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SHARPER PROBABILISTIC BACKWARD ERROR ANALYSIS
FOR BASIC LINEAR ALGEBRA KERNELS WITH RANDOM DATA∗

NICHOLAS J. HIGHAM† AND THEO MARY‡

Abstract. Standard backward error analyses for numerical linear algebra algorithms provide
worst-case bounds that can significantly overestimate the backward error. Our recent probabilistic
error analysis, which assumes rounding errors to be independent random variables [SIAM J. Sci.
Comput., 41 (2019), pp. A2815–A2835], contains smaller constants but its bounds can still be pes-
simistic. We perform a new probabilistic error analysis that assumes both the data and the rounding
errors to be random variables and assumes only mean independence. We prove that for data with
zero or small mean we can relax the existing probabilistic bounds of order

√
nu to much sharper

bounds of order u, which are independent of n. Our fundamental result is for summation and we use
it to derive results for inner products, matrix–vector products, and matrix–matrix products. The
analysis answers the open question of why random data distributed on [−1, 1] leads to smaller error
growth for these kernels than random data distributed on [0, 1]. We also propose a new algorithm
for multiplying two matrices that transforms the rows of the first matrix to have zero mean and we
show that it can achieve significantly more accurate results than standard matrix multiplication.

Key words. rounding error analysis, floating-point arithmetic, probabilistic error bounds,
martingale, concentration inequality, mean independence, summation, inner product, matrix–vector
product, matrix multiplication

AMS subject classifications. 65G50, 65F05

1. Introduction. The main purpose of a rounding error analysis is to determine
whether an algorithm is numerically stable and, if it is not, to reveal the possible causes
of instability. The constants in error bounds, which have to capture the worst case,
are accepted to be generally pessimistic and they have been regarded as the least
important parts of the bounds [7, sec. 3.2]. Nevertheless, standard backward error
bounds usually guarantee reasonable backward errors for double precision arithmetic
and moderate problem dimensions n.

The rise of large scale, low precision computations provides a new perspective.
Indeed, with half precision arithmetic (for which the unit roundoff is u ≈ 5 × 10−4

for the IEEE fp16 format [12] and u ≈ 4 × 10−3 for the bfloat16 format [13]) even
algorithms with a forward error bound nu cannot guarantee a single correct digit for
problems larger than a few thousand—yet problems of much larger order routinely
arise in modern scientific computing. New bounds are therefore needed that are
sharper on average.

Recently, we have developed a rigorous, systematic way of performing probabilis-
tic backward error analysis based on a probabilistic model of the rounding errors [8].
This model assumes rounding errors to be independent random variables of mean zero.
While this model may not always be realistic, it leads to probabilistic error bounds
that are in practice much closer to the actual errors than worst-case bounds. These
bounds are proportional to

√
nu when the worst-case bound is nu and therefore they

can provide stability guarantees for much larger problems.
We made a surprising experimental observation in [8] that we were unable to
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Fig. 1.1. Backward error (defined in (2.2)) for the sum s =
∑n

j=1 xj computed by recursive sum-

mation in single precision (u ≈ 6×10−8) with random xj sampled uniformly from [0, 1] and [−1, 1].
Each test is repeated 10 times and the maximum error is plotted.

explain. We found that the backward errors of some key computational kernels depend
on the data in a way not reflected in the backward error bounds, which depend only
on n and norms of the data. We show an example of this behavior in Figure 1.1. The
figure reports the backward error for summing n numbers randomly sampled from a
uniform distribution. Even though the backward error bound for summation (which is
(n−1)u in the worst case and

√
n− 1u for the probabilistic analysis from [8, Thm. 3.1])

does not depend on the summands, the figure shows that the actual backward error
strongly depends on the interval the data is sampled in. For the [0, 1] interval, the
backward error is of order

√
nu, as predicted by the probabilistic bound, but for

the [−1, 1] interval the error is much smaller, seemingly independent of n. Similar
experiments showing strong variability in the error for different data distributions
can be found in the literature [1], [3], [4], [5], [14], [20]. It is thus clear that the
probabilistic bounds from [8] are not sharp for all data. At the same time, since most
of the bounds in [8] are sharp for the [0, 1] data, they cannot be improved without
additional assumptions.

In this work we perform a new probabilistic backward error analysis that uses
probabilistic models of both the data and the rounding errors. It uses a martingale
in order to require only mean idependence of the random variables. We prove that
the difference observed in Figure 1.1 is related to the mean of the data. Our analysis
shows that when the data has very small mean, such as for [−1, 1] uniformly sampled
numbers, the probabilistic backward error bound for summation is reduced from

√
nu

to cu, where c is moderate constant independent of n. We first obtain this result for
recursive summation and then apply it to inner products, matrix–vector products,
and matrix–matrix products.

The error analysis motivates the following idea: given an inner product-based
computation and arbitrary data, transform the data to have entries of zero mean,
perform the computations, and transform back to obtain the result. We implement
this idea for matrix multiplication, for which the overhead cost of the transformation
is asymptotically negligible. Our numerical experiments demonstrate that this new
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algorithm can reduce the error by several orders of magnitude and may therefore be
especially attractive for low precisions.

We begin, in section 2, by performing a probabilistic analysis of recursive summa-
tion based on the assumption that the rounding errors are mean independent random
variables. In section 2.1 we derive a stronger version of a result from our previous
work [8], for general data. In section 2.2 we introduce separate probabilistic models
of the summands and the rounding errors, obtaining backward error bounds that de-
pend on both the mean and the maximum magnitude of the data. We then apply our
bounds to inner products, matrix–vector products, and matrix–matrix products in
section 3. In section 4 we propose a new algorithm for multiplying two matrices that
achieves a smaller backward error by transforming the rows of the first matrix or the
columns of the second matrix to have zero mean. Finally, we provide our conclusions
in section 5.

Throughout the article, we illustrate our analysis with numerical experiments
carried out with MATLAB R2018b. We have made our codes available online1.

2. Probabilistic backward error analysis for summation. In this section,
we focus on recursive summation, which is the standard method of summation that
forms s =

∑n
j=1 xj by setting s = x1 then executing s← s+ xj , j = 2: n. We apply

our analysis to inner products and matrix–vector products in section 3.
We begin in section 2.1 with some preliminary results for general data xj . In

particular, we derive in Theorem 2.4 a stronger version of a result from our previous
paper [8, Thm. 3.1], which does not require the assumption that the rounding errors
are independent.

Then, in section 2.2, we turn to the main goal of this paper: to obtain a sharper
probabilistic backward error bound by exploiting more information about the sum-
mands xj . In particular, we obtain in Theorem 2.8 an improved error bound for
random independent data.

2.1. Probabilistic analysis for general data. We denote the expectation
(mean) of a random variable x by E(x). We use the standard model of floating-point
arithmetic [7, sec. 2.2],

(2.1) f l(a op b) = (a op b)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /,√}.

This model holds for IEEE arithmetic [12]. Indeed, the IEEE standard requires more:
that f l(a op b) is the correctly rounded (to nearest) value of a op b. We will refer to
δ as the rounding error in the operation, though this term might more naturally be
applied to a op b− f l(a op b).

To derive our probabilistic error bounds we will use the following model of round-
ing errors in a given computation.

Model 1 (probabilistic model of rounding errors). Let the computation of in-
terest generate rounding errors δ1, δ2, . . . in that order. The δk are random variables
of mean zero such that E(δk | δ1, . . . , δk−1) = E(δk) (= 0).

Note that, unlike the model used in our previous analysis [8], Model 1 does not assume
independence of the rounding errors. We only require their mean independence, which
is the weaker assumption that the conditional mean E(δk | δ2, . . . , δk−1) is equal to
the unconditional mean E(δk) = 0. Indeed, independent random variables are also
mean independent, but the converse does not hold in general. Mean independence

1https://gitlab.com/theo.andreas.mary/ProbBWD

https://gitlab.com/theo.andreas.mary/ProbBWD
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is also a stronger property than uncorrelatedness, because E(X | Y ) = E(X) implies
E(XY ) = E(X)E(Y ). This latter fact is a consequence of the law of total expectation
(or tower property): E(X) = E

(
E(X | Y )

)
[2, p. 448], [19, p. 401]. We will also need

a more general form of the law of total expectation: E(X | Y ) = E(E(X | Z) | Y )
where “Y ⊆ Z” [2, Thm. 34.4],

Note that for general random variables Xi, the expression E(Xk | X2, . . . , Xk−1)
is not a real value, but a random variable itself, which takes the value E(Xk | X1 =
x1, . . . , Xk−1 = xk−1) when X1 = x1, . . . , Xk−1 = xk−1, as defined by [17, Def. 2.7].

The backward error for an approximate sum ŝ is

(2.2) εbwd(ŝ) := min

{
ε > 0 : ŝ =

n∑
j=1

xj(1 + θj), |θj | ≤ ε
}

=
|ŝ− s|∑n
j=1 |xj |

,

where the last equality follows from the Oettli–Prager theorem [7, Thm. 7.3], [18].
We begin with a lemma on the rounding error analysis of recursive summation.

Lemma 2.1. Let s =
∑n

j=1 xj. Recursive summation produces a computed ŝ sat-
isfying

(2.3) ŝ− s =

n∑
i=2

Tiδi +O(u2),

where |δi| ≤ u and Ti =
∑i

j=1 xj.

Proof. Recursive summation can be expressed as Ti = Ti−1 + xi, i = 2: n, with

T1 = x1 and s = Tn. For the computed T̂i, by (2.1) we have

(2.4) T̂i = (T̂i−1 + xi)(1 + δi), |δi| ≤ u.

Summing this equality for i = 2: n yields

(2.5) ŝ− s = T̂n − Tn =

n∑
i=2

(T̂i−1 + xi)δi =

n∑
i=2

T̂i
δi

1 + δi
,

using (2.4). We conclude the proof by using T̂iδi/(1 + δi) = (Ti +O(u))δi/(1 + δi) =
Tiδi +O(u2).

We need the concept of a martingale.

Definition 2.2 (Martingale). A sequence of random variables E1, . . . , En is a
martingale with respect to the sequence X1, . . . , Xn if, for all k,

• Ek is a function of X1, . . .Xk,
• E(|Ek|) <∞, and
• E(Ek | X1, . . . , Xk−1) = Ek−1.

We will use the following inequality [17, Thm. 13.4].

Lemma 2.3 (Azuma–Hoeffding inequality). Let E1, . . . , En be a martingale
such that |Ek − Ek−1| ≤ ck, for k = 2: n. Then for any λ > 0,

Pr

(
|En − E1| ≥ λ

(
n∑

k=2

c2k

)1/2)
≤ 2 exp

(
−λ2/2

)
.
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Before deriving our new results based on a probabilistic model of the data, we
obtain a stronger version of a result from our previous paper [8, Thm. 3.1], using the
less restrictive Model 1.

Theorem 2.4. Let s =
∑n

j=1 xj and let ŝ be computed by recursive summation.
Under Model 1, the inequality

(2.6) |ŝ− s| ≤ λ
√
n− 1u(1 + u)n−2

n∑
j=1

|xj |

holds with probability at least P (λ) = 1− 2 exp(−λ2/2).

Proof. Let Ek =
∑k

i=1(T̂i−1 + xi)δi, where T̂i is defined in (2.4) and we define

T̂0 = 0 and δ1 = 0. We will show that E1, . . . , En is a martingale with respect to δ1,
. . . , δn.

The recurrence (2.4) leads to

(2.7) T̂i =

i∑
j=1

xj

i∏
`=j

(1 + δ`),

so, since δ1 = 0,

(2.8) |T̂i| ≤ (1 + u)i−1
i∑

j=1

|xj |.

Hence |Ek| is bounded a by finite sum of bounded terms and so E(|Ek|) <∞.
We have

(2.9) Ek − Ek−1 = δk(T̂k−1 + xk),

so

E
(
Ek | δ1, . . . , δk−1

)
= E

(
Ek−1 + δk(T̂k−1 + xk) | δ1, . . . , δk−1

)
= E(Ek−1 | δ1, . . . , δk−1) + E(δkT̂k−1 | δ1, . . . , δk−1

)
+ E(δkxk | δ1, . . . , δk−1

)
.

Now Ek−1 is completely determined by δ1, . . . , δk−1, so E(Ek−1 | δ1, . . . , δk−1
)

=

Ek−1. Next, since T̂k−1 is completely determined by δ1, . . . , δk−1,

E
(
δkT̂k−1 | δ1, . . . , δk−1

)
= T̂k−1 E

(
δk | δ1, . . . , δk−1

)
= T̂k−1 E

(
δk) = 0,

using the mean independence of the δk. For the last term,

E(δkxk | δ1, . . . , δk−1
)

= xk E(δk | δ1, . . . , δk−1
)

= xk E(δk) = 0.

Hence E(Ek | δ1, . . . , δk−1
)

= Ek−1 and so we have proved that E1, . . . , En is a
martingale with respect to δ1, . . . , δn.

By (2.9) and (2.8) we have

|Ek − Ek−1| ≤ u
(

(1 + u)k−2
k−1∑
j=1

|xj |+ |xk|
)
≤ u(1 + u)k−2

k∑
j=1

|xj | =: ck.



6 NICHOLAS J. HIGHAM AND THEO MARY

From (2.5) we have

(2.10) ŝ− s =

n∑
i=2

(T̂i−1 + xi)δi = En − E1.

Hence by the Azuma–Hoeffding inequality (Lemma 2.3) we have

|ŝ− s| = |En − E1| ≤ λ
√
n− 1u(1 + u)n−2

n∑
j=1

|xj |.

We make two comments on Theorem 2.4. First, if we use a different martingale
with Ek =

∑k
i=1 Tiδi then the proof becomes simpler, but at the cost of obtaining the

first order bound |ŝ − s| ≤ λ
√
n− 1u

∑n
j=1 |xj | + O(u2). Second, we could obtain a

bound with smaller higher order terms by bounding the product
∏i

`=j(1+δ`) in (2.7)
by a probabilistic bound [6, Thm. 4.8] instead of a worst-case bound.

Combining Theorem 2.4 with the formula (2.2) for the backward error we obtain
the backward error bound εbwd(ŝ) ≤ λ

√
n− 1u + O(u2), which is almost the same

to first order as the backward error bound for inner products from [8, Thm 3.1],
differing mainly in the probability P (λ). In fact, the probability of failure 1−P (λ) =
2 exp(−λ2/2) in Theorem 2.4 does not depend on n, and it is n times smaller than the
probability of failure in [8, Thm 3.1], which is 1−Q(λ, n) = 2n exp(−λ2(1− u)2/2).
The reason that we are able to obtain a smaller probability of failure is that the
analysis in [8] directly bounds the backward error perturbations θj in the expression

ŝ =

n∑
j=1

xj(1 + θj), |θj | ≤ εbwd,

and the condition that the bound on |θj | must hold for all j multiplies the probability
of failure by n.

We also note that Theorem 2.4 yields an almost identical bound and probability
of failure as the probabilistic forward error analysis of inner products by Ipsen and
Zhou [14, Cor. 4.8], which also employs a martingale.

2.2. Probabilistic analysis for random data. We now turn to the main
goal of this new analysis: to obtain a sharper probabilistic backward error bound by
exploiting more information about the summands xj . In order to do so, we must make
some assumptions on the distribution of the xj , which we summarize in the following
model.

Model 2 (probabilistic model of the data). The xj, j = 1: n, are independent
random variables sampled from a given distribution of mean µx and satisfy |xj | ≤ Cx,
j = 1: n, where Cx is a constant.

We also need to modify Model 1 to generalize the assumptions made on the round-
ing errors. Specifically, we require the rounding errors δk to be mean independent of
both the previous δj and the xj , as stated in the following model.

Model 3 (modified probabilistic model of rounding errors for recursive summa-
tion). Consider the computation of s =

∑n
j=1 xj by recursive summation for random

data xj satisfying Model 2. The rounding errors δ2, . . . , δn produced by the computa-
tion are random variables of mean zero and, for all k, the δk are mean independent
of the previous rounding errors and of the data, in the sense that

(2.11) E(δk | δ2, . . . , δk−1, x1, . . . , xn) = E(δk) (= 0).
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Model 3 generalizes Model 1 by taking the rounding errors to be mean independent
of the data in addition to being mean independent of the previous rounding errors.

Models 2 and 3 are not necessarily realistic. Model 2 is clearly not always appli-
cable, since in real world applications the xj may be neither random nor independent
and they may not always be bounded. Furthermore, the rounding error in a floating-
point operation depends on the operands, that is, δ in (2.1) depends on a and b, but
in Model 3 we assume that the rounding errors are at least mean independent of the
data.

The question of interest is whether our assumptions allow us to model usefully the
actual rounding errors obtained in the computations we consider (cf. similar comments
of Hull and Swenson [11] and Kahan [16], as discussed in [8]). We will now show that
using Models 2 and 3 we can obtain insight into the conditions required for the general
bound (2.6) (which is applicable to any data) to be sharp. In particular we will show
that (2.6) is sharp for random xi with a nonzero mean µx 6= 0 but can be improved
when µx = 0, which explains the difference between [0, 1] and [−1, 1] data previously
observed in [8] and illustrated in Figure 1.1.

By Lemma 2.1, the size of |ŝ− s| is mainly determined by the size of the partial
sums |Ti|. We therefore begin by deriving probabilistic bounds on |Ti|, for which we
need the following concentration inequality (a concentration inequality bounds the
deviation of a random variable from its mean) [10, Thm. 2].

Lemma 2.5 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random
variables satisfying

|Xi| ≤ ci, i = 1: n.

Then the sum S =
∑n

i=1Xi satisfies

(2.12) Pr

(
|S − E(S)| ≥ λ

(
n∑

i=1

c2i

)1/2)
≤ 2 exp

(
−λ2/2

)
.

Lemma 2.6. Let Ti =
∑i

j=1 xj. Under Model 2, the inequality

|Ti| ≤ |µx|i+ λCx

√
i,

holds for any given i = 1 : n with probability at least P (λ) = 1− 2 exp(−λ2/2).

Proof. The result is obtained by applying Lemma 2.5 with n ← i, Xj ← xj ,
S ← Ti (hence E(S) = µxi), and ci = Cx.

We now prove that the sequence of errors Ek =
∑k

i=2 Tiδi, k = 1: n, is a martin-
gale with respect to T1δ1, . . . , Tnδn, and obtain a bound on |En|.

Lemma 2.7. Let En =
∑n

i=2 Tiδi, where Ti =
∑i

j=1 xj and the δi are defined in
(2.4). If the xj satisfy Model 2 then under Model 3 the inequality

|En| ≤
(
λ|µx|n3/2 + λ2Cxn

)
u

holds with probability at least P (λ) = 1− 2n exp(−λ2/2).

Proof. Clearly, |Ek| ≤ k(k − 1)Cxu, so E(|Ek|) <∞ for all k. Moreover,

E(Ek | T1δ1, . . . , Tk−1δk−1) = E(Ek−1 + Tkδk | T1δ1, . . . , Tk−1δk−1)

= Ek−1 + E(Tkδk | T1δ1, . . . , Tk−1δk−1)
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since Ek−1 is completely determined by T1δ1, . . . , Tk−1δk−1. By the law of total
expectation, the second term is equal to

E(Tkδk | T1δ1, . . . , Tk−1δk−1)

= E
(
E(Tkδk | T1δ1, . . . , Tk−1δk−1, δ1, . . . , δk−1, x1, . . . , xk) | T1δ1, . . . , Tk−1δk−1

)
= E

(
Tk E(δk | δ1, . . . , δk−1, x1, . . . , xk) | T1δ1, . . . , Tk−1δk−1

)
,

where the second equality is obtained by noticing that fixing δ1, . . . , δk−1, x1, . . . , xk
leads to fixed Tk and T1δ1, . . . , Tk−1δk−1. By the mean independence of δk with
respect to δ2, . . . , δk−1 and x1, . . . , xk−1 ((2.11) in Model 3), we thus have

(2.13) E(Tkδk | T1δ1, . . . , Tk−1δk−1) = E
(
Tk E(δk) | T1δ1, . . . , Tk−1δk−1

)
= 0,

since E(δk) = 0. Overall, E(Ek | T1δ1, . . . , Tk−1δk−1) = Ek−1 and E1, . . . , En is
therefore a martingale with respect to T1δ1, . . . , Tnδn. Now |Ek − Ek−1| = |Tkδk| ≤
|Tk|u and by Lemma 2.6, for each k ∈ [2, n] the bound

|Tk|u ≤
(
|µx|k + λCx

√
k
)
u =: ck

fails to hold with probability at most 2 exp(−λ2/2). Therefore, by the inclusion–
exclusion principle [19, p. 39], the probability that at least one of these n − 1 in-
equalities fails to hold is at most 2(n − 1) exp(−λ2/2). If all these inequalities hold
simultaneously, which happens with probability at least 1−(2n−1) exp(−λ2/2), then
by applying Lemma 2.3 and noting that E1 = 0, for the same λ as above we have

|En| ≤ λ
√
n− 1cn = λ

√
n− 1

(
|µx|n+ λCx

√
n
)
u

with probability at least 1−2n exp(−λ2/2). We slightly weaken the bound by replacing√
n− 1 by

√
n for readability.

We are finally ready for our main result.

Theorem 2.8. Let x ∈ Rn satisfy Model 2 with mean µx and constant Cx. Let
s =

∑n
j=1 xj and let ŝ be computed by recursive summation. Under Model 3, the

inequality

(2.14) |ŝ− s| ≤
(
λ|µx|n3/2 + λ2Cxn

)
u+O(u2)

holds with probability at least P (λ) = 1− 2n exp(−λ2/2).

Proof. The result is a direct consequence of Lemma 2.7, since |ŝ−s| = |En|+O(u2)
by Lemma 2.1.

We point out that unlike Theorem 2.4, which could be proved without using
martingales by adding the assumption that the rounding errors are independent in
Model 1, Theorem 2.8 necessarily requires martingales. This is because successive Ti
variables depend on each other through the recursion Ti+1 = Ti + xi+1, and so the
variables Xi = Tiδi are clearly not independent, even with the assumption that the
rounding errors δi are.

The forward error bound (2.14) is clearly better than the deterministic bound
|ŝ−s| ≤ n2Cxu+O(u2) [7, sect. 4.2]. More importantly, it is also better than the bound
|ŝ − s| ≤ λn3/2Cxu + O(u2) obtained by bounding |xj | by Cx in the bound (2.6) of
Theorem 2.4. Indeed, unlike (2.6), the bound (2.14) reveals an interesting dependence
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between the growth rate of the forward error and the mean µx. If µx 6= 0 then the
first term in (2.14) dominates and |ŝ − s| grows as n3/2u, just like the bound (2.6).
However, if µx = 0 (or if |µx| is very small) the second term in (2.14) dominates and
|ŝ− s| grows only at most as nu, which is a factor

√
n smaller.

Theorem 2.8 can be intuitively explained as follows. By Lemma 2.1, the size of
|ŝ− s| is determined by the size of the partial sums |Ti|, which depend in turn on the
mean µx, as shown in Lemma 2.6. If µx 6= 0 then |Ti| . i|µx| for large i, so |Ti| can
grow linearly with i; however, if µx = 0 then statistical effects associated with the
data prevent |Ti| from exceeding a multiple of

√
i with high probability.

We now analyze what bound on the backward error (2.2) can be obtained from
Theorem 2.8. Since we have already obtained an upper bound for the numerator
|ŝ− s|, all that is left is to derive a lower bound for the denominator

∑n
j=1 |xj |. We

need the following lemma.

Lemma 2.9. Let w ∈ Rn satisfy Model 2 with mean µw and constant Cw. For
any n such that there exists α ∈ [0, 1] such that (1− α)|µw|

√
n ≥ λCw, the inequality∣∣∣∣∣

n∑
j=1

wj

∣∣∣∣∣ ≥ α|µw|n

holds with probability at least P (λ) = 1− 2 exp(−λ2/2).

Proof. Applying Lemma 2.5 with Xi = wi and ci = Cw we find that |
∑n

j=1 wj −
nµw| ≤ λCw

√
n holds with probability at least P (λ), which implies that the inequality∣∣∣∣∣

n∑
j=1

wj

∣∣∣∣∣ ≥ |µw|n− λCw

√
n

holds with probability at least P (λ). We conclude with

|µw|n− λCw

√
n ≥ |µw|n− (1− α)|µw|n = α|µw|n

for any α ∈ [0, 1] such that (1− α)|µw|
√
n ≥ λCw.

We wish to apply the lemma with w = |x|. Note that the condition (1 −
α)µ|x|

√
n ≥ λCx in the lemma holds for large enough n as long as µ|x| 6= 0. Even

though one can construct special distributions of xj satisfying Model 2 for which µ|x|
is very small (for instance, this is the case if the xj have zero mean and very small
variance), for classical distributions such as uniform or normal distributions, µ|x| is
a strictly positive constant independent of n. Then

∑n
j=1 |xj | grows proportionally

to n.
The following corollary readily follows from Theorem 2.8, Lemma 2.9, and (2.2).

Corollary 2.10. Let x ∈ Rn satisfy Model 2 with mean µx and constant Cx,
and let |x| also satisfy Model 2 with mean µ|x|. Let s =

∑n
j=1 xj and let ŝ be computed

by recursive summation. Under Model 3, for any n such that there exists α ∈ [0, 1]
such that (1− α)µ|x|

√
n ≥ λCx the backward error bound

εbwd(ŝ) ≤ 1

αµ|x|

(
λ|µx|

√
n+ λ2Cx

)
u+O(u2)

holds with probability at least P (λ) = 1− 2(n+ 1) exp(−λ2/2).
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The backward error therefore grows at most as
√
nu when µx 6= 0, whereas if

µx = 0 it does not grow with n and remains close to the unit roundoff u. Corollary 2.10
therefore explains the experimental results reported in Figure 1.1 and answers an open
question posed in [8].

It is worth emphasizing that the differing behavior of the backward error for
different distributions is therefore related to the mean of the summands rather than
their signs. This can be easily verified experimentally by sampling the summands
uniformly in [−1, 3] (say), which leads to a very similar backward error to the [0, 1]
case.

We comment on the role of the parameter λ in the bounds. Compared with the
bound of Theorem 2.4, the new bound of Theorem 2.8 and all the later bounds in
this paper have an extra term proportional to λ2. However, the impact of λ on the
bounds is harmless, because for practical values of n (say, less than 1010), small values
of λ (less than 10) suffice to make P (λ) very close to 1, as already observed in [8].
Moreover, in practice, we observe the probability P (λ) to be very pessimistic; the
bounds consistently hold with λ ≈ 1.

We now discuss the relative forward error |ŝ − s|/|s|. By (2.2), this quantity is
bounded by κ times the backward error, where

κ =

∑n
j=1 |xj |
|s|

is the condition number for summation [4]. While it is tempting to derive a proba-
bilistic bound on κ, there is not much we can actually say, as we show below. (The
bounds that follow are probabilistic ones, but we do not keep track of the specific
probabilities for simplicity of the discussion). The numerator grows linearly with n,
since by Lemma 2.9 applied to |x| it is bounded below by α1µ|x|n for any α1 ∈ [0, 1]
such that (1 − α1)µ|x|

√
n ≥ λCx and bounded above by Cxn. When µx 6= 0, by

Lemma 2.9 applied to x the denominator similarly satisfies α2|µx|n ≤ |s| ≤ Cxn for
any α2 ∈ [0, 1] such that (1 − α2)|µx|

√
n ≥ λCx. We therefore have (with certain

probabilities) the bounds

(2.15)
α1µ|x|

Cx
≤ κ ≤ Cx

α2|µx|

and thus κ is of order 1 when all the involved constants are of order 1. The picture is
entirely different if µx = 0, because |s| may then be arbitrarily small with significant
probability, and so we cannot obtain a nonzero lower bound on |s|. Together with the
upper bound |s| ≤ λCx

√
n from Lemma 2.6, the best we can conclude is that

(2.16)
α1µ|x|

√
n

λCx
≤ κ ≤ ∞.

The condition number therefore grows at least as
√
n, but may be much larger than

that. This is illustrated in Figure 2.1, which plots the forward error for the same data
as in Figure 1.1. The occasional but not rare spikes of the forward error for the [−1, 1]
data show that the forward error may sometimes be much larger than

√
nu.

We finally mention an important consequence of this probabilistic condition num-
ber analysis in mixed-precision settings. Suppose we compute s =

∑n
i=1 xi in pre-

cision u2 and store the result in precision u (this is similar to what GPU tensor
cores units implement for matrix–matrix products [3]). Then the computed ŝ satisfies
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Fig. 2.1. Forward error for recursive summation s =
∑n

j=1 xj in single precision, with random

uniform xj sampled from either [0, 1] or [−1, 1] (the same xj as in Figure 1.1). Each test is repeated
10 times and the maximum error is plotted.

|ŝ− s| ≤ u|s|+O(u2) and we obtain a backward error bound

(2.17)
|ŝ− s|∑n
i=1 |xi|

≤ κ−1u+O(u2)

that is inversely proportional to the condition number. Together with (2.16), which
shows that κ must increase at least as

√
n for random data of zero mean, (2.17) ex-

plains why the backward error may decrease as n increases in mixed-precision settings
(see, e.g., [3, Fig 3.2], which plots maxima of columnwise backward errors for matrix
multiplication, which satisfy a bound of the form (2.17)).

3. Application to basic linear algebra kernels. We now apply our analysis
of recursive summation to inner products and matrix–vector products.

Throughout the section, a vector or a matrix W is said to “satisfy Model 2 with
mean µ and bound C” if its entries wij satisfy the model with E(wij) = µ and
|wij | ≤ C, for all i and j. We also write µ|W | for the mean of the absolute values of
the entries, E(|wij |), which is the same for all i and j by assumption. When we write
“let A, B, and C satisfy Model 2”, this is understood to mean that all the random
variables comprising the elements of A, B, and C are mutually independent. This
implies that we cannot take A = B, for example.

The extension of our analysis to the inner product of two vectors x, y ∈ Rn is
relatively straightforward since inner products are sums of the form xT y =

∑n
j=1 xjyj .

We first state the following trivial extension of Lemma 2.9.

Corollary 3.1. Let x, y ∈ Rn and let |x| and |y| satisfy Model 2 with bounds
Cx and Cy. For any n such that there exists α ∈ [0, 1] such that (1− α)µ|x|µ|y|

√
n ≥

λCxCy, the inequality

|x|T |y| ≥ αµ|x|µ|y|n

holds with probability at least P (λ) = 1− 2 exp(−λ2/2).
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Proof. The result is obtained by applying Lemma 2.9 to the vector w with wi =
|xiyi| and using the fact that E(wi) = E(|xi|)E(|yi|) = µ|x|µ|y|, since |x| and |y| are
independent.

The backward error for an approximate inner product ŝ is, using (2.2),

(3.1) εbwd := min

{
ε > 0 : ŝ =

n∑
j=1

xjyj(1 + θj), |θj | ≤ ε
}

=
|ŝ− s|
|x|T |y|

.

Theorem 3.2. Let x, y ∈ Rn and let s = xT y be computed by recursive summa-
tion. If x and y satisfy Model 2 with means µx and µy and bounds Cx and Cy then
under Model 3 the computed ŝ satisfies

(3.2) |ŝ− s| ≤
(
λ|µxµy|n3/2 + (λ2 + 1)CxCyn

)
u+O(u2)

with probability at least P (λ) = 1− 2n exp(−λ2/2). If |x| and |y| also satisfy Model 2
with means µ|x| and µ|y| then for any n such that there exists α ∈ [0, 1] for which
(1− α)µ|x|µ|y|

√
n ≥ λCxCy, the backward error is bounded by

(3.3) εbwd ≤
1

αµ|x|µ|y|

(
λ|µxµy|

√
n + (λ2 + 1)CxCy

)
u+O(u2),

with probability at least P (λ) = 1− 2(n+ 1) exp(−λ2/2).

Proof. Let zj = xjyj . The computed ẑj satisfies

(3.4) ẑj = xjyj(1 + εj), |εj | ≤ u.

Let t =
∑n

j=1 ẑj . By Lemma 2.1, we have

t̂− t =

n∑
i=2

Tiδi +O(u2),

where Ti =
∑i

j=1 ẑj . We cannot directly apply Hoeffding’s inequality to Ti since the
ẑj may be dependent (via possibly dependent εj). However, since ẑj = zj +O(u), we
have

t̂− t =

n∑
i=2

Wiδi +O(u2),

where Wi =
∑i

j=1 zj and where the zj satisfy Model 2 with E(zj) = µxµy and
|zj | ≤ CxCy. Therefore, by Lemma 2.7, we obtain

(3.5) |t̂− t| ≤
(
λ|µxµy|n3/2 + λ2CxCyn

)
u+O(u2)

with probability at least P (λ) = 1− 2n exp(−λ2/2). Since ŝ = t̂, we use the triangle
inequality

|ŝ− s| = |ŝ− t+ t− s| ≤ |t̂− t|+ |t− s|

and combine (3.5) with the bound |t− s| ≤ CxCynu to obtain (3.2). To obtain (3.3),
we bound |x|T |y| below by Corollary 3.1.
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(a) Inner product.
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Fig. 3.1. Backward errors (3.1) and (3.6) for computing the inner product xT y and the matrix–
vector product Ax in single precision for A ∈ R100×n, with A, x, and y sampled from the uniform
distribution on the indicated intervals. The black dashed line is

√
nu. For the inner product, each

test is repeated 100 times and the maximum error is plotted.

Compared with the bound (2.14) for summation, the bound (3.2) on the forward
error |ŝ−s| for inner products only has an extra “+1” term, which corresponds to the
initial multiplications zj = xjyj . We obtain a backward error bound (3.3) of order
O(u), instead of O(

√
nu) when the entries of either x or y have small mean. We

illustrate this result with a numerical experiment in Figure 3.1a, which confirms that
as long as at least one of the two vectors has small mean then the backward error
does not grow with n.

We now turn to matrix–vector products, which are straightforward to analyze
since they simply consist of multiple inner products. The backward error for an
approximation ŷ to a matrix–vector product Ax is

(3.6) εbwd(ŷ) := min
{
ε > 0 : ŷ = (A+∆A)x, |∆A| ≤ ε|A|

}
= max

i=1:m

|ŷi − yi|
(|A||x|)i

,

where the last equality follows from the Oettli–Prager theorem [7, Thm. 7.3], [18].

Theorem 3.3. Let A ∈ Rm×n, x ∈ Rn, and y = Ax. Assume A and x satisfy
Model 2 with means µA and µx and bounds CA and Cx. Also assume |A| and |x|
satisfy Model 2 with means µ|A| and µ|x|. Under Model 3, for any n such that there
exists α ∈ [0, 1] such that (1 − α)µ|A|µ|x|

√
n ≥ λCACx, the backward error of the

computed ŷ satisfies

(3.7) εbwd(ŷ) ≤ 1

αµ|A|µ|x|

(
λ|µAµx|

√
n + (λ2 + 1)CACx

)
u+O(u2)

with probability at least P (λ) = 1− 2m(n+ 1) exp(−λ2/2).

Proof. The bound

|ŷi − yi| ≤
(
λ|µAµx|n3/2 + (λ2 + 1)CACxn

)
u+O(u2)

holds for any given i with probability at least P (λ) = 1 − 2n exp(−λ2/2) by The-
orem 3.2. Therefore the bound holds for all i = 1: m with probability at least
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1 −m(1 − P (λ)) = 1 − 2mn exp(−λ2/2). For any n such that there exists α ∈ [0, 1]
such that (1− α)µ|A|µ|x|

√
n ≥ λCACx, Corollary 3.1 gives

(|A||x|)i ≥ αµ|A|µ|x|n

with probability at least 1 − 2 exp(−λ2/2) for any given i and thus with probability
at least 1 − 2m exp(−λ2/2) for all i, yielding (3.7) with probability at least P (λ) =
1− 2m(n+ 1) exp(−λ2/2).

We reach the same conclusions regarding the backward error for computing matrix–
vector products as for inner products, the only difference being that the probability
of failure of the bound is larger by a factor m. We obtain a backward error bound of
order u rather than order

√
nu if all the entries of either the vector x or the matrix A

have small mean. This result is confirmed by the numerical experiment in Figure 3.1b.
Finally, we give a result for matrix multiplication. The proof is a direct application

of Theorem 3.2, as in Theorem 3.3.

Theorem 3.4. Let A ∈ Rm×n and B ∈ Rn×p satisfy Model 2 with means µA, µB

and bounds CA, CB, and let C = AB. Under Model 3, the computed Ĉ satisfies

(3.8) max
i,j
|(Ĉ − C)ij | ≤

(
λ|µAµB |n3/2 + (λ2 + 1)CACBn

)
u+O(u2)

with probability at least P (λ) = 1− 2mnp exp(−λ2/2).

4. Reducing the backward error by reducing the data mean. Corollary
2.10 shows that under suitable assumptions the backward error for summing n num-
bers xj of mean µx is, with high probability, of order

√
nu when µx 6= 0 but only

of order u when µx = 0. It is therefore natural to ask whether this property can be
exploited to make computations more accurate: by reducing the mean of the data,
can we reduce the backward error? Consider, for instance, the following simple idea:
given n summands xj of mean µx 6= 0, define yj = xj − µx and compute

(4.1) s =

n∑
j=1

yj + nµx.

Since the yj have zero mean by construction, we may hope to reduce the backward
error by computing s with (4.1) rather than classical recursive summation. Proving
that the backward error is indeed reduced from O(

√
nu) to O(u) when the xi satisfy

Model 2 and Model 3 is satisfied is the object of section 4.1.
The cost of computing (4.1) is, however, significant, since it requires n+ 2 addi-

tional flops to compute the n subtractions xj − µx and the final addition and mul-
tiplication with nµx, to which must be added another n flops for computing µx if
it is not known. It is therefore roughly two to three times more expensive to com-
pute s by (4.1) than by standard recursive summation. This makes the algorithm
unattractive for low precisions, since simply using a higher precision would typically
be cheaper. However, as we explain in section 4.2, the same idea can be generalized to
matrix multiplication, and in this case the overhead of transforming the sums arising
in the computation into zero mean sums becomes asymptotically negligible.

4.1. Analysis for recursive summation. Algorithm 4.1 computes the sum of
n numbers xj of nonzero mean µx. As mentioned above, we may expect this algorithm
to yield a smaller backward error than recursive summation under Models 2 and 3.
We will now prove that this is indeed the case. For the analysis, we assume that
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the xj satisfy Model 2 and, for simplicity, we also assume that µx is known exactly,
although if we have only an approximate µ̃x = µx + O(u) then the analysis below is
essentially unaffected.

Algorithm 4.1 This algorithm computes s =
∑n

j=1 xj for summands xj of mean
µx 6= 0.

1: for j = 1 to n do
2: yj = xj − µx

3: end for
4: t =

∑n
j=1 yj % By recursive summation.

5: s = t+ nµx

Each computed ŷj on line 2 satisfies

(4.2) ŷj = (xj − µx)(1 + εj), |εj | ≤ u.

Let t =
∑n

j=1 ŷj . In the same vein as the proof of Theorem 3.2, we have by Lemma 2.1

t̂− t =

n∑
i=2

Tiδi +O(u2),

where Ti =
∑i

j=1 ŷj , and therefore

t̂− t =

n∑
i=2

Wiδi +O(u2),

where Wi =
∑i

j=1 yj and where the yj satisfy Model 2 with E(yj) = µy = 0 and
|yj | ≤ Cy = Cx + |µx|. By Lemma 2.7 we obtain the bound

(4.3)

∣∣∣∣∣t̂−
n∑

j=1

ŷj

∣∣∣∣∣ = |t̂− t| ≤
(
λ|µy|n3/2 + λ2Cyn

)
u+O(u2)

with probability at least P (λ) = 1 − 2n exp(−λ2/2). Since µy = 0 by construction,
we therefore obtain

(4.4)

∣∣∣∣∣t̂−
n∑

j=1

ŷj

∣∣∣∣∣ ≤ λ2(Cx + |µx|)nu+O(u2).

Finally, the computed ŝ on line 5 satisfies, by (2.1),

(4.5) ŝ =
(
t̂+ n|µx|(1 + ζ1)

)
(1 + ζ2), |ζ1| ≤ u, |ζ2| ≤ u.

Combining (4.2), (4.4), and (4.5) gives

|ŝ− s| =

∣∣∣∣∣
(
t̂−

n∑
j=1

ŷj +

n∑
j=1

ŷj + nµx(1 + ζ1)

)
(1 + ζ2)−

n∑
j=1

xj

∣∣∣∣∣
≤ λ2(Cx + |µx|)nu+

n∑
j=1

|xj ||εj + ζ2|+
n∑

j=1

|µx||εj |+ n|µx||ζ1|+O(u2)

≤ (λ2 + 2)(Cx + |µx|)nu+O(u2).

From (2.2) and Lemma 2.9 we obtain the following backward error result.
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Theorem 4.1. Let s =
∑n

j=1 xj and let ŝ be the computed sum from Algo-
rithm 4.1. If x satisfies Model 2 and |x| also satisfies Model 2 then, under Model 3,
for any n such that there exists α ∈ [0, 1] such that (1−α)µ|x|

√
n ≥ λCx, the backward

error bound

(4.6) εbwd ≤
1

αµ|x|
(λ2 + 2)(Cx + |µx|)u+O(u2)

holds with probability at least P (λ) = 1− 2(n+ 1) exp(−λ2/2).

Theorem 4.1 confirms that the proposed Algorithm 4.1 achieves a backward error
bound that is independent of n to first order, potentially reducing the error by several
orders of magnitude. We now apply this promising idea to matrix multiplication.

4.2. Application to matrix multiplication. Let A ∈ Rm×n and B ∈ Rn×p.
We denote by en ∈ Rn the vector of ones.

Algorithm 4.2 Let A ∈ Rm×n and B ∈ Rn×p. This algorithm computes C = AB
by transforming A to a matrix Ã with rows of zero mean.

1: x = n−1Aen, y = en
2: Ã← A− xyT
3: C̃ ← ÃB
4: C ← C̃ + x(yTB)

Algorithm 4.2 performs the matrix–matrix product C = AB in such way that
most of the inner products arising in the computation involve a vector with zero
mean. The key idea is to perturb A by a rank-1 matrix xyT . Several choices of x and
y can be considered; a natural choice for xi is the mean of the ith row of A and for y
the vector of ones, so that all rows of Ã = A− xyT have mean zero. Then computing
the product C̃ ← ÃB amounts to computing mp inner products ãTi bj , where ãTi is

the ith row of Ã and has mean zero. The desired result is recovered by computing
C = C̃ +x(yTB). Note that we could alternatively perturb the columns of B to have
zero mean.

The extra steps at lines 1 and 2 of Algorithm 4.2 require O(mn) flops and that at
line 4 requires O(np + mp) flops. If m, n, and p are all sufficiently larger than 1, all
these extra costs are negligible with respect to the matrix multiplication cost O(mnp)
(line 3). In particular, if the matrices are square (m = n = p), Algorithm 4.2 requires
only O(n2) additional flops, which is an asymptotically negligible overhead compared
with the O(n3) total cost. Similarly, the extra cost in terms of data movement is
expected to have a negligible impact on the overall performance of the algorithm.

One crucial point is that the computation of yTB leads to an accumulation of n
rounding errors per entry of yTB. If y is a vector of nonzero mean (as is the case with
the choice described above), and since in general the columns of B also have nonzero
mean, computing yTB conventionally will negate any benefit obtained by perturbing
A. The simplest strategy, which will be adopted throughout this section, is to compute
yTB in extended precision. In the case where this strategy is not possible (because
no higher precision is available) or not desirable (because the use of a higher precision
would lead to a severe loss of performance), one should use an accurate algorithm to
compute yTB, such as Kahan’s compensated summation [7, Alg. 4.2], [15]. The flop
overhead of such an accurate algorithm remains negligible as long as m� 1.
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The following theorem is a straightforward extension of Theorem 4.1 for Algo-
rithm 4.2. Compared with Theorem 3.4, which includes an n3/2 term, Theorem 4.2
provides a bound linear in n.

Theorem 4.2. Let A ∈ Rm×n and B ∈ Rn×p satisfy Model 2 with bounds CA,
CB. If C = AB is computed using Algorithm 4.2, where yTB (line 4) is computed

using precision u2, then under Model 3 the computed Ĉ satisfies

(4.7) max
i,j
|(Ĉ − C)ij | ≤ (2λ2 + 6)CACBnu+O(u2)

with probability at least P (λ) = 1− 2mnp exp(−λ2/2).

Proof. By construction µÃ = O(u). Let W denote the computed C̃. By Theo-
rem 3.4,

|W − C̃|ij ≤ (λ2 + 1)CÃCBnu+O(u2),

with probability at least P (λ) = 1 − 2mnp exp(−λ2/2), and CÃ ≤ 2CA. Then the

computed Ĉ satisfies

|Ĉ −W − xyTB|ij ≤ nu2(|x||y|T |B|)ij + u(|x||yTB|)ij + u|W + xyTB|ij +O(u2),

where the three terms in the right-hand side correspond to the errors produced by
computing z = yTB in precision u2, w = xẑ in precision u, and W + ŵ in precision
u, respectively. Therefore we have

|Ĉ −W − xyTB|ij ≤ u|W |ij + 2u(|x||y|T |B|)ij +O(u2)

≤ nuCÃCB + 2nuCACB +O(u2)

≤ 4nuCACB +O(u2).

The proof follows using the triangle inequality:

|Ĉ − C|ij = |Ĉ − C̃ − xyTB|ij ≤ |Ĉ −W − xyTB|ij + |W − C̃|ij .

4.2.1. Numerical experiments on random dense matrices. In Figure 4.1,
we report some numerical experiments for computing C = AB, where A ∈ Rm×n and
B ∈ Rn×p are randomly generated with uniform [0, 1] entries. We set m = p = 32 and
compare the error growth for Algorithm 4.2 and the classical matrix multiplication
algorithm for increasing n. We measure the error by

(4.8) ε(Ĉ) = max
i,j

|Ĉ − C|ij
(|A||B|)ij

.

The matrix product C̃ = ÃB is performed in the working precision, which is single
precision or half precision, in Figures 4.1a and 4.1b, respectively. All other compu-
tations, which require a negligible amount of flops, are performed in double precision
(importantly this includes the computation of yTB, as previously explained). For
half precision we use the IEEE fp16 format, simulating it using the chop function of
Higham and Pranesh [9]. The “exact” C, used to evaluate the error (4.8), is computed
using double precision.

The results show that the new algorithm does not suffer from the error growth
of the classical algorithm and can deliver an error of order u, regardless of the size
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(a) Single precision.
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Fig. 4.1. Error (4.8) for matrix multiplication with classical algorithm and new algorithm (Algo-
rithm 4.2), for matrices A,B with random uniform [0, 1] entries, m = p = 32, and increasing n.

of the matrices. In contrast, the classical algorithm leads to an error rapidly growing
as n increases. For moderate values of n, this growth is proportional to

√
nu as

predicted by Theorem 3.4. For larger values of n, the error starts growing more
rapidly, proportionally to the worst-case bound nu. This is due to a phenomenon
called stagnation, which we observed and explained in [8, sec. 4.2.1]. Stagnation occurs
when the value of a partial sum becomes so large that subsequent summands do not
increase its floating-point value. This leads to rounding errors that are necessarily of
negative sign, which violates our probabilistic model (Model 3). In our experiments,
Algorithm 4.2 is able to avoid stagnation by reducing the mean of the computed sums,
hence preventing them from reaching such large values.

Interestingly, the error for the classical algorithm in single precision (Figure 4.1a)
eventually (at about n ≥ 106) becomes larger than that for the new algorithm in half
precision (Figure 4.1b). Thus, for large n, we expect the new algorithm can be both
more accurate and faster than the classical algorithm.

4.2.2. Comparison with other error-reducing algorithms. We now com-
pare both in terms of cost and accuracy our new algorithm with other existing ap-
proaches targeting an improved accuracy.

A well-known algorithm to improve the accuracy of summation is compensated
summation, which can be applied to matrix multiplication and yields an error ε(Ĉ)
in (4.8) bounded by 2u + O(u2). Figure 4.2 shows that for matrices with entries
sampled uniformly from [0, 1], Algorithm 4.2 achieves a comparable error to that of
the compensated algorithm, despite being much less expensive. Indeed, compensation
requires at least 2.5 times as many flops as the classical algorithm.

We recently proposed a class of blocked summation algorithms called FABsum
that aims to achieve a compromise between accuracy and performance [4]. The idea at
the heart of FABsum is to first compute local sums of b numbers in a fast way, where b
is a block size that should not grow with n; then the total sum is computed by summing
the blockwise sums in an accurate way, such as using compensation. This method leads
to an error bounded by bu and has an overhead of only O(mnp/b) flops, which can be
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(a) Single precision.
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Fig. 4.2. Error (4.8) for matrix multiplication for different algorithms: compensated summation,
FABsum (with block sizes b = 16 and b = 128), and our new Algorithm 4.2. Matrices A and B have
random uniform [0, 1] entries, with m = p = 16 and increasing n.

made small compared with the overall cost O(mnp) by choosing large enough b. This
overhead may be smaller or larger than the overhead O(mn+np+mp) of Algorithm 4.2
depending on the specific values of each of these dimensions, although for square
matrices the O(n2) overhead of Algorithm 4.2 eventually becomes asymptotically
negligible whereas that of FABsum remains of order O(n3/b). In terms of accuracy,
Figure 4.2 shows that FABsum and Algorithm 4.2 are comparable for large n for
these random matrices; for smaller n, one must choose a small enough b for FABsum
to rival Algorithm 4.2. Note however that Algorithm 4.2 specifically targets random
matrices. For general matrices, FABsum should be preferred because its worst-case
error bound bu holds for any data without any assumptions.

5. Conclusion. We have performed a new backward error analysis for basic
numerical linear algebra kernels that combines a probabilistic model of the rounding
errors with a second probabilistic model of the data. Our analysis gives a theoretical
explanation of the strong dependence of the backward error on the values of the data
that was previously observed in [8] and can be seen in [1], [3], [4], [5], [14], [20]. We
showed that for data with zero or small mean, the probabilistic backward error bound√
nu from [8] can be relaxed to cu, where c is a constant independent of n.

Our analysis covers summation, inner products, matrix–vector products, and
matrix–matrix products. For all these kernels applied to random data, our analy-
sis accurately predicts the growth of the backward error in terms of the means of the
entries of the matrices and vectors arising in the computation.

Motivated by these findings, we proposed transforming the data to have zero
mean, so as to benefit from the more favorable probabilistic error bounds. We im-
plemented this idea for matrix multiplication, for which the transformation overhead
is asymptotically negligible. We found that our new algorithm can indeed reduce
the error bound by a factor

√
n for random matrices, rivalling some state-of-the-art

error-reducing algorithms (such as FABsum [4]) in terms of accuracy, at a potentially
lower cost.

In future work, we will investigate the extension of our analysis to LU factorization
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and the solution of linear systems. This is not straightforward, because for these
kernels the data cannot be assumed to be independent as in Model 2. Consider, for
example, the solution of a lower triangular system Lx = b by substitution. The ith
component of the solution x is given by xi =

(
bi−
∑i−1

j=1 `ijxj
)
/`ii, and the components

xj are dependent. Theorem 2.8 therefore cannot be applied directly to the summation
term.
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