Hu & Herr (2016) at x= 1.21 m.

of equilibrium flows and the values of pressure-gradient and wake parameters are
somewhat varying with respect to the measurement station. Wall pressure is measured
with pinhole-mounted Kulite pressure transducers without the protection screen
(model LQ-062-3.35bar, diameter d = 0.5 mm). The lowest frequency is imposed by
the noise due to the open-jet free shear layer (∼230 Hz at 58.7 m s−1). The highest
frequency is imposed by the electrical noise (∼7 kHz at 58.7 m s−1, which is below
the Kulite-pinhole Helmholtz resonance frequency estimated at 30 kHz). No Corcos
correction is applied. Wall-pressure spectra compared in figure 26(d–e) are also quite
coherent with the findings of the present simulations. The levels of the different
spectra have the same magnitude in the mid-frequency range when plotted using
outer scales, and the mixed scaling allows to display the influence of the gradient
with an increasing slope from favourable to adverse cases. The curve for APGs
appears between those for APG6 and APG10, even if the value of β is lower, but
this parameter is dependent on flow history. The adverse gradient corresponding to the
highest rotation angle −14◦ yields higher power levels and a steeper slope, coherently
with the severe value of the gradient. The spectra for FPG cases are less sensitive
to the precise value of the gradient. Intense fluctuations are however measured at the
low frequencies and can be related to the particular experimental set-up.
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