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Abstract

The production of energy from renewable sources is much more intensive in minerals than
that from fossil resources. The scarcity of certain minerals limits the potential for substituting
renewable energy for scarce fossil resources. However, minerals can be recycled,while fossil
resources cannot. We develop an intertemporal model to study the dynamics of the optimal
energy mix in the presence of mineral intensive renewable energy and fossil energy. We analyze
energy production when both mineral and fossil resources are scarce,but minerals are recyclable.
We show that the greater the recycling rate of minerals, the more the energy mix should rely on
renewable energy, and the sooner should investment in renewable capacity take place. We confirm
these results even in the presence of other better known factors that affect the optimal schedule
of resource use: expected productivity growth in the renewable sector, imperfect substitution
between the two sources of energy, convex extraction costs for mineral resources and pollution
from the use of fossil resources.
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federative research program ReMinER, Ricci benefited as well of support from ANR REVE (ANR 14-CE05-0008-02).
†Paris School of Economics and University Paris 1 Panthéon Sorbonne. adrien.fabre@psemail.eu.
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1 Introduction

Renewable sources of energy are generally more scattered than non renewable ones. In particular

this is the case of wind or solar energy, as compared to coal or gas. More infrastructure to capture

these renewable sources, and therefore a larger quantity of mineral inputs is required to produce

one unit of final energy from renewable than from non renewable sources of energy.1 For instance,

Hertwich et al. (2015) conclude that one unit of electricity requires “11–40 times more copper for

photovoltaic systems and 6–14 times more iron for wind power plants”, than from conventional

fossil generation, as one can see in Figure 1. Concern about mineral intensity of renewable sources

of energy has been expressed in official reports and academic studies.2

Figure 1: Copper intensity of energy technologies, kg/MWh, from Hertwich et al. (2015)

The objective of this paper is to study how the schedule of energy production depends on mineral

resources, as scarce inputs in the production of renewable energy. We present a theoretical model

and bring along a novel argument in favor of early development of the production capacity for energy

from renewable sources, which relies on the asymmetry between the types of natural resources used

to produce energy services. When a unit of non renewable resource is directly used as fuel to supply

energy services through combustion, as in the case of oil, gas and coal, that amount of resource is

definitely lost. When a unit of mineral resources is embedded in the equipment and infrastructure

used to produce energy from renewable sources, it supplies a flow of energy services over an interval

of time and, at the end of the life cycle of the equipment, it adds to the stock of secondary mineral

resources that can be recycled. Hence some part of the original unit of resource can provide services

in the next period: the higher the recycling rate, the less one needs to extract minerals in the future.

1In the case of intermittent renewable energy, backup or storage capacity requirements exacerbate this difference
in mineral intensity.

2See for instance Vidal et al. (2013), Moss et al. (2013), Ali et al. (2017), Vidal et al. (2017), as well as Arrobas
et al. (2017), European Commission (2017), European Commission (2018), DOE (2013), and the U.S. Presidential
executive order on the Strategy to ensure secure and reliable supplies of critical minerals (Dec. 2017).
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If minerals were not recyclable, they could not be reused — just as fossil resources — and the two

types of resources would be analogous.

While the opportunity to recycle a non renewable natural resource improves the production pos-

sibilities set of the economy, it also requires time as an input in order to do so. From a technological

perspective, recycling first requires to use the primary (currently extracted) resource, in order to

build, with some delay, the secondary (recycled) resource. This technological constraint interacts

with social preferences in determining the optimal schedule of resource extraction and use. To illus-

trate this, let us consider a society, with no preference for the present, where neither extraction nor

recycling are costly, that wishes to maintain the level of resource use constant at a given level over a

finite interval of time. If it is endowed with a stock of a non recyclable resource, it should spread it

evenly over the planning horizon. If instead the resource can be partially recycled, say at a recovery

rate δ ∈ (0, 1), with some time lag, say ten years, it should use exclusively primary resources during

the first ten years, then reduce the extraction by the rate 1 − δ during the following decades. As

compared to the former case, the intertemporal profile of resource extraction is brought forward.

Together, the technological specificity of recycling mineral resources and the relative mineral

intensity of renewable energy provide a rationale for developing more renewable energy infrastructure

in the initial period than in subsequent ones and to choose a larger share for renewables in the energy

mix, as compared to a case without recycling. Our analysis is based on a simplified description of

the economic problem.

In our model, agents value energy services which result from a combination of energy provided

by two distinct sources: the flow of renewable energy and combustion of a non renewable fossil

resource. These sources are more or less good substitutes, either because of heterogeneous uses

(Chakravorty and Krulce, 1994) or because of the intermittent availability of the renewable sources

(Ambec and Crampes, 2019). The production of renewable energy employs specific equipment,

dubbed “green” capital, embedding mineral non renewable resources. Part of the mineral resources

embedded in the current period equipment can be also used in the next periods. The reserves of

the two non renewable resources (fossils and minerals) are scarce.The issue is the timing of their

extraction that maximizes the net present value of the utility from energy services.

The answers we obtain encompass some well known arguments, as for instance that the devel-

opment of renewables should be postponed in the expectations of a productivity improvement of

green capital. But the framework we consider allows us to put forward two original arguments: to

the extent that mineral resources embedded in that equipment and infrastructure can be recycled,

the development of renewable energy should be brought forward in time, and the energy mix should

rely largely on renewable sources.

The assumption of a finite and scarce supply of minerals to build up the stock of green capital

allows us to pinpoint these novel arguments, which rely on the intertemporal dependence in the use of

the two non renewable resources. The analysis would be affected if we were to consider competition

in the use of the global supply of minerals between investment in green capital and other uses.

For instance, in the extreme opposite case, one can assume that the demand for minerals from the

energy sector is so small that it does not affect their equilibrium price. Minerals for investment in



4 Fabre, Fodha, Ricci

green capital would then be available at some exogenous marginal cost, breaking the intertemporal

dependence of green capital investment decisions.3 Let us emphasize that this is the case in most of

the literature, where there is no direct intertemporal linkage of renewable energy production through

scarcity of embedded non-renewable resources. The plausible case lies in between this extreme and

our framework. Thus the mechanism we point out shall be at work, though its importance should

be evaluated empirically.

Other factors can affect the optimal decision on the timing of investment in green capital. In

particular, mineral extraction should be delayed when endowment in green capital is excessive.4 In

the two-period version of our model, we consider several applications and confirm that our original

results hold despite the presence of alternative mechanisms. Choices related to the intertemporal

allocation of scarce resources crucially depend on social preferences, specifically the willingness to

smooth consumption over time. A first factor determining the timing of resource use is the expected

pace of improvement in the productivity of green capital. Faster expected productivity growth tends

to postpone investment in green capital, if the willingness to smooth consumption is high enough.

Yet the asymmetry across resources in terms of recyclability still calls for early investment in green

capital. A second factor is the degree of substitutability between the two sources of energy. Due to

their physical properties or to intermittency, they are considered more or less good substitutes, or

even complements, in providing energy services. We show that the higher the substitutability, the

larger the marginal effects of recyclability on initial green investment and the share of renewables

in the energy mix. In other words, the more flexible is the technology, the more society takes

advantage of the opportunity opened by recycling. This is of special interest given that, under

current technology, substitutability between conventional and renewable energy relies on storage and

that electricity storage capacity is particularly intensive in minerals. A third factor we consider is

the convex nature of resource extraction costs. This consideration points at the benefit of spreading

resource use over time. Yet, even in the presence of convex extraction costs, an improvement in

recyclability calls for earlier use of minerals, thus fostering green investment. Finally, a major

rationale for early investment in green capital is based on the objective to substitute for the use of

fossil energy sources, because it generates pollution. Also in this case improved recyclability fosters

early green investment. Moreover it boosts the share of renewables in the energy mix over both

periods and a reduction in total polluting emissions (i.e. total fossil resource use) for sufficiently

low willingness to smooth consumption.

Our work is related to several strands of the literature. The analytical approach focuses on

the efficient management à la Hotelling (1931) of two types of non renewable resources, fossil and

minerals (Heal, 1993). Much attention has been paid to the case of perfect substitutes, to study

3Moreover, assuming a small role of the energy sector on the market for primary mineral resources, implies that
it cannot affect the market for secondary mineral resources, ruling out of the analysis any potential impact of the
efficiency of the recycling technology on the timing of energy production.

4This endowment results from investment before the start of optimal regulation. In principle it may exceed what
the optimal regulator would have chosen. In this case, the regulator would choose to rely initially only on the
endowment and then, for a few initial periods, only on its recycled part, before beginning to extract minerals to add
to this part. We consider this case reminiscent of investment in photovoltaic capacity in Spain, although it does not
seem empirically plausible (see discussion at the end of Section 3).
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the optimal order of extraction.5 Instead, we actually consider the case of simultaneous use of the

two sources of energy, conventional and renewable, in the spirit of growth theory applied to the

energy transition.6 Moreover, our results do not rely on the effect of scarcity on extraction costs

and are derived in a deterministic framework.7 Our contribution consists of an original argument

concerning the optimal timing of investment in green capital, used to produce energy from renewable

sources. This is related to an extensive literature covering the policies associated with the energy

transition. Among the wealth of arguments that have been put forward, some of which discussed in

the previous paragraph, we recall the following. Amigues et al. (2015) point out that, in the presence

of capital adjustment costs, investment to build the infrastructure for the production of renewable

energy should begin early on and be spread out over time. Vogt-Schilb et al. (2018) argue that early

investment in green capital is particularly valuable in the energy sector because of the long-lived

nature of such capital. Lemoine and Traeger (2014) explain how uncertainty and irreversibility,

due to lagged damages and investment, together affect the optimal timing of pollution abatement.8

Technological progress resulting from learning-by-doing calls for early investment (Kverndokk and

Rosendahl, 2007). As put forward in Goulder and Schneider (1999), the optimal investment in

carbon free capital is affected by the fact that R&D expenditure can be targeted to such technologies.

Boosting early investment may be essential to trigger sufficient R&D to escape a lock-in in the

polluting technology (Acemoglu et al., 2012). This rich literature adequately examines different

aspects of the timing of the energy transition, yet none of them embeds the dependency of renewable

production on recyclable but scarce minerals.

In our analysis, recycling is crucial for the results. The efficient paths of resource extraction and

recycling are considered as early as Weinstein and Zeckhauser (1973), Schulze (1974) or Dasgupta

and Heal (1979). In economies confronted to the limited availability of resources, recycling reduces

the reliance on primary resources and postpones the extraction of resources. This result is extended

in various dimensions, by taking into account the material balance constraint (Pittel et al., 2010)

or technological progress (Di Vita, 2001). A more recent literature considers that recycling, by

linking past and current production, may generate economic cycles (De Beir et al., 2010; Fodha

and Magris, 2015; Boucekkine and El Ouardighi, 2016). Finally, some articles focus on market

failures associated with missing markets for waste and the resulting pollution (Hoel, 1978; Musu

and Lines, 1995). However, none of these works considers the role of recycling in the interplay

between exhaustible resources and energy production. As we show hereafter, recycling of minerals

5See in particular the “least cost first” principle in Herfindahl (1967) and its qualifications (Kemp and Van Long,
1980; Lewis, 1982; Amigues et al., 1998). The case of imperfect substitution across non renewable resources is
considered in Wirl (1988) and Chakravorty and Krulce (1994). Also the case of renewable resources has longtime
been studied as a permanent shift to a perfect substitute (Tahvonen and Salo, 2001; Tsur and Zemel, 2005).

6For instance Smulders and de Nooij (2003) or Grimaud and Rouge (2008) –where the labor supply is equivalent
to a constant flow of renewable energy–, Pittel and Bretschger (2010), Hart (2019).

7This differs from much of the related literature: the stochastic framework is used to analyze R&D investment
to introduce an abundant substitute to the non renewable resource (Davison, 1978; Kamien and Schwartz, 1978;
Dasgupta et al., 1982), and the stock effect on extraction cost in the analysis of the optimal switching to a backstop
technology (Oren and Powell, 1985 and citations therein).

8Uncertainty and irreversibility is addressed in a microeconomic perspective in Murto and Nese (2002) and Wickart
and Madlener (2007), where a firm optimally chooses the timing for investing in one of two alternative energy tech-
nologies.



6 Fabre, Fodha, Ricci

is relevant to the transition to a low carbon economy, given that ”the world cannot tackle climate

change without adequate supply of raw materials to manufacture clean technologies” (Ali et al.,

2017).

We present our model in section 2. Section 3 presents the analysis and the results of the

benchmark case, with infinite horizon and specific functional forms for the utility and the production

functions. Then, we consider in section 4 further issues in a two-period version of the model. First,

we check that the main results hold in this version, then we consider differences in the productivity

growth across the two energy types. Second, we study the role of the degree of substitutability

between energy sources in the production of energy services. Third, we introduce convex extraction

costs for mineral resources. Finally, we take into account environmental damages from the use of

fossil resources. To conclude we give some perspectives, in particular on the determinants of the

recycling rate, from which we abstract in this paper.

2 The model

We study an economy in discrete time, where periods are denoted by t ∈ N0.
9 Let us consider

a representative household, whose utility is a function of consumption of energy services qt:
10

u (qt) (2.1)

with u′ > 0, u′′ ≤ 0.

Energy services combine two flows: energy from non renewable resources, xt, and energy from

renewable sources, yt. Formally we write:

qt = Q (xt, yt) (2.2)

with Q′i > 0, Q′′i ≤ 0 i ∈ {x, y}. The degree to which the two types of energy can be combined to

produce energy services may vary from perfect substitutability to perfect complementarity.11

The energy flow xt is produced transforming the quantity of extracted non renewable resource

ft ≥ 0, which we dub fossil resources, according to the linear production function:

xt = Atft (2.3)

9With a slight abuse of notation, for two dates t2 > t1 ≥ 0 we write t ∈ [t1, t2] to refer to t ∈ [t1, t2] ∩ N0 or
t ∈ {t1; t1 + 1; ...; t2}. Similarly, we simply write t ≥ 0 for t ∈ N0.

10For the moment we abstract from any influence on the household’s utility from the energy system. In section 4
we assume that utility also depends on the types of energy sources that are used to produce energy services, namely
that the use of one source also generates disutility due to pollution.

11Two approaches can be considered. Either firms sell energy services by using the two types of energy. This is
the case, for instance, of a power company generating electricity out of a differentiated portfolio of power stations,
some based on conventional fossil resources, others on wind and solar power. Alternatively, one can consider that
households directly consume the two resources. For instance, a household endowed of a solar thermal panel and a gas
fueled heater to heat water, can use the two sources of energy as imperfect substitutes due to the intermittent nature
of the former. We analyze the role of this assumption in section 4.2.



Mineral Resources for Renewable Energy 7

where At is the exogenous productivity index. Resource extraction is costless.12 The quantity

of fossil resources is limited, it is initially available in a finite stock F and is directly reduced by

extraction:

F ≥
∑
t≥0

ft. (2.4)

The flow of renewable energy yt is produced employing a specific stock of capital Kt, which we

dub “green” capital, according to the linear technology:

yt = BtKt (2.5)

where Bt is the exogenous productivity index. Green capital is built out of minerals. Specifically,

the capital stock at date t is the sum of minerals extracted at date t —the primary resource

mt— and the stock of secondary minerals recycled from previous period’s green capital δKt−1.

The exogenous parameter δ ∈ [0, 1] measures the rate at which minerals embedded in the capital

stock can be recycled from one period to the next. We implicitly assume perfect substitutability

between primary and recycled mineral resources, and the possibility of infinite recycling.13 Defining

K−1 ≥ 0 as the stock of minerals embedded in the capital stock before date 0, and assuming a

constant recycling rate, the history of mineral extraction determines the stock of green capital:14

Kt = K−1δ
t+1 +

t∑
τ=0

mτδ
t−τ . (2.6)

Notice that with exogenous efficiency of the recycling technology, the parameter δ can be interpreted

as the complement of the depreciation factor of capital in a standard accumulation process. An

increase in the recycling rate could be equivalent to a decrease in the depreciation rate. Nevertheless,

in our case, investment here consists of mineral resources, differently from the standard notion

of capital.15 Therefore, green capital is limited by a threshold determined by the total stock of

resources. Minerals are non-renewable resources, initially available in a finite stock M . Primary

12We consider costly extraction in section 4.3.
13In this article, we do not take into account the cost of waste recovery and processing and the lower quality of

recycled resources. Di Vita (2007) takes into account imperfect substitutability between the non-renewable resource
and recycled waste in the production process. He analyzes the economic growth rate and the time profile of resource
extraction. Lafforgue and Rouge (2019) assume that the quality of recycled materials evolves and could make them
ultimately unproductive. Like these authors and much of the literature, we also restrict our analysis to the case of an
exogenous recycling rate.

14In practice, both types of energy sources require specific capital embedding some mineral resources. Our focus
is the asymmetry in mineral intensity between the specific capital for each energy source. We therefore adopt the
extreme assumption that only one energy source relies on the specific capital, so as to simplify the analysis, without
loosing in the qualitative features of our model.

15In the standard approach, investment results from non consumed output. In our setting this could consist of
energy services not devoted to their consumption qt. Instead under our assumption, the stock of green capital consists
of a stock of productive mineral resources.
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extraction is constrained over time by16

M ≥
∑
t≥0

mt. (2.7)

In our framework the distinction between fossil and renewable sources of energy hinges on the

recycling rate of minerals δ. If minerals were perfectly recyclable, i.e. δ = 1, it would be possible

to produce forever a flow BtM of renewable energy, once the specific equipment had been installed

at its maximum potential. If minerals were not recyclable, i.e. δ = 0, they could not be used twice

—just as fossil resources— and the two types of resources would be analogous.

We analyze optimal trajectories, assuming that a benevolent planner chooses the path of resource

extraction that maximizes intertemporal discounted utility of the representative household, subject

to technology constraints and resource dynamics. It applies a social pure discount rate ρ > 0 and

solves the following problem

(P) : max
ft,mt

∑
t≥0

1

(1 + ρ)t
u (qt)

subject to (2.2)− (2.7) and ft,mt ≥ 0

with M,F,K−1 given.

3 Optimal energy production with infinite horizon

In this section, we further specify the production and utility functions, in order to be able to

characterize the optimal policy by closed-form solutions. Specifically, we assume a unitary elasticity

of substitution between fossil and renewable energy

Q (xt, yt) = xαt y
1−α
t (3.1)

with α ∈ (0, 1). Moreover we restrict the analysis to the case of constant and equal productivity,

and set ∀t At = Bt = 1. We also assume a utility function with a constant elasticity of intertemporal

substitution of consumption17

u (qt) =
1

1− ε
q1−εt (3.2)

with ε > 0.

These assumptions imply that the extraction of fossil resources is always positive, i.e. ∀t, ft > 0.

In fact, if ft = 0 at some t, qt = 0, which is suboptimal since the marginal utility of q is infinite

at q = 0. The reasoning applies to green capital, so that ∀t, Kt > 0. The same argument applies

16 As explained in the Introduction, this is a crucial assumption for our analysis. The results concerning the role
of the mineral recycling rate for initial green investment and the energy mix change drastically if, instead of (2.7),
one considers a perfectly elastic supply of mt at some exogenous marginal cost representing the relative intensity in
minerals of renewable energy production as compared to conventional energy.

17The elasticity of intertemporal substitution of consumption equals 1/ε. For ε = 1, u (qt) = ln qt.
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to the extraction of mineral resources in absence of recycling, that is ∀t, mt > 0 if δ = 0. In this

special case the economy relies on the use of two non-renewable resources as imperfect substitutes

for consumption. Along the optimal path, the input ratio is held constant and equal to the relative

resource endowment, i.e. xt/kt = ft/mt = F/M . The extraction of the two non renewable resources,

as well as the production of renewable energy and consumption, decline at the common pace dictated

by the factor (1 + ρ)−
t
ε .18

When instead the equipment for the production of renewable energy is recyclable, i.e. if δ > 0,

the argument does not apply to the extraction of minerals. In fact, the production of renewable

energy could be positive, i.e. yt > 0, at some date t even in the absence of contemporaneous

extraction of primary mineral resource, i.e. even if mt = 0, to the extent that the specialized

capital stock was positive in the previous period, Kt−1 > 0, and it would be precisely equal to

yt = δKt−1 > 0.

There are two distinct potential reasons for shutting down the mine at some finite date. First of

all, the opportunity to recycle minerals embedded in capital introduces an incentive to put forward

the extraction date. To see this, consider the extreme case of a 100% recycling rate, i.e. δ = 1.

In this case, given our assumption of costless extraction, there is no gain from leaving any mineral

resource underground for future use. It is clearly optimal to choose m0 = M and mt = 0 for any

t ≥ 1. In our analysis we take into account the possibility that along the optimal path extraction

comes to an end in finite time, and denote by t the last period during which extraction is positive.

Second, there may be situations where it is preferable to initially keep mines closed and begin

extracting only at some later date. This is the case when the economy is endowed of a large initial

green capital stock, but only a relatively small stock of primary mineral resources. By choosing

mt = 0 over an initial interval [0, t), one can delay the use of the limited resource stock M to periods

t ≥ t, while keeping the renewable energy input for consumption at rate yt = K−1δ
t+1 for t < t.

We therefore search for the extraction paths of the two resources, such that ∀t ft > 0, ∀t ∈
[
t, t
]

18This sub-case is embedded in Proposition 1.
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mt > 0 and otherwise mt = 0, where periods t and t have to be chosen.19 The planner’s problem is

max
ft,mt

t−1∑
t=0

(
1

1 + ρ

)t(fαt (δt+1K−1
)1−α

1− ε

)1−ε

+
t∑
t=t

(
1

1 + ρ

)tfαt
(
δt+1K−1 +

∑t
τ=t δ

t−τmτ

)1−α
1− ε


1−ε

(3.3)

+
∞∑

t=t+1

(
1

1 + ρ

)tfαt
(
δt+1K−1 + δt−t

∑t
τ=t δ

t−τmτ

)1−α
1− ε


1−ε

+ λ

(
F −

∞∑
t=0

ft

)
+ ν

M − t∑
τ=t

mτ


where λ, ν ≥ 0 are the values of the fossil and mineral resource stocks respectively.

The optimal policy is characterized by the following.

Proposition 1. The unique trajectories solving problem (3.3), are of three types depending on

initial capital and resource stocks, and on preference and technological parameters.

1. If the technological efficiency of recycling is above the modified social discount factor r, i.e. if

δ ≥ r := (1 + ρ)−
1
ε , the mineral resource is exhausted in the first period, i.e. t = t = 0, while

the fossil resource is extracted at an exponentially declining rate

ft = F (1−R)Rt (3.4)

where R :=
(
δ(1−α)(1−ε)

1+ρ

) 1
1−α(1−ε)

, for all t ≥ 0.

2. If instead δ < r, both mineral and fossil resources are exhausted over the infinite horizon.

There are two distinct types of trajectories in this case.

(a) If the stock of primary mineral resources is abundant relatively to the stock of green

capital available in the first period, i.e. if M
δK−1

≥ r−δ
1−r , both fossil and mineral resources

are extracted at all periods, i.e. t = 0 and t = ∞, and from the second period onward

their extraction falls at a common exponential rate, dictated by the modified discount

factor, r. While fossil resource extraction declines from the first to the second period

according to factor r, the extraction of the mineral resource between the first and second

19In our deterministic framework, the optimal policy rules out any path with intermittent extraction of minerals.
This is demonstrated in Appendix B.1, but intuitively, the Bellman principle of optimality implies that if along the
optimal path extraction comes to an end at t, it is not efficient to open again the mine at some later period t̃ > t.
Suppose in fact that it is optimal to chose mt̃ > 0. It makes sense to keep mt̃−1 = 0 at t̃− 1 only if the capital stock

Kt̃ is considered too large given the remaining stocks of resources F −
∑t̃−1
τ=0 fτ and M −

∑t̃−1
τ=tmτ . But these stocks

are optimal, since they result of the extraction paths ft and mt up to date t̃− 1, assumed to be optimal. Hence, Kt̃

cannot be considered excessive. This contradiction shows that our premise, according to which it is optimal to chose
mt̃ > 0 when mt̃−1 = 0 is optimal, is wrong. Mutatis mutandis the argument holds for the interval [0, t).
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period follows m1 = (r − δ) (m0 + δK−1) = (r − δ)K0. The optimal extraction path is

∀t ≥ 0, ft = (1− r)Frt (3.5)

t = 0, m0 = (1− r) M

1− δ

(
1− r − δ

1− r
δK−1
M

)
(3.6)

∀t > 0, mt = (1− r) M

1− δ

(
1 + δ

K−1
M

)(
1− δ

r

)
rt (3.7)

(b) If instead M
δK−1

< r−δ
1−r , extraction of the mineral resource is delayed, i.e. t ≥ 1 and t =∞.

The optimal t is the lowest non-negative integer at or above the value ln
(

M
δK−1

1−r
r−δ

)
/ ln δ.

Over the first interval of time fossil resource extraction declines according to the factor R.

From t+ 1 onward, the extraction of both resources falls at the common rate r. Between

period t and t+1 the extraction of fossil resources declines at rate r while that of minerals

follows mt+1 = (r − δ)
(
mt + δt+1K−1

)
. In this case

∀t < t, mt = 0 ; ft =

(
1−Rt

1−R
+ Γ (t)

rt

1− r

)−1
FRt (3.8)

∀t ≥ t, ft =

(
Γ (t)

1−Rt

1−R
+

rt

1− r

)−1
Frt (3.9)

t = t, mt = (1− r) M

1− δ

(
1− δt r − δ

1− r
δK−1
M

)
(3.10)

∀t > t, mt =
1− r
1− δ

(
M + δt+1K−1

)(
1− δ

r

)
rt−t (3.11)

where Γ (t) :=
(

rδ(1−δ)K−1

(1−r)(M+δt+1K−1)

) (1−α)(1−ε)
1−α(1−ε)

.

Proof. The detailed proof is in Appendix A and B.

Let us explain the optimal trajectories of resource extraction and energy production specified

in Proposition 1 and comment on them.

First, notice that the Hotelling principle for the efficient management of non renewable resources

applies to our framework. When the optimal policy maintains a constant input ratio, consumption

falls at the same rate as the common rate driving the decline in resource extraction. Say that q

declines at a factor g ∈ (0, 1), i.e. qt+1 = gqt. Then the value of a marginal unit of the resource mix

increases at rate pt+1/pt = g−ε. Along the optimal trajectory from period 1 onward in case (2.a),

or from period t + 1 onward in trajectory (2.b), the optimal path of resource extraction implies

g = r, therefore pt+1/pt = r−ε = 1 + ρ: the value of a marginal unit of resource increases at the

pure discount rate, as in Hotelling (1931).20

Second, the asymmetry between the two types of resources, concerning the possibility to recycle

them, implies a difference in their optimal extraction paths. To see this let us focus on the case of

20pt is the marginal value of energy services, to which the marginal values of mineral and fossil resources extracted
are proportional.
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moderate recycling (δ < r) and no endowment of green capital (K−1 = 0), a sub-case of (2.a) in

Proposition 1. In this case, the initial ratio of resource extraction f0/m0 equals the initial input

ratio f0/K0. As previously argued, without recyclability, it is optimal to choose f0/m0 = F/M ,

according to the relative resource endowment (set K−1 = δ = 0 in (3.6) and compare to (3.5)).

When green capital can be recycled, but K−1 = 0 , we see from (3.6) that the extraction and

input ratios are initially biased toward more intensive use of minerals f0/m0 = (1− δ)F/M . This

first period choice is the same as the one made in an economy endowed of a larger stock of non

renewable and non recyclable mineral resources of size M̂ := M/ (1− δ). The stock M̂ is the initial

endowment adjusted for recycling and measures the maximum feasible amount of mineral inputs

that can be used in the production of renewable energy over time, i.e. M̂ =
∑∞

t=0 δ
tM obtained

by extracting all minerals in the first period (t = 0 and t = 0). This observation points to the

fact that the possibility of recycling the mineral resource embedded in green capital is equivalent

to an endowment of a larger stock of mineral resources. Since, due to δ > 0, mineral resources

are relatively more abundant, the constant input ratio ft/Kt is optimally chosen lower. However,

the ratio of resource extraction ft/mt can only be kept constant from period 1 onward, if mineral

extraction is adjusted at date 0 to account for the absence of recycled resources at that date. In so

doing, the input ratio ft/Kt remains constant. As a consequence the ratio of resource extraction,

ft/mt, is increased after the initial period.21 The following statement summarizes this analysis.

Corollary 1. When K−1 = 0 and δ < r := (1 + ρ)−
1
ε , the solution of problem (3.3) implies that the

larger is the recycling rate δ ∈ [0, r), the more intensive in renewable energy is the constant input

ratio, the greater is the extraction of minerals in the first period and green capital at every period,

the more are extracting activities concentrated on minerals initially and on fossil resources from the

second period onward.

∀t ≥ 0
xt
yt

=
ft
Kt

=
F

M̂
; m0 = (1− r) M̂ ; ∀t ≥ 1

ft
mt

=
r

r − δ
F

M̂
. (3.12)

Proof. The value of m0 is an application of (3.6) in Proposition 1. We have ∂m0

∂δ = m0

1−δ > 0, dKtdδ = dm0

dδ r
t > 0

and dmt
dδ = −

(
1−r
1−δ

)2

Mrt < 0. The result on the input ratio holds because, as argued in the main text ft

and Kt grow at the same rate r at any date. Applying results for the case (2.a) in Proposition 1, we get the

ratio of resource extraction for t ≥ 1. Thus ∂ft/mt
∂δ = r 1−r

(r−δ)2
F
M > 0 and f0

m0
< ft

mt
for t ≥ 1.

Figure 2 illustrates the optimal paths of extraction of mineral and fossil resources, of green

capital and consumption.22 It represents the cases of two economies differing by the recycling rate

δ under the assumption of case (2.a) where r > δ and no green capital endowment. According to

(3.5) fossil extraction does not depend on δ. We can see that the dynamics of mineral resource

extraction m is qualitatively affected (the two curves cross each other), while that of consumption

q and green capital K only shift upwards in levels with the rate of recycling.

21K−1 = 0 implies f0/K0 = f0/m0. From case (2.a) in Proposition 1 ∀t ≥ 1, ft/mt = ft+1/mt+1, and f1/m1 =
rf0/ ((r − δ)K0). Hence the upward jump in the extraction ratio from period 0 to period 1: f1/m1 > f0/m0.

22Our benchmark calibration is ρ = .04, δ = .5, α = .7, K−1 = 0, M = .5, F = 3, q
fαK1−α = 4. We choose ε = .2

for an illustrative purpose, since most of the dynamics takes place over the very first periods in this case.
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Figure 2: Resource extraction, green capital and consumption paths for two different recycling
rates: continuous lines for δ = 0.5, dashed lines for δ = 0.1 (see calibration footnote 22).

The results in Corollary 1 have relevant policy implications. On the one hand, the empirically

grounded observation that the production of renewable energy relies on the use of specific non

renewable resources, namely minerals, suggests that the economy is poorer than it would be if the

renewable energy could be produced out of non exhaustible inputs. From this point of view, the

observation points to a limitation of renewable energy as a factor to overcome the limits to growth.

In terms of our framework, this argument is represented by the lower value of welfare ceteris paribus

when δ < 1 than when δ = 1.23 This observation provides an argument stating that the potential

production of renewable energy is more limited than generally thought. We refer to this argument

as the pessimistic stance.

On the other hand, our analysis illustrates that the possibility to recycle minerals embedded in

green capital makes it preferable to choose an energy mix composed of more renewable energy and

less conventional fossil resources. Hence, adding a plausible assumption on the recycling technology

to the same empirical observation, we provide a pro renewable energy argument, partially countering

the pessimistic stance.

Moreover, we present an original argument in favor of a pro active renewable energy policy. We

show that for a given amount of mineral resources to be devoted to the production of renewable

energy, we should skew extraction toward the present the greater the recyclability of minerals. In

other words, because minerals are recyclable and fossil resources are not, we should develop as soon

as possible the green capital embedding the minerals, that allows us to produce renewable energy

and to substitute for conventional fossil energy. This is found in Corollary 1, as well as in the

extreme in case (1.) of Proposition 1 where minerals are entirely embedded in green capital from

23In fact, welfare always increases with δ (online Appendix H).
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Figure 3: Resource extraction, green capital and consumption paths for two endowments in green
capital: continuous lines for K−1 = 0, dashed lines for K−1 = 1.5 (see calibration footnote 22).

t = 0. Notice that this original pro active argument is grounded on the same empirical observation

underlying the pessimistic stance. It relies on the flexibility in scheduling resource use typical of the

management of non renewable resources. In fact, putting forward the potential of future production

of renewable energy is off the production possibility set in commonly used models with renewable

and non renewable sources of energy (e.g. Moreaux and Ricci, 2005).

Our discussion above abstracts from several potential reasons for putting forward or for post-

poning investment in green capital. In the next section we review a few of them. The framework

in Proposition 1 provides already a possible reason for delaying investment. It could be that at

the start of the planning horizon, the economy has inherited of a large stock of green capital. If

previous investment decisions were not optimal, and inefficiently biased toward renewable resources,

the resulting stock of green capital, and thus of secondary mineral resource available in the first

period, could exceed the desirable initial stock of capital for the first period. This corresponds to

case (2.b) in Proposition 1. Figure 3 shows how the optimal paths of four endogenous variables –ex-

traction of fossil and mineral resources, green capital, and consumption– vary with the endowment

of green capital. The level of this endowment is chosen to represent the qualitative features of cases

(2.a) and (2.b) in Proposition 1. In the latter case it is optimal to delay the extraction of mineral

resources (as t > 0). Nevertheless, in this case, production of renewable energy is initially quite

high, and actually higher than socially desirable. In practice, this case may be of little relevance.

Two further remarks on case (2.b) are worthwhile. First, over the interval of time [0, t) the stock

of green capital declines at rate δ instead of the socially desired rate r > δ. Though abundant,

green capital is still valuable because productive, and it is therefore used at full capacity. As a

result though, over this interval of time, the rate at which fossil extraction decreases is adjusted
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and differs from the one prevailing in presence of mineral extraction.24 A similar adjustment to

the extraction of fossil resources applies in case (1.) of a sufficiently efficient recycling technology.

Second, the marginal effect of an increase in the recycling rate δ is more complex in the case (2.b)

of Proposition 1 than in the case (2.a) treated in Proposition 1. On the one hand the same forces

presented in Corollary 1 apply. Yet now, a countervailing effect operates through the fact that

more secondary mineral resources are made available by the increase in δ over the initial interval

[0, t). The beginning of extraction may be delayed, and the initial extraction of mineral resources

may decline with δ.25 That being said, in general, the higher the recycling rate, the higher the

optimal initial extraction of minerals, and the lesser the subsequent ones, unless reserves M are

very low as compared to endowment in green capital. Indeed, the higher the recycling rate, the

more abundant are resources in the future. This weakens the trade-off between present and future

consumption, allowing for earlier extraction. However, absent sufficient reserves for the future,

another effect dominates: the higher the recycling rate, the more one benefits from past investment

in green capital, and the less one needs to extract minerals in the future. In practice, we argue that

recoverable resources M is one order of magnitude larger than green capital K−1 for base metals

(Singer, 2017), so we can reasonably assume that the realistic case is the case (2.a),26 with K−1 ≈ 0

and t = 0.

4 Extensions in a two-period model

In the previous section, we analyzed how the asymmetry in recyclability between inputs used in

the production of conventional vs. renewable energy affects the optimal timing of energy production.

In this section, we consider other factors affecting this timing, and in particular initial investment in

green capital m0 and the energy mix. In order to develop these extensions in a clear and tractable

way, we consider the two-period version of the model presented in section 2, with t ∈ {0; 1}. We

check the validity of the following results in a number of extensions. First, the existence of a

threshold on recyclability of minerals such that primary mineral resources are exhausted in the first

period, for δ above the threshold, as established in Proposition 1. Second, the fact that, for δ below

this threshold, a marginal increase in recyclability fosters first period mineral resources use and

investment in green capital (i.e. ∂m0/∂δ, ∂K0/∂δ > 0), and makes the input ratio more intensive

in renewable energy (∂(f0/K0)/∂δ < 0), as established in Corollary 1.27

24More precisely, we deduce from Appendix C that the optimal rate of decay for fossil extraction is the closest one
between r and R from the pure discount factor 1

1+ρ
.

25We have
dmt
dδ

> 0 ⇐⇒ ∀t > t, dmt
dδ

< 0 ⇐⇒ M > δtK−1

(
(r−δ)(1−δ)

1−r (t+ 1)− δ
)

and dt
dδ

= 1
(r−δ) ln(δ) −

ln

(
M
K−1

1−r
r−δ

)
/δ ln2(δ). One can check that, even in the range of parameters of case (2.b) (δ < r and M

δK−1
< r−δ

1−r ) both

signs are possible for each of these derivatives.
26Indeed, δ ≥ r does not seem realistic. An upper credible value for the pure discount rate ρ is 0.05, while the

inverse of the elasticity of intertemporal substitution ε can reasonably be assumed higher than 0.5. Combining these
conservative figures gives a low estimate for r: 0.9. Taking more common values for ρ and ε would yield an even
higher threshold r, so that for any realistic value of the recycling rate δ, it is extremely likely to have δ < r and to be
in the case where the optimal path is an endless extraction.

27These are the main original and policy relevant results of our analysis. In the versions of model presented in this
section, second period outcomes are affected by the fact that it is the last period in a finite horizon with non renewable
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To begin with, we show how the results adjust to the finite horizon case, studying the benchmark

case with constant relative risk aversion (CRRA) utility function. We disentangle two mechanisms

by first studying the sub-case of a logarithmic utility, then discuss the role of the preference for

intertemporal consumption smoothing in the optimal timing of energy production. Within this

simplified framework, we study how expected technological progress, such as improved productivity

of minerals in renewable energy equipment, affects the optimal investment in green capital. We

move on to consider alternative assumptions on the production technology concerning the degree of

substitutability between energy services provided by the two types of resources within each period.28

Next, we consider the role played by convex extraction costs in determining the optimal time of

investment in green capital. Finally, we allow for environmental damages from the use of fossil

resources, which also affect the optimal path of resource use.

4.1 The benchmark model with technological change

Let us consider first the case with CRRA utility function, Cobb-Douglas production function

and non constant productivities of resource inputs. In a two-period setting the planner’s problem

is as follows:

max
q1−ε0

1− ε
+

1

1 + ρ

q1−ε1

1− ε
qt = (Atft)

α (BtKt)
1−α , t ∈ {0; 1}

K0 = m0 , K1 = m1 + δm0 (4.1)

f0 + f1 ≤ F

m0 +m1 ≤M

with m0, m1, f0, and f1 ≥ 0, where α ∈ (0, 1) and ε > 0 (log utility for ε = 1).

Proposition 2. The unique trajectories solving problem (4.1) are of two types. If δ < δ̃ ≡ r̃
1+r̃

where

r̃ :=
1

1 + ρ

(
q1
q0

)1−ε
, (4.2)

it is optimal to extract the mineral resource in both periods, as follows

m0 =
1

1−δ
1 + r̃

M ; m1 =
r̃ − δ

1−δ
1 + r̃

M ; f0 =
1

1 + r̃
F ; f1 =

r̃

1 + r̃
F, (4.3)

implying

q1
q0

=

[(
A1

A0

)α(B1

B0

)1−α
] 1
ε

(1 + ρ)−
1
ε (1− δ)

1−α
ε (4.4)

resources. Hence the results we obtain for second period outcomes are less interesting and robust, that those for m0

and f0/K0 on which we focus.
28Alternatively, this can be interpreted as a feature related to preferences.
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Moreover f0
K0

= F

M̂
, f1
K1

= F
M and K1

K0
= r̃ (1− δ). Therefore ∂m0

∂δ > 0, ∂f0/K0

∂δ < 0, ∂f1/K1

∂δ = 0,
d(q1/q0)

dδ < 0 and ∂K1/K0

∂δ < 0.

If δ ≥ δ̃, where δ̃ is defined using (4.2) and (4.4), the mineral resource is exhausted at date

0. The optimal resource use is m0 = M , m1 = 0, f0 = 1
1+ζF , and f1 = ζ

1+ζF , where ζ :=((
A1
A0

)α (
B1
B0

)1−α
1

1+ρδ
(1−α)(1−ε)

) 1
1−α(1−ε)

. In this case q1
q0

=

((
A1
A0

)α (
B1
B0

)1−α
1

1+ρ

) −α
1−α(1−ε)

δ
1−α

1−α(1−ε)

instead of (4.4). Hence d(q1/q0)
dδ > 0, while df0

dδ < 0 , df1dδ > 0 if ε < 1 but df0
dδ > 0 , df1dδ < 0 if ε > 1 .

Proof. See Appendix D.

From (4.2) and (4.4), r̃ is the ratio of the present value current utility from energy consumption

when δ < δ̃. Hereafter, we refer to this ratio as the gross social discount factor. Let us begin

by considering the sub-case without technological progress (A1/A0 = B1/B0 = 1). Moreover, first

consider the case of logarithmic utility (ε = 1). In this case, the threshold value of the recycling rate,

δ̃ = 1
2+ρ , is independent of the recycling rate and relative resource abundance, since r̃ is equal to the

pure discount factor 1
1+ρ (see (4.2)). When δ > δ̃, all mineral resources are extracted and used in

the first period, i.e. m0 = M , and the decline in energy consumption is given by q1
q0

=
(

1
1+ρ

)α
δ1−α

and increases with δ. Otherwise, for δ below the threshold, minerals are extracted in both periods

and consumption of energy services declines at q1
q0

= 1
1+ρ (1− δ)1−α, a decreasing function of δ. In

this case, the higher the rate of recycling, the earlier the use of primary mineral resources, the larger

the initial investment in green capital, and the more intensive in renewable energy is the input ratio

in the first period. These three results confirm those in Proposition 1 and Corollary 1.

Other results differ from the case with infinite horizon. First, the input ratio in the second

period does not change with the rate of recycling. This difference is not surprising, since there

is no advantage from recycling mineral resources used in the second period in a setting where

there is no future period to use recycled resources (i.e. no third period). Second, as noticed,

when δ < δ̃, energy consumption declines at a faster pace the greater is the recycling rate, while

this rate of decline is unaffected by δ in the infinite horizon case. Improved δ tends to increase

q1/q0 for unchanged intertemporal resource allocation. Yet, it also makes it more interesting to

extract minerals in the first period, reducing q1/q0. This second substitution effect dominates the

former when δ < δ̃. Finally, a higher δ affects q1/q0 through the positive income effect that calls

for an intertemporal reallocation of mineral and fossil resources, according to social preferences

on consumption smoothing, to which we turn our attention below. Notice that in this case with

logarithmic utility and Cobb-Douglas production functions, the opportunity to recycle mineral

resources does not affect the use of fossil resources.

As a second step, consider the case ε 6= 1 to study the role of preferences with respect to

intertemporal consumption smoothing, in determining the timing of resource use and investment

in green capital. We find that, when δ < δ̃, the decline in energy consumption (4.4) is a decreasing

function of δ, more so the smaller is ε, i.e. the greater the elasticity of intertemporal substitution,

1/ε. An improvement in the recyclability of minerals brings forward mineral resource use more

so the least adverse to variability in the consumption over time is the representative household,
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and as a consequence the larger is the downward adjustment in optimal consumption. Since r̃ =

(1 + ρ)−
1
ε (1− δ)

1−ε
ε

(1−α) (from (4.2) and (4.4)), the gross discount rate is affected by ε through

two channels. First, the pure preference for the present, ρ, which directly affects the gross discount

factor and therefore the timing of consumption and thus of resource use. Second, the gross discount

factor is affected by the prospective decline in consumption, given by (4.4), itself influenced by the

recycling technology for green capital. The expected decline in consumption tends to decrease the

gross discount factor if ε is smaller than unity, i.e. for high elasticity of intertemporal substitution

of consumption 1/ε, and vice versa. As a result, the resource use tends to be brought forward,

thus f1/f0 and m1/m0 to decrease. It is worthwhile noticing the asymmetry between the two

resources. Inspecting (4.3) we see that a marginal increase in δ exerts two effects on m0, a direct

one and an indirect one through r̃. As established in Proposition 2, the former force dominates, so

that an increase in δ reduces the ratio m1/m0, bringing forward mineral resource use and boosting

investment in green capital during the first period, whatever ε. Nevertheless, the impact is smaller

the larger is the willingness to smooth consumption over time if ε > 1, and vice versa, because of the

above mentioned increase in the gross discount factor. In the case of fossil resources instead, only

this indirect effect running through the gross discount factor is at work, so that the optimal fossil

resource use is delayed (f1/f0 increases) if ε > 1 but it is brought forward (declines) if ε < 1. If we

interpret the objective of the planner as a welfare function across two generations, the parameter ε

determines inequality aversion. While an increase in δ implies a sharper decrease of consumption

across generations, the size of this change is milder the higher inequality aversion.

Our analysis shows that preferences with respect to intertemporal substitution in consumption

possibilities play an important role in determining the optimal timing of resource use and invest-

ment in green capital. However, the original mechanism underscored in this paper, based on the

asymmetry between the two types of resources, is still crucially at work in determining the opti-

mal timing of investment in green capital, making it preferable to bring forward investment as the

efficiency of the recycling technology increases.

Finally, consider the effect of expected technological change. The asymmetry on the optimal

timing of resource use implied by the possibility to recycle minerals embedded in green capital

is unaffected, since the results concerning the role of parameter δ hold independently of B1/B0.

Nevertheless, in the case of an interior solution (δ < δ̃) prospects of technological progress do affect

the optimal timing in resource use and investment in green capital, through their influence on the

optimal rate of growth of energy consumption (4.4). Expected improvements in the productivity

of green capital, i.e. B1 > B0, lead to higher consumption growth ∂ (q1/q0) /∂B1 > 0. This, in

turn, exerts wider effects, according to the attitude toward consumption smoothing. If ε < 1, slower

decline in energy consumption increases the gross social discount factor ∂r̃/∂B1 > 0, and therefore

delays the extraction of mineral ∂m0/∂B1 < 0 and fossil ∂f0/∂B1 < 0 resources, while raising the

threshold value on recyclability of minerals ∂δ̃/∂B1 > 0. The opposite consequences apply if ε > 1.

In the analysis hereafter we abstract again from technological change and assume again ∀t
At = Bt = 1.



Mineral Resources for Renewable Energy 19

4.2 Substitutability between energy services from different sources

Until now, we have assumed the specific Cobb-Douglas form (3.1) for the production function

of energy services (2.2) combining services from fossil and renewable energy. This assumption

simplifies the analysis, but there is no reason to believe that these two types of energy services are

substitutes among each other with a constant and unitary elasticity of substitution. Thinking of

electricity as an homogeneous good, one might consider that the elasticity of substitution is much

larger than unity. Alternatively, one might view renewable and conventional sources of energy as

quite imperfect substitutes in providing energy services, due to the intermittent availability of some

renewable sources of electricity, or to physical properties (weight, density, caloric power) of some

fossil sources of energy, making them drastically more efficient in some uses other than electricity

production (e.g. air transportation).

The degree of substitutability between the two types of energy services may affect the optimal

timing of investment in green capital. To see why, consider the heuristic extreme case without recy-

cling, nor discounting, and completely inelastic preferences over the intertemporal consumption path

of energy services (ε = ∞). The objective is maximized by keeping constant at qt = Q
(
1
2F,

1
2M
)
,

whatever the elasticity of substitution between the arguments in function Q (.). If this elasticity

is nil, it is optimal to use half of each resource per period. If the elasticity of substitution is very

large, then there is a continuum of combinations of fossil and minerals (green capital) that maxi-

mize welfare, and therefore some minerals can be used in the first period to build up more green

capital, m0 >
1
2M (though leaving welfare unaffected). Introducing recycling of green capital into

the picture, the latter feature changes: welfare may be increased by bringing forward investment

in green capital. In doing so, the secondary resource stock of minerals increases, so that renewable

energy services in the second period decrease by less than their increment in the first period. This

potentially beneficial role of recycling is less valuable in the case of moderate possibilities for substi-

tuting between the two types of energy services. In the limit, if the latter are perfect complements,

bringing forward mineral extraction does not create additional value and the optimal resource use

is unaffected by δ. This discussion suggests that the elasticity of substitution between the two types

of energy services interacts with the preference parameters, namely the elasticity of intertempo-

ral substitution of energy consumption, in determining the optimal timing of investment in green

capital.

Modifying the planner’s problem (4.1), by substituting qt =

(
αf

σ−1
σ

t + (1− α)K
σ−1
σ

t

) σ
σ−1

for

qt = (Atft)
α (BtKt)

1−α with σ > 0, we find that the interior solution (i.e. m1 > 0) holds if the

recycling rate is below a threshold, i.e. if δ < r̃
(1−δ)1−σ+r̃ , where we extend the definition of r̃ as

follows

r̃ :=

(
1

1 + ρ

)σ (q1
q0

)1−εσ
(4.5)

In this case, efficient resource extraction is defined by (4.3) but for the following29

29See Appendix E for the derivation of the results presented in this sub-section.



20 Fabre, Fodha, Ricci

(a) Initial investment in green capital (b) First period energy mix

Figure 4: How the solution varies with the efficiency of the recycling technology in the case of a
CES production function for energy services (see calibration footnote 22).

m0 =
1

1 + r̃ (1− δ)−(1−σ)
M̂ , m1 =

r̃ (1− δ)σ − δ
1 + r̃ (1− δ)−(1−σ)

M̂ (4.6)

and the intertemporal energy consumption ratio q1
q0

is implicitly defined as the solution of

G

(
q1
q0
, δ

)
−
(
q1
q0

)εσ
(1 + ρ)σ = 0 (4.7)

where

G

(
q1
q0
, δ

)
≡


αF

σ−1
σ + (1− δ)σ−1 (1− α)M

σ−1
σ

(
1+
(
q1
q0

)1−εσ
(1+ρ)−σ

1−δ+
(
q1
q0

)1−εσ
(1+ρ)−σ(1−δ)σ

)σ−1
σ

αF
σ−1
σ + (1− α)M

σ−1
σ

(
1+
(
q1
q0

)1−εσ
(1+ρ)−σ

1−δ+
(
q1
q0

)1−εσ
(1+ρ)−σ(1−δ)σ

)σ−1
σ



σ
σ−1

As shown in Figure 4, the numerical solutions confirm that ∂m0
∂δ > 0 and δ < δ̃ =⇒ ∂f0/K0

∂δ < 0,

hence that our argument applies also in this case.30 The solution changes with σ: the marginal

impact of δ on the initial investment in green capital and energy mix is stronger as the elasticity

of substitution between energy services increases. Moreover, this dependency is positively related

to the elasticity of intertemporal substitution, 1/ε. These findings confirm the heuristic argument

developed in the previous paragraph: the flexibility in combining the two types of energy services

affects the optimal timing of green investment and the optimal energy mix when green capital can

be recycled. Specifically the more flexible are the preferences and the technology, the more society

takes advantage of the opportunity opened by recycling. Yet, our original argument favorable to

early investment and to the intensity in renewables of the energy mix apply in this more involved

30The sensitivity analysis confirms that these results are robust. In particular, they hold for all combinations of
σ ∈ [0.1, 10.1] and ε ∈ [0.1, 6.1]. The code used for this and the other numerical results, including the Figures, is
available on-line with the supplementary material.



Mineral Resources for Renewable Energy 21

setting. To the extent that much of the relative mineral intensity of renewables is linked to the

electricity-storage technology and the aim of the latter is precisely to improve the substitutability

between conventional and renewable sources of electricity, our argument is somewhat reinforced by

the analysis, though of course it assumes both parameters as exogenous.

4.3 Convex extraction costs

So far, in our analysis we ruled out extraction costs. If the marginal costs of producing fossil

and mineral resources increase with the extraction rate, the optimal timing of resource use, thus

of investment in green capital, should be affected. In order to show this in a clear-cut way, we

present a variant of our two-period model where fossil resources play no role.31 We focus on the

optimal solution with full exhaustion of the minerals stock and m1 > 0,32 and consider the following

planner’s problem:

max
1

1− ε
m1−ε

0 +
1

1 + ρ

1

1− ε
(M − (1− δ)m0)

1−ε − c

1 + γ
m1+γ

0 − 1

1 + ρ

c

1 + γ
(M −m0)

1+γ

where c, γ > 0 are the extraction cost parameters, and minerals are exhausted m1 = M −m0. The

first order condition is

P (m0) := m−ε0 −
1− δ
1 + ρ

(M − (1− δ)m0)
−ε = c

(
mγ

0 −
1

1 + ρ
(M −m0)

γ

)
=: C (m0) (4.8)

P (m0) measures the present value of the marginal utility generated by first period mineral ex-

traction. It is a monotonically decreasing function of m0, taking values +∞ for m0 = 0, and

M−ε
(

1− (1−δ)
1+ρ δ

−ε
)

for m0 = M . It becomes nil at mu
0 :=

(
1− δ +

(
1−δ
1+ρ

) 1
ε

)−1
M . C (m0) mea-

sures the present value of the marginal cost of extraction at date 0. It is an increasing func-

tion of m0, from −c 1
1+ρM

γ for m0 = 0 up to cMγ for m0 = M . It becomes nil at mc
0 :=(

1
1+ρ

) 1
γ

(
1 +

(
1

1+ρ

) 1
γ

)−1
M . Therefore, if the two schedules cross in the space (m0, value) for

m0 ∈ [0,M ], they do so only once. We conclude that, if
(

1− 1−δ
1+ρδ

−ε
)
< cMγ+ε, there exists a

unique value of m0 satisfying (4.8).

How does the presence of convex extraction costs directly affect the timing of mineral resource

use? Does it affect the role played by the efficiency of the recycling technology of minerals embedded

in green capital on the timing of investment in green capital?

To answer the former question, consider the present value of the marginal extraction cost of

m0. Notice first that when γ > 0 and in the absence of discounting ρ = 0, this cost is minimized

by smoothing completely resource extraction m0 = m1 = 1
2M . Under discounting, instead, this

31In practice we assume α = 0 to simplify the analysis and the notations. Numerical solutions suggest that the
qualitative results extend to the case of an optimized use of finite fossil resources: this has been verified for the
benchmark calibration (see footnote 22), with c = 1, γ = 2, and ε varying from 0.1 to 3.1.

32In the case of extraction costs for minerals, it is not necessarily the case that the stock M is optimally exhausted.
This is the case only for costs sufficiently low. Extraction costs are in turn partially endogenous. Here we focus the
analysis on the first order condition.
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intertemporal smoothing is partial and C (m0) is minimized by partially shifting resource use to the

future, i.e. m0 = mc
0 < m1 = M −mc

0 since ρ > 0. These two features provide the rationale for

smoothing over time and partially delaying resource extraction when the marginal extraction cost

is an increasing function of the extraction rate. Notice that these considerations intervene in our

problem on the right-hand-side of (4.8), and are not directly affected by the possibility to recycle

minerals, on which hinges the original mechanism put forward in this article. This remark provides

the answer to the second question above: a marginal improvement in δ increases the present value of

the marginal utility generated by first period mineral extraction and leads to an increase in optimal

m0, and investment in green capital, for any given schedule C (m0).
33

We have shown that, although convex extraction costs introduce an economic incentive to smooth

and actually postpone extraction of minerals, and therefore the build-up of the green capital stock,

our original mechanism due to the possibility of recycling minerals embedded in green capital, is still

at work, since it introduces a specific incentive to bring forward ceteris paribus minerals extraction

and investment in green capital.

4.4 Environmental damages from using fossil resources

One of the main reasons underpinning the development of renewable energy production capacity

around the world is the general recognition of the social costs resulting of the energy production

from fossil resources. Since Smith (1972), the literature analyzing the interplay between recycling

and pollution has focused on the potential limitation of local pollution from solid waste. Our original

framework allows us to introduce an indirect link between the development of recycling and the

reduction of greenhouse gas emissions, to mitigate climate change, a global pollution problem.34

Recycling influences the time profile of the energy mix. In the case of climate change related

damages, the cumulative process of pollution raises the social payoff of early action. To take into

account this additional factor affecting the optimal timing of investment in green capital, we extend

our two-period model by assuming that using fossil resources also reduces utility. Specifically, we

modify the utility function by adding a separable disutility term, convex in the current flow of

pollution from the use of fossil resources: dt
1
θf

θ
t , with θ > 1 and t ∈ {0; 1}. In order to capture two

features of the climate change problem, we consider the case where it is not socially desirable to

exhaust fossil resources, i.e. f0 + f1 < F , then consider that damages from first period emissions

are relatively large, i.e. d0/d1 > 1 and study the impact of an increase in d0.
35

33Formally, one can compute from (4.8) that dm0
dδ

= −
(
∂P (m0)
∂δ

− ∂C(m0)
∂δ

)
/
(
∂P (m0)
∂m0

− ∂C(m0)
∂m0

)
> 0,

since, according to the previous analysis, the denominator is negative while ∂C(m0)
∂δ

= 0 and ∂P (m0)
∂δ

=
1

1+ρ
(M − (1− δ)m0)−ε

(
1 + ε (1−δ)m0

M−(1−δ)m0

)
> 0.

34Though the use of fossil resources is a major cause of local pollution problems too, the crucial constraint on the
supply of minerals for green capital (2.7) is potentially relevant on a global scale.

35Alternative setups to study the problem could be considered. One may impose a constraining ceiling F < F ,
such that f0 + f1 ≤ F , in the spirit of the literature on “carbon budgets” (Chakravorty et al., 2006). Moreover, the
cumulative nature of the pollution problem can be explicitly considered, by assuming that the second period disutility
from pollution depends on past and present use of fossil resources. Numerical solutions of the case with cumulative
pollution suggest that the qualitative results hold: this has been verified for the benchmark calibration (see footnote
22), with d = 1, θ = 2, and ε varying from 0.1 to 3.1.



Mineral Resources for Renewable Energy 23

The planner’s program is modified, and writes

max
1

1− ε
(
fα0 m

1−α
0

)1−ε − d0 1

θ
fθ0 +

1

1 + ρ

(
1

1− ε

(
fα1 (m1 + δm0)

1−α
)1−α

− d1
1

θ
fθ1

)
+ ν (M −m0 −m1)

We show in Appendix F that the interior solution (i.e. m1 > 0) holds if δ < δ̃ ≡ r̃
1+r̃ and is

defined by (4.2), (4.3) but for the following

f0 =

 α
d0

(
1

1−δ
1 + r̃

M

)(1−α)(1−ε)
 1
θ−α(1−ε)

, f1 =

[
α

d1

(
r̃

1 + r̃
M

)(1−α)(1−ε)
] 1
θ−α(1−ε)

(4.9)

and the decline in energy consumption that is now given by

q1
q0

=

[(
d0
d1

)α(1− δ
1 + ρ

)θ(1−α)] 1
θ−(1−ε)[α+θ(1−α)]

. (4.10)

Since α ∈ (0, 1), ε > 0, θ > 1 imply θ − (1− ε) [α+ θ (1− α)] > 0, the energy consumption

declines at a faster pace with the efficiency of recycling (∂ q1q0 /∂δ < 0), and a slower rate with the

importance of damages from initial polluting emissions (∂ q1q0 /∂d0 > 0). As a consequence the gross

discount rate r̃ falls with δ and increases with d0 if ε < 1, and vice versa. We find that our original

mechanism is also operative in this framework. Similarly to the result in Proposition 2, the initial

extraction rate of minerals and green investment increase with the recyclability, as well as the share

of renewables in the energy mix in the first period (see Appendix F). In this case the energy mix

is affected by δ also in the second period. In fact, improved recyclability of minerals embedded in

green capital exerts the same effects discussed in detail in Section 4.1 in terms of the intertemporal

allocation of fossil and mineral resources. However, in the present case the countervailing force due

to the limited supply of fossil resources and their exhaustion is not active, since the total quantity

of fossil resources used can vary. From (4.3) and (4.9) one can see that the use of fossil resources in

the initial period moves with the recyclability in the same direction as renewables if the elasticity

of the intertemporal substitution in consumption is larger than unity (i.e. ε < 1), and vice versa,

while fossil resource use in the second period always falls with δ. Hence, improved recyclability of

minerals allows society to reduce the total amount of fossil resources used when ε > 1, and thus

increase the share of renewables in the energy mix in both periods.36

How is investment in green capital affected by an increase in the damage of fossil resources

use in the first period, i.e. d0? This may represent a worsening of the climate change problem,

as a short-cut for the cumulative nature of damages in such a pollution control problem. We find

that an increase in d0 does not necessarily put forward investment in green capital. In fact, for

larger damage from fossils in the first period, the intuitive effect is that less fossil is used in the

first period. As a consequence, the marginal utility of consumption in the first period is increased,

36This result would not hold if one were to adopt a “carbon budget” approach.
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making m0 more valuable. This first effect calls for increasing m0. However, a second effect,

related to complementarity in production, comes from the fact that the marginal productivity of

one resource increases with the use of the other resource. This calls for shifting the use of minerals

to the second period, in order to postpone the use of the fossil resource. The balance between these

two effects is solved according to the willingness of the representative agent to shift utility across

time: if the elasticity of intertemporal substitution is sufficiently low, i.e. ε > 1, the first effect

dominates and m0 increases with d0, and vice versa.

5 Conclusion

Some observers argue that renewable energy is not manna from heaven, since it requires specific

equipment that relies on intensive use of exhaustible and finite mineral resources. We have shown

that this empirical fact favors abundant and early investment in green capital for the production

of renewable energy, given that minerals embedded in specialized green capital can be recycled, as

opposed to fossil resources burned for energy production.

Our analysis has focused on the role of recycling in determining the optimal path of extraction

of fossil and mineral resources, and the investment in green capital. However, we have considered

a constant, costless and exogenous recycling process. It would be relevant to check how robust

our argument is to relaxing these assumptions. On its own the issue of the optimal choice of the

recycling rate is interesting, and more so in our context as it could affect the timing of investment

in green capital.

We have adopted the normative approach of the benevolent social planner. However, it can

be argued that market failures would lead to inefficient equilibria. Some market failures concern

imperfect competition, both in the primary resource market and in the secondary one, when there

is recycling (see Ba and Mahenc, 2019, and the literature review therein). Other potential failures

concern the thinness of markets for specific minerals and the joint production of several mineral

resources (Fizaine, 2013). Moreover, the decentralized investment in R&D directed at improvements

in resource use efficiency or in recycling technology, may underpin potential dynamic inefficiencies

(e.g. Zhou et al., 2018). Such market failures call for public intervention, raising the issue of their

efficient design. We plan to study these extensions in future work.

It could also be interesting to investigate the role of the non-recycled share of used green capital.

This cumulative waste involves a social cost to the extent that it may occupy scarce space or

generate pollution in the absence of specific costly treatment. The social benefit of the development

of recycling would therefore be confirmed : in addition to extending the life-cycle of the natural

resource, therefore its use and the ability to generate energy from renewable sources, recycling

reduces the amount of waste and its associated social cost.
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Chakravorty, U., Magné, B., and Moreaux, M. (2006). A Hotelling model with a ceiling on the
stock of pollution. Journal of Economic Dynamics and Control, 30(12):2875–2904.

Dasgupta, P., Gilbert, R. J., and Stiglitz, J. E. (1982). Invention and innovation under alternative
market structures: The case of natural resources. The Review of Economic Studies, 49(4):567–582.

Dasgupta, P. S. and Heal, G. M. (1979). Economic Theory and Exhaustible Resources. Cambridge
University Press.

Davison, R. (1978). Optimal Depletion of an Exhaustible Resource with Research and Development
towards an Alternative Technology. The Review of Economic Studies, 45(2):355–367.

De Beir, J., Fodha, M., and Magris, F. (2010). Life cycle of products and cycles. Macroeconomic
Dynamics, 14(2):212—-230.

Di Vita, G. (2001). Technological change, growth and waste recycling. Energy Economics, 23(5):549–
567.



26 Fabre, Fodha, Ricci

Di Vita, G. (2007). Exhaustible resources and secondary materials: A macroeconomic analysis.
Ecological Economics, 63(1):138–148.

DOE (2013). Ames laboratory to lead new research effort to address shortages in rare earth and
other critical materials. Department of Energy, Public announcement of the establishment of the
Critical Minerals Institute, January 9.

European Commission (2017). Study on the review of the list of critical raw materials. Technical
report, Publications Office of the European Union.

European Commission (2018). Report on critical raw materials and the circular economy. Technical
report, Commission Staff Working Document, SWD(2018) 36 final.

Fizaine, F. (2013). Byproduct production of minor metals: Threat or opportunity for the devel-
opment of clean technologies? the pv sector as an illustration. Resources Policy, 38(3):373 –
383.

Fodha, M. and Magris, F. (2015). Recycling waste and endogenous fluctuations in an olg model.
International Journal of Economic Theory, 11(4):405––427.

Goulder, L. H. and Schneider, S. H. (1999). Induced technological change and the attractiveness of
co2 abatement policies. Resource and Energy Economics, 21(3):211 – 253.

Grimaud, A. and Rouge, L. (2008). Environment, directed technical change and economic policy.
Environmental and Resource Economics, 41(4):439–463.

Hart, R. (2019). To everything there is a season: Carbon pricing, research subsidies, and the transi-
tion to fossil-free energy. Journal of the Association of Environmental and Resource Economists,
6(2):135–175.

Heal, G. M. (1993). Chapter 18 - The Optimal Use of Exhaustible Resources. In Kneese, A. V. and
Sweeney, J. L., editors, Handbook of Natural Resource and Energy Economics, volume 3, pages
855–880. Elsevier.

Herfindahl, O. C. (1967). Depletion and economic theory. In Gaffney, M., editor, Extractive Re-
sources and Taxation, pages 63–90. University of Wisconsin Press, Madison, WI.

Hertwich, E. G., Gibon, T., Bouman, E. A., Arvesen, A., Suh, S., Heath, G. A., Bergesen, J. D.,
Ramirez, A., Vega, M. I., and Shi, L. (2015). Integrated life-cycle assessment of electricity-supply
scenarios confirms global environmental benefit of low-carbon technologies. Proceedings of the
National Academy of Sciences, 112(20):6277–6282.

Hoel, M. (1978). Resource extraction and recycling with environmental costs. Journal of Environ-
mental Economics and Management, 5(3):220–235.

Hotelling, H. (1931). The economics of exhaustible resources. Journal of Political Economy,
39(2):137–175.

Kamien, M. I. and Schwartz, N. L. (1978). Optimal exhaustible resource depletion with endogenous
technical change. Review of Economic Studies, 45(1):179 – 196.

Kemp, M. C. and Van Long, N. (1980). On two folk theorems concerning the extraction of ex-
haustible resources. Econometrica, 48(3):663–673.



Mineral Resources for Renewable Energy 27

Kverndokk, S. and Rosendahl, K. E. (2007). Climate policies and learning by doing: Impacts and
timing of technology subsidies. Resource and Energy Economics, 29(1):58 – 82.

Lafforgue, G. and Rouge, L. (2019). A dynamic model of recycling with endogenous technological
breakthrough. Resource and Energy Economics, 57:101–118.

Lemoine, D. and Traeger, C. (2014). Watch your step: Optimal policy in a tipping climate. American
Economic Journal: Economic Policy, 6(1):137–66.

Lewis, T. R. (1982). Sufficient conditions for extracting least cost resource first. Econometrica,
50(4):1081–1083.

Moreaux, M. and Ricci, F. (2005). The simple analytics of developing resources from resources.
Resource and Energy Economics, 27(1):41–63.

Moss, R. L., Tzimas, E., Kara, H., Willis, P., and Kooroshy, J. (2013). The potential risks from
metals bottlenecks to the deployment of Strategic Energy Technologies. Energy Policy, 55(Sup-
plement C):556–564.

Murto, P. and Nese, G. (2002). Input price risk and optimal timing of energy investment: choice be-
tween fossil- and biofuels. Working Papers in Economics 15/02, University of Bergen, Department
of Economics.

Musu, I. and Lines, M. (1995). Endogenous growth and environmental preservation. In Boero,
G. and Silberston, A., editors, Environmental Economics, Confederation of European Economic
Associations, pages 273–295. Springer International Publishing.

Oren, S. S. and Powell, S. G. (1985). Optimal supply of a depletable resource with a backstop
technology: Heal’s theorem revisited. Operations Research, 33(2):277–292.

Pittel, K., Amigues, J.-P., and Kuhn, T. (2010). Recycling under a material balance constraint.
Resource and Energy Economics, 32(3):379–394.

Pittel, K. and Bretschger, L. (2010). The implications of heterogeneous resource intensities on
technical change and growth. Canadian Journal of Economics/Revue canadienne d’économique,
43(4):1173–1197.

Schulze, W. D. (1974). The optimal use of non-renewable resources: The theory of extraction.
Journal of Environmental Economics and Management, 1:53–73.

Singer, D. A. (2017). Future copper resources. Ore Geology Reviews, 86(Supplement C):271–279.

Smith, V. L. (1972). Dynamics of waste accumulation: Disposal versus recycling. Quarterly Journal
of Economics, 86(4):600–616.

Smulders, S. and de Nooij, M. (2003). The impact of energy conservation on technology and
economic growth. Resource and Energy Economics, 25(1):59 – 79.

Tahvonen, O. and Salo, S. (2001). Economic growth and transitions between renewable and nonre-
newable energy resources. European Economic Review, 45(8):1379–1398.

Tsur, Y. and Zemel, A. (2005). Scarcity, growth and r&d. Journal of Environmental Economics
and Management, 49(3):484–499.



28 Fabre, Fodha, Ricci
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A Solutions of the infinite horizon

In the general case where we do not assume that there is an interval from t to t̄ which corresponds to
positive mineral extraction, the maximization program writes:

max
fx, mx

∑
x≥0

(1 + ρ)
−x

1− ε

fαx
(
K−1δ

x+1 +

x∑
u=0

muδ
x−u

)1−α
1−ε

+λ

F −∑
x≥0

fx

+ ν

M −∑
x≥0

mx

+
∑
x≥0

λxfx +
∑
x≥0

νxmx

In the following, we simplify the notations by introducing: φ := α (1− ε) and µ := (1− α) (1− ε). To
solve the program, we first assume in subsection A.1 that the positivity constraints always hold after a
certain date t, i.e. ∀t ≥ t, λt = νt = 0, which corresponds to an endless extraction of resources. Then in
subsection A.2, we derive the optimal solution in the case where minerals are depleted at the initial period:
∀t > 0, mt = 0. We show in Appendix B that these solutions are indeed optimal under the conditions given
in Proposition 1.

A.1 Endless extraction

We assume a positive extraction of both resources starting at a date t, before which only fossils are
extracted. Using (2.6), the social planner’s program rewrites:

max

t−1∑
x=0

(1 + ρ)
−x

1− ε
fφx
(
δx+1K−1

)µ
+
∑
x≥t

(1 + ρ)
−x

1− ε
fφxK

µ
x + λ

F −∑
x≥0

fx

+ ν

M −∑
x≥t

mx


In the computations, we assume δ > 0, but the solution extends to the limit cases δ = 0. The log case

ε = 1 is covered by the computations (only the program writes differently in this case).
The f.o.c.s are: 

(∂ft)t<t αfφ−1
t (δK−1)

µ
= λ

(
1+ρ
δµ

)t
(∂ft)t≥t αfφ−1

t Kµ
t = λ (1 + ρ)

t

(∂mt)t≥t
∑
x≥t

fφxK
µ−1
x

(
δ

1+ρ

)x
= ν

1−αδ
t

where the last f.o.c. uses the definition of Kx in (2.6).
Subtracting the f.o.c. on mt+1 from the f.o.c. on mt, we have

fφt K
µ−1
t =

ν

1− α
(1− δ) (1 + ρ)

t
(A.1)

so that,

∀t ≥ t, Kt =

(
ν

1− α
(1− δ) (1 + ρ)

t

) 1
µ−1

f
φ

1−µ
t (A.2)

Injecting this into the f.o.c. on ft, and given that φ+ µ− 1 = −ε < 0:
λ = αfφ−1

0 (δK−1)
µ

∀t < t, ft =
(
λ
α

(
1+ρ
δµ

)t
(δK−1)

−µ
) 1
φ−1

= f0

(
1+ρ
δµ

) t
φ−1

∀t ≥ t, ft =

(
λ
α (1 + ρ)

t
1−µ

(
ν

1−α (1− δ)
) µ

1−µ
) 1−µ
φ+µ−1

Defining r := (1 + ρ)
1

φ+µ−1 = (1 + ρ)
−1/ε

< 1 and R :=
(

1+ρ
δµ

) 1
φ−1 , this system gives:
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∀t < t, ft = f0R
t and ∀t ≥ t, ft = fSr

t (A.3)

Combining the f.o.c.s of ft and ft−1, we have fS = f0

(
rδK−1

Kt

) µ
φ−1

, so that

∑
t≥0

ft = f0
1−Rt

1−R
+ fS

rt

1− r
= f0

(
1−Rt

1−R
+

(
rδ
K−1

Kt

) µ
φ−1 rt

1− r

)
= fS

((
rδ
K−1

Kt

) µ
1−φ 1−Rt

1−R
+

rt

1− r

)

The constraint (2.4) on recoverable resource of fossils gives f0 = F

(
1−Rt
1−R +

(
rδK−1

Kt

) µ
φ−1 rt

1−r

)−1

and fS =

F

((
rδK−1

Kt

) µ
1−φ 1−Rt

1−R + rt

1−r

)−1

. Turning to the minerals, we have from (A.2) and (A.3), using (2.6):

mt = Kt − δt+1K−1 =

(
ν

1− α
(1− δ)

) 1
µ−1

f
φ

1−µ
S rt − δt+1K−1

∀t > t, mt = Kt − δKt−1 =

(
ν

1− α
(1− δ)

) 1
µ−1

f
φ

1−µ
S rt−1 (r − δ) =: Ktr

t−t−1 (r − δ)

Lastly, Kt is determined by the transversality condition (2.7) on (mt)t≥0:

M =
∑
t≥t

mt = Kt − δt+1K−1 +
∑
t>t

Ktr
t−t−1 (r − δ) = Kt

1− δ
1− r

− δt+1K−1

i.e. Kt = 1−r
1−δ

(
M + δt+1K−1

)
. Finally, we obtain, with r = (1 + ρ)

− 1
ε and R =

(
1+ρ
δµ

) 1
φ−1 :

∀t < t, ft =

(
1−Rt

1−R
+

(
rδ (1− δ)K−1

(1− r) (M + δt+1K−1)

) µ
φ−1 rt

1− r

)−1

F ·Rt

∀t ≥ t, ft =

((
rδ (1− δ)K−1

(1− r) (M + δt+1K−1)

) µ
1−φ 1−Rt

1−R
+

rt

1− r

)−1

F · rt

∀t < t, mt = 0 (A.4)

mt =
1− r
1− δ

M − r − δ
1− δ

δt+1K−1

∀t > t, mt =
1− r
1− δ

(
M + δt+1K−1

)(
1− δ

r

)
rt−t

The positivity constraints hold for δ < r and for t such that M > δt+1K−1
r−δ
1−r .

A.2 Immediate exhaustion

In this case, ∀t > 0, mt = 0. We also assume that ∀t, ft > 0 (see subsection B.1 for the justification).
The objective is increasing in m0, so it should be set to its maximum: m0 = M . Then, the f.o.c. on

ft writes: αfφ−1
t Mµδµt = λ (1 + ρ)

t
, i.e. ft =

(
λ

αMµ

(
1+ρ
δµ

)t) 1
φ−1

. Defining f0 :=
(

λ
αMµ

) 1
φ−1 , we have:

∀t ≥ 0, ft = f0R
t. To conclude, notice that according to Lemma 1 in Appendix C δ ≥ r ⇒ R < 1. 37

The transversality condition (2.4) must be saturated, as the program is increasing in ft for all t. This gives

37

Except in the degenerate case δ = 1 + ρ = R = 1 for which there is no solution because the supremum of
the objective is infinite and cannot be attained. However ρ > 0 by assumption.
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F =
∑
t≥0

ft = f0

1−R , thus f0 = F (1−R). Finally, we obtain: ∀t ≥ 0, ft = F (1−R)Rt

B Optimality of the solutions

In this section, we demonstrate the results of Proposition 1. We show in B.1 that it is never optimal to
interrupt the extraction when δ < r. Then we derive in B.2 the solution when minerals are depleted in a
finite time and show that it is sub-optimal. Finally, we use all this to prove Proposition 1 in the case δ < r
in B.3, and we treat the case δ ≥ r in B.4.

B.1 Interruption of extraction

It is never optimal to let K or f be nil at any period because the marginal welfare goes to +∞ when
consumption is nil. Let us now show that for δ < r, it is never optimal to interrupt mineral extraction, i.e.
δ < r =⇒ ∃t,∃t̄ ≥ t, mt > 0 ⇐⇒ t ∈ [t, t̄]. Let (mt, ft)t≥0 be an optimal solution and let T be such that
mT > 0 and such that {t > T |mt > 0} 6= Ø. We define τ := min

t>T
{t|mt > 0} in order to prove that τ = T + 1,

i.e. that interruption of mineral extraction is suboptimal. Let us assume ad absurdo that τ 6= T + 1, so that
mT+1 = 0 and mτ−1 = 0. Then, as φ < 1 and ε > 0, we deduce from δ < r using the definition of r:

1 >

(
δ

r

)(τ−1−T ) ε
1−φ

= (1 + ρ)
τ−1−T

1−φ

(
KT

KT
· δτ−1−T

) ε
1−φ

= (1 + ρ)
τ−1−T

1−φ

(
Kτ−1

KT

) µφ
φ−1 +1−µ

= (1 + ρ)
(τ−1−T )

(
KT

Kτ−1

)µ−1(
fT
fτ−1

)φ
where we used the f.o.c.s on fT and fT+1 to find the last equality. We thus have

(1− α) (1 + ρ)
−T

fφTK
µ−1
T < (1− α) (1 + ρ)

−(τ−1)
fφτ−1K

µ−1
τ−1 .

Besides, taking into account the non-negativity constraints ντ−1 ≥ 0 and νT+1 ≥ 0 in equation A.1, we have:

(1− α) (1 + ρ)
−T

fφTK
µ−1
T = (1− δ) ν + δνT+1 ≥ (1− δ) ν − ντ−1 = (1− α) (1 + ρ)

−(τ−1)
fφτ−1K

µ−1
τ−1

The last two inequalities contradict, so we deduce that τ = T + 1.

B.2 Exhaustion in a finite time

Let t̄ > 0 be the last period at which minerals are extracted. We assume in this subsection that extraction
takes place from the initial period on. The program can be decomposed in two eras, during and after the
extraction of minerals:

max

t̄∑
x=0

(1 + ρ)
−x

1− ε
fφxK

µ
x +

∑
x>t̄

(1 + ρ)
−x

1− ε
fφxK

µ
t̄ δ

µ(x−t̄) + λ

F −∑
x≥0

fx

+ ν

M −∑
x≥0

mx


Using the f.o.c.s, one can derive the unique solution and write the inter-temporal welfare as follows, after

defining with a := 1−rt̄
1−r (1− δ) and c =

(
(1− δ) Rt̄

1−R

) φ−1
µ+φ−1

δ
µt̄

µ+φ−1 :38

Wt̄ =
fφ0 m

µ
0

1− ε
+

t̄−1∑
x=1

(1 + ρ)
−x f

φ
xK

µ
x

1− ε
+ (1 + ρ)

−t̄ f
φ
t̄ K

µ
t̄

1− ε
+
∑
x>t̄

(1 + ρ)
−x f

φ
xK

µ
t̄

1− ε
δµ(x−t̄)

=
1

1− ε

(
FφM̄µ (1− δ)φ−1

(a+ c)
1−φ−µ

)
To show that extraction in a finite time is not optimal, we derive welfare with respect to the last period of

38The detailed derivation is available in the on-line Appendix. Referees please see Appendix G.
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extraction:

dW

dt̄
= W

1− φ− µ
a+ c

d (a+ c)

dt̄

a+ c

1− φ− µ
1

W

d lnW

dt̄
=
da

dt̄
+
dc

dt̄
= − ln (r) rt̄

(
1− δ
1− r

−
(

1− δ
1−R

) φ−1
µ+φ−1

)

It is optimal to delay the exhaustion of minerals if and only if d lnW
dt̄ > 0. Notice that

1

W

d lnW

dt̄
> 0 ⇐⇒ 1− δ

1− r
>

(
1− δ
1−R

) φ−1
µ+φ−1

⇐⇒ 1−R > (1− δ)
−µ
φ−1 (1− r)

µ+φ−1
φ−1

⇐⇒ 1− r
µ+φ−1
φ−1

δ
µ
φ−1

>

(
1− δ
1− r

) µ
1−φ

(1− r)

Defining v := µ
1−φ and gr (δ) := 1−

(
δ
r

)v
r −

(
1−δ
1−r

)v
(1− r), we have 1

W
d lnW
dt̄ > 0 ⇐⇒ gr (δ) > 0. Yet,

g
′

r (δ) = v

((
1−δ
1−r

)v−1

−
(
δ
r

)v−1
)

. For v ∈ (0;1): g
′

r (δ) > 0 ⇐⇒ 1−δ
1−r <

δ
r ⇐⇒ r < δ while for v < 0, the

inverse is true: g
′

r (δ) > 0 ⇐⇒ δ < r. In addition, 0 < ε < 1 =⇒ (1− ε) − α (1− ε) < 1 − α (1− ε) =⇒
v = (1−α)(1−ε)

1−α(1−ε) ∈ (0;1) while ε > 1 =⇒ v < 0 (in the limit case ε = 1, gr = 0). For ε < 1, as gr (r) = 0

and gr is strictly decreasing below r and strictly increasing above r, we deduce that ∀r, gr ≥ 0 and that
∀r, ∀δ 6= r, gr (δ) > 0. For ε > 1, the same reasoning shows that ∀r, gr ≤ 0 and that ∀r, ∀δ 6= r, gr (δ) < 0.
Given that W > 0 ⇐⇒ ε < 1, ε 6= 1 =⇒ ∀δ 6= r, d lnW

dt̄ > 0. The solutions extend to the log case ε = 1,
but the formula of intertemporal welfare does not. Let us compare in this case Wt̄+1 and Wt̄.

Wt̄+1 −Wt̄ =

t̄∑
t=0

(1 + ρ)
−t

ln

((
M̄

1− r
1− δ

)1−α

Fαrt

)
+
∑
t>t̄

(1 + ρ)
−t

ln

((
M̄δt−t̄−1rt̄+1

)1−α
Fαrαt

)

−
t̄−1∑
t=0

(1 + ρ)
−t

ln

((
M̄

1− r
1− δ

)1−α

Fαrt

)
−
∑
t≥t̄

(1 + ρ)
−t

ln

((
M̄δt−t̄rt̄

)1−α
Fαrαt

)
Wt̄+1 −Wt̄

1− α
=rt̄ ln

(
1− δ
1− r

)
+
∑
t>t̄

rt ln

(
δ

r

)
= rt̄

(
ln

(
1− r
1− δ

)
+

r

1− r
ln
(r
δ

))

Hence, for ε = 1, Wt̄+1 > Wt̄ ⇐⇒ hr (δ) := (1− r) ln
(

1−r
1−δ

)
+ r ln

(
r
δ

)
> 0. Yet, h′r (δ) = 1−r

1−δ −
r
δ >

0 ⇐⇒ δ > r and hr (r) = 0, so that ∀δ 6= r, hr (δ) > 0. As a consequence, whatever the value of ε, it is
always optimal to delay the end of mineral extraction and it is never optimal to exhaust minerals at a date
t̄ > 0. Indeed, in the only case for which it is optimal to do so, δ = r, all candidate solutions conflate to
immediate exhaustion.

B.3 Case δ < r

In this subsection, we call t the first period for which an optimal program’s mineral extraction has a
positive value: t := min

t≥0
{mt > 0}. Let us prove by induction on t that for all optimal solutions (mt, ft)t≥0

such that t is the first period with positive mineral extraction, t < t ⇐⇒ mt = 0. t < t =⇒ mt = 0 being
true by definition, we only need to prove the reciprocal. In the base case t = 0, mt = 0 =⇒ t ∈ ∅ =⇒ t <
t = 0 comes from the results of the three previous subsections that it is never optimal to stop or interrupt
extraction. Then we turn to the inductive step, and we assume that the proposition has been proven for
all t ≤ n, to show it in the case t = n + 1. Let (mt, ft)t≥0 be a solution of the original program such that
t = n + 1. Necessarily, (mt, ft)t≥1 is optimal solution of the program starting at 1 with stock of resources
(M −m0, F − f0). Applying the induction on (mt, ft)t≥1, we know that ∀t ≥ 1, (mt = 0 =⇒ t < n+ 1).
In addition, by definition of t, m0 = 0, so that ∀t ≥ 0, t < t ⇐⇒ mt = 0, which achieves the proof. Given
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that it is never optimal to interrupt or stop mineral extraction, the optimal extraction path is the one derived
in Appendix A.

B.4 Case δ ≥ r

For δ > r, and using the f.o.c.s on ft and ft+1
39, we have:

∀t, 1 <

(
δ

r

) ε
1−φ

≤ (1 + ρ)
1

1−φ

(
mt+1

Kt
+ δ

) ε
1−φ

= (1 + ρ)
−1
φ−1

(
Kt+1

Kt

) µφ
φ−1 +1−µ

= (1 + ρ)

(
Kt

Kt+1

)µ−1(
ft
ft+1

)φ
∀t, (1 + ρ)

−t
fφt K

µ−1
t > (1 + ρ)

−(t+1)
fφt+1K

µ−1
t+1

Suppose ad absurdo that the optimal path (mt, ft)t≥0 is such that there exists T > 0 such that mT > 0.

Let
(
m̃t, f̃t

)
t≥0

be an alternative path defined by ∀t, f̃t = ft, ∀t /∈ {T ; 0} , m̃t = mt, m̃0 = m0 + η,

m̃T = mT − η, for an arbitrary η ∈ (0,mT ). Let us compare the welfares Wη and W given by
(
m̃, f̃

)
and

(m, f), respectively.

W̃η =
1

1− ε

∑
t<T

(1 + ρ)
−t
fφt
(
Kt + ηδt

)µ
+
∑
t≥T

(1 + ρ)
−t
fφt
(
Kt + η

(
δt − δt−T

))µ
=

η→0+

1

1− ε

∑
t<T

(1 + ρ)
−t
fφt K

µ
t

(
1 + µη

δt

Kt

)
+
∑
t≥T

(1 + ρ)
−t
fφt K

µ
t

(
1 + µη

δt − δt−T

Kt

)+ o (η)

W̃η −Wη =
η→0+

ηα

∑
t≥0

(
(1 + ρ)

−t
fφt K

µ−1
t − (1 + ρ)

−t−T
fφt+TK

µ−1
t+T

)
δt

+ o (η)

From above, we know that ∀t, (1 + ρ)
−t
fφt K

µ−1
t > (1 + ρ)

−t−T
fφt+TK

µ−1
t+T , which implies that W̃η >

Wη.40 This contradicts the optimality of (m, f). We deduce that δ > r =⇒ ∀T > 0, mT = 0. Observing
that for δ = r the unconstrained solution gives ∀t > 0, mt = 0 concludes the proof.

C Relations between the different rates

Lemma 1. For ε < 1, there are only three possible exclusive cases:

δ < R < r <
1

1 + ρ
or r < R < min

{
1

1 + ρ
, δ

}
or δ = R = r <

1

1 + ρ

whereas for ε > 1, the three possible cases are:

max

{
δ,

1

1 + ρ

}
< r < R or

1

1 + ρ
< R < r < δ or δ = R = r >

1

1 + ρ

Finally, ε = 1 entails r = R = 1
1+ρ < 1, with no relation on δ.

As δ < 1, it follows that δ ≥ r =⇒ R < 1.

Proof. We always have δ < R ⇐⇒ δφ−1 > rµ+φ−1

δµ ⇐⇒ δ < r. For ε < 1, µ = (1− α) (1− ε) > 0, so

39To equate the f.o.c.s on ft we used the fact the ∀t, ft > 0 shown in subsection B.1.
40The argument does not rely on ε 6= 1, the limit case ε = 1 has not been presented for simplicity.
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that r < R ⇐⇒ rφ−1 > rµ+φ−1

δµ ⇐⇒ δ > r . Ad absurdo, we also have that δ < R =⇒ R < r for ε < 1.

In effect, suppose that δ < R and r ≤ R. From the inequalities above (which are also valid as non-strict

inequalities), we deduce two contradictory properties: δ < r and δ ≥ r. Reciprocally, r ≤ R =⇒ R ≤ δ for

ε < 1. In addition, as (δ = r ⇐⇒ r = R) =⇒ (δ = r ⇐⇒ R = δ), there are only three possible exclusive

cases in the case ε < 1: δ < R < r ∨ r < R < δ ∨ δ = R = r. Using a similar reasoning for ε > 1, and

given that in this case r < R ⇐⇒ δ < r, we have ε > 1 =⇒ δ < r < R ∨ R < r < δ ∨ δ = R = r.

As δ < 1, it follows that δ ≥ r =⇒ R < 1. Finally, observing that R < 1
1+ρ ⇐⇒

1+ρ
δµ > (1 + ρ)

1−φ ⇐⇒
(1 + ρ)

φ
> δµ ⇐⇒ (1 + ρ)

α(1−ε)
> δ(1−α)(1−ε) ⇐⇒ ε < 1 and r < 1

1+ρ ⇐⇒ (1 + ρ)
1− 1

ε < 1 ⇐⇒ ε < 1

concludes the proof.

D Proof of Proposition 2

The problem is:.

max
1

1− ε

[
(A0f0)

α
(B0m0)

1−α
]1−ε

+
1

1− ε
1

1 + ρ

[
(A1f1)

α
(B1 (m1 + δm0))

1−α
]1−ε

+ λ (F − f0 − f1) + ν (M −m0 −m1)

The f.o.c.s are 
(∂f0) α

q1−ε
0

f0
= λ

(∂f1) α
1+ρ

q1−ε
1

f1
= λ

(∂m0) (1− α)
q1−ε
0

m0
+ δ 1−α

1+ρ
q1−ε
1

m1+δm0
= ν

(∂m1) 1−α
1+ρ

q1−ε
1

m1+δm0
= ν

Combining the last two

q1−ε
0 m1 =

(
1− δ
1 + ρ

q1−ε
1 − δq1−ε

0

)
m0

and using the exhaustion condition m0+m1 ≤M one gets m0 and m1 in (4.3) with the definition (4.2). Hence

m1 > 0, only for δ below the threshold δ̃ ≡ r̃
1+r̃ . Combining the first two f.o.c.s to get f1 = 1

1+ρ
q1−ε
1

q1−ε
0

f0, then

using the fossil resource exhaustion constraint f0 + f1 ≤ F , one gets f0 and f1 in (4.3). As the Lagrangian
is concave, the uniqueness stems from the Karush-Kuhn-Tucker theorem. These pace of resource use imply
a specific pace of growth of energy consumption, given by (4.4). The gross discount factor is therefore:

r̃ =

[(
A1

A0

)α(
B1

B0

)1−α
] 1−ε

ε

(1 + ρ)
− 1
ε (1− δ)(1−α) 1−ε

ε

Notice that it is not affected by technological progress in the case of logarithmic utility, i.e. if ε = 1.
The prospect of higher resource productivity (A1 > A0 or B1 > B0 ) increases the gross discount fac-
tor if the elasticity of intertemporal substitution is high enough (1/ε > 1), and vice versa. The input

ratios are given by f0

K0
= (1− δ) F

M and f1

K1
= F

M , implying ∂f0/K0

∂δ < 0 but ∂f1/K1

∂δ = 0. Besides,

K1

K0
= m1+δm0

m0
= r̃ (1− δ) = (1− δ)1+ 1−α

ε (1−ε)
[(

A1

A0

)α (
B1

B0

)1−α
] 1−ε

ε

(1 + ρ)
− (1−ε)

ε −1
, implying

∂
K1
K0

∂δ < 0.

Rewrite m0 = 1
(1−δ)(1+r̃)M , to compute ∂m0

∂δ = −
∂(1−δ)
∂δ +

∂(1−δ)r̃
∂δ

(1−δ)(1+r̃) m0 > 0, since ∂(1−δ)r̃
∂δ = − 1−α(1−ε)

1−δ r̃ < 0.

We can see that expectations of technological progress in both energy transformation technologies, postpone
resource extraction, thus investment in green capital if the elasticity of intertemporal substitution is larger

than unity: ∂m0

∂B1
= −

∂(1−δ)r̃
∂δ

(1−δ)(1+r̃)m0 < 0⇔ ε < 1.
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E Analysis of the CES case in Section 4.2

The problem is:

max
1

1− ε

(
αf

σ−1
σ

0 + (1− α)m
σ−1
σ

0

) σ
σ−1 (1−ε)

+
1

1− ε
1

1 + ρ

(
αf

σ−1
σ

1 + (1− α) (δm0 +m1)
σ−1
σ

) σ
σ−1 (1−ε)

+ λ (F − f0 − f1) + ν (M −m0 −m1)

with m0, m1, f0, and f1 ≥ 0, and where σ > 0 (Cobb-Douglas production function for σ = 1) and ε > 0 (log
utility for ε = 1).

A candidate interior solution satisfies the f.o.c.s
(∂f0) f

σ−1
σ −1

0 q
1−ε−σ−1

σ
0 = λ

α

(∂f1) 1
1+ρf

σ−1
σ −1

1 q
1−ε−σ−1

σ
1 = λ

α

(∂m0) m
σ−1
σ −1

0 q
1−ε−σ−1

σ
0 + δ

1+ρ (δm0 +m1)
σ−1
σ −1

q
1−ε−σ−1

σ
1 = ν

1−α

(∂m1) 1
1+ρ (δm0 +m1)

σ−1
σ −1

q
1−ε−σ−1

σ
1 = ν

1−α

Combine the two f.o.c.s on f and the resource constraint f0 + f1 ≤ F to get f0 and f1 in (4.3), given the
definition (4.5). Combine the two f.o.c.s on m and the resource constraint m0 + m1 ≤ M , m0 and m1 in

(4.6). An interior solution requires m1 > 0⇔
(
q1
q0

)1−εσ
(1 + ρ)

−σ
(1− δ)σ > δ , which defines the threshold

on δ specified in the main text.

In the case of an interior solution, the consumption growth ratio is computed from

q1

q0
=

(
αf

σ−1
σ

1 + (1− α) (m1 + δm0)
σ−1
σ

αf
σ−1
σ

0 + (1− α)m
σ−1
σ

0

) σ
σ−1

substituting f0 and f1 from (4.3) and m0 , m1 from (4.6) to define the intertemporal consumption ratio as
the solution of the implicit function (4.7).

F Damages from fossil resources

Assuming that the resource constraint on fossils is not binding, the program writes:

max

(
fα0 m

1−α
0

)1−ε
1− ε

− d0

θ
fθ0 +

1

1 + ρ


(
fα1 (m1 + δm0)

1−α
)1−ε

1− ε
− d1

θ
fθ1

+ ν (M −m0 −m1)

Using the definition qt ≡ fαt K1−α
t , the f.o.c.s are

(∂f0) αq1−ε
0 = d0f

θ
0

(∂f1) αq1−ε
1 = d1f

θ
1

(∂m0) (1− α)
q1−ε
0

m0
+ (1− α) δ

1+ρ
q1−ε
1

m1+δm0
= ν

(∂m1) (1− α) 1
1+ρ

q1−ε
1

m1+δm0
= ν

The two f.o.c.s on m together with the exhaustion of minerals m1 +m0 = M , give the solutions in (4.3)
for m0 and m1, with r̃ defined in (4.2). It follows that K1 = r̃

1+r̃M and that an interior solution holds only

if r̃ > δ
1−δ , i.e. δ < δ̃ ≡ r̃

1+r̃ . The two f.o.c.s on f with the values of m0 and m1 in (4.3) give f0 and f1 in
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(4.9). Using these expressions one gets

q1

q0
=

[(
d0

d1

)α
((1− δ) r̃)θ(1−α)

] 1
θ−α(1−ε)

Substituting (4.2) for r̃ leads to (4.10).

Concerning the impact of a marginal increase of δ in the case of an interior solution, proceed as follows. For

m0, first combine (4.2) and (4.10) to compute (1− δ) r̃ =

[(
d0
d1

)(1−ε)α (
1−δ
1+ρ

)θ−(1−ε)α] 1
θ−(1−ε)[α+θ(1−α)]

.

Since θ − (1− ε) [α+ θ (1− α)] > 0 and θ − (1− ε)α > 0,
∂(1−δ)r̃
∂δ < 0. Next from (4.3) write m0 =

1
(1−δ)(1+r̃)M . We get ∂m0

∂δ = −
∂(1−δ)
∂δ

+
∂(1−δ)r̃
∂δ

(1−δ)(1+r̃) m0 > 0. Given the exhaustion of minerals, the effect on

m1 runs in opposite direction. From (4.9), we have that ∂f0
∂δ = (1−α)(1−ε)

θ−α(1−ε)
f0
m0

∂m0
∂δ > 0 ⇔ ε < 1, hence

∂ f0
K0
/∂δ = − 1

m2
0

(
f0

∂m0
∂δ −m0

∂f0
∂δ

)
= − f0

m2
0

(
θ+ε−1

θ−α(1−ε)

)
∂m0
∂δ < 0. Furthermore ∂f1

∂δ = (1−α)(1−ε)
θ−α(1−ε)

f1
r̃(1+r̃)

∂r̃
∂δ <

0 since ∂r̃
∂δ < 0⇔ ε < 1, and f1

f0
=

((
d0
d1

) θ−(1−ε)θ(1−α)
θ−(1−ε)[α+θ(1−α)]

(
1−δ
1+ρ

) θ−(1−ε)α
θ−(1−ε)[α+θ(1−α)]

) (1−α)(1−ε)
θ−α(1−ε)

, thus ∂ f1f0 /∂δ >

0⇔ ε > 1. Finally ∂ f1
K1
/∂δ = − θ+ε−1

θ−α(1−ε)
M
r̃
f1
K1

∂r̃
∂δ > 0⇔ ε < 1.

Concerning the impact of a marginal increase in first period damages, in the case of an interior solution,

we have the following. From (4.9) , ∂f0
∂d0

= f0
θ−α(1−ε)

(
(1− α) (1− ε) ∂m0/∂d0

m0
− 1

d0

)
< 0. However from

the expressions above, it follows that ∂m0
∂d0

= −∂(1−δ)r̃/∂d0
(1−δ)(1+r̃) m0 < 0 ⇔ ε < 1. Finally the signs of the

derivatives are summarized in Table 1.

Table 1: Signs of derivatives of the solutions with respect to the parameters

m0 m1 f0 f1
f0

K0

f1

K1

δ + − − ⇐⇒ ε > 1 − − − ⇐⇒ ε > 1

d0 + ⇐⇒ ε > 1 − ⇐⇒ ε > 1 ε < 1 =⇒ − + ε > 1 =⇒ − + ⇐⇒ ε > 1

d1 − ⇐⇒ ε > 1 + ⇐⇒ ε > 1 + ε < 1 =⇒ − + ⇐⇒ ε > 1 ε > 1 =⇒ −

G On-line Appendix: Derivation of Wt̄ in Appendix B.2

The problem is

max

t̄∑
x=0

(1 + ρ)
−x

1− ε
fφxK

µ
x +

∑
x>t̄

(1 + ρ)
−x

1− ε
fφxK

µ
t̄ δ

µ(x−t̄) + λ

F −∑
x≥0

fx

+ ν

M −∑
x≥0

mx


and the f.o.c.s are:

(∂ft)t≤t̄ αfφ−1
t Kµ

t (1 + ρ)
−t

= λ

(∂ft)t>t̄ αfφ−1
t Kµ

t̄ δ
µ(t−t̄) (1 + ρ)

−t
= λ

(∂mt)t≤t̄ (1− α)
t̄∑

x=t
(1 + ρ)

−x
fφxK

µ−1
x δx−t + (1− α)

∑
x>t̄

(1 + ρ)
−x
fφxK

µ−1
t̄ δµ(x−t̄)+t̄−t = ν
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The f.o.c. on mt+1 can be expressed as follows for t < t̄:

1− α
δ

t̄∑
x=t

(1 + ρ)
−x
fφxK

µ−1
x δx−t − (1− α) (1 + ρ)

−t f
φ
t K

µ−1
t

δ

+
1− α
δ

∑
x>t̄

(1 + ρ)
−x
fφxK

µ−1
t̄ δµ(x−t̄)+t̄−t = ν

Then, ∀t < t̄, (∂mt)
δ − (∂mt+1) yields (1− α) (1 + ρ)

−t
fφt K

µ−1
t = ν (1− δ), so that

∀t < t̄, Kt =

(
ν

1− α
(1− δ) (1 + ρ)

t

) 1
µ−1

f
φ

1−µ
t (G.1)

Furthermore, (∂mt̄) gives (1− α)
∑
x≥t̄

(1 + ρ)
−x
fφxK

µ−1
t̄ δµ(x−t̄) = ν, i.e.

Kt̄ =

1− α
ν

∑
x≥t̄

(1 + ρ)
−x
fφx δ

µ(x−t̄)

 1
1−µ

(G.2)

Injecting (G.1) into the f.o.c. on ft yields ∀t < t̄,

λ = αf
φ−1+ φµ

1−µ
t

(
ν

1− α
(1− δ)

) µ
µ−1

(1 + ρ)
1

µ−1 t

= αf
φ−1+ φµ

1−µ
0

(
ν

1− α
(1− δ)

) µ
µ−1

i.e.

ft =

(
λ

α
(1 + ρ)

1
1−µ t

(
ν

1− α
(1− δ)

) µ
1−µ
) 1−µ
φ+µ−1

Defining r := (1 + ρ)
1

φ+µ−1 < 1 and f< :=
(
λ
α

) 1−µ
φ+µ−1

(
ν

1−α (1− δ)
) µ
φ+µ−1

, we have:

∀t < t̄, ft = f<r
t (G.3)

For t > t̄, the f.o.c. on ft yields:41

ft =

(
λδµt̄

αKµ
t̄

(
1 + ρ

δµ

)t) 1
φ−1

Defining R :=
(

1+ρ
δµ

) 1
φ−1 and f> :=

(
λδµt̄

αKµ
t̄

) 1
φ−1

, we have:

∀t > t̄, ft = f>R
t (G.4)

In the following, we assume that R < 1. Combining the f.o.c. on ft̄ with the f.o.c. on ft̄+1: fφ−1
t̄ (1 + ρ) =

fφ−1
t̄+1 δ

µ = fφ−1
> R(φ−1)(t̄+1)δµ. This gives ft̄:

ft̄ = f>R
t̄ (G.5)

The transversality condition on fossils gives:

41For δ = 0, marginal welfare goes to infinity for each t > t̄, as Kt = 0. Hence, it is obviously suboptimal
not to extract at every period in this case. In the following, we assume δ > 0.
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F = f<

t̄−1∑
t=0

rt + f>
∑
t≥t̄

Rt = f<
1− rt̄

1− r
+ f>

Rt̄

1−R
(G.6)

Injecting (G.3) into (G.1) for t < t̄, we obtain Kt =
(

ν
1−α (1− δ) (1 + ρ)

t
) 1
µ−1

f
φ

1−µ
< r

φ
1−µ t so that K0 =(

ν
1−α (1− δ)

) 1
µ−1

f
φ

1−µ
< . Hence:

∀t < t̄, Kt = K0 (1 + ρ)
t

µ−1 r
φ

1−µ t = K0 (1 + ρ)
1

φ+µ−1 t = K0r
t (G.7)

which gives

∀t ∈ [1, t̄− 1] , mt = Kt − δKt−1 = K0

(
1− δ

r

)
rt

The transversality condition on minerals gives:

M =

t̄∑
t=0

mt = K0 − δK−1 +

t̄−1∑
t=1

K0r
t

(
1− δ

r

)
+mt̄

mt̄ = M + δK−1 −K0

(
1 + (r − δ) 1− rt̄−1

1− r

)
Hence,

Kt̄ = mt̄ + δKt̄−1 = M + δK−1 −K0

(
1 + (r − δ) 1− rt̄−1

1− r

)
+ δK0r

t̄−1

= M + δK−1 −K0
1− rt̄

1− r
(1− δ) = M̄ − aK0 (G.8)

with a := 1−rt̄
1−r (1− δ) and M̄ := M + δK−1.

Using (G.3) in the f.o.c. on f0 together with the f.o.c. on ft̄+1:

fφ−1
< Kµ

0 = δ−µt̄fφ−1
> Kµ

t̄

Injecting (G.6) and (G.8) into this:42

f
φ−1
µ

< f
−φ−1

µ

> K0 = δ−t̄
(
M̄ − aK0

)
f
φ−1
µ

<

((
F − f<

1− rt̄

1− r

)
1−R
Rt̄

)−φ−1
µ

= δ−t̄
(
M̄

K0
− a
)

(G.9)

The f.o.c. on mt̄ gives:

(1− α) (1 + ρ)
−t̄
fφt̄ K

µ−1
t̄ + (1− α)

∑
x>t̄

(1 + ρ)
−x
fφxK

µ−1
t̄ δµ(x−t̄) = (1− α)

∑
x≥t̄

Rxfφ>K
µ−1
t̄ δ−µt̄

= (1− α) fφ>K
µ−1
t̄ δ−µt̄

Rt̄

1−R
= ν

42In the log case, ε = 1, R = r < 1, f< = f> and the solution derived below extends to this case.
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Using
Kµ−1

0 fφ<
1−δ = ν

1−α from the expression of K0, we have from last equation:

fφ>K
µ−1
t̄ δ−µt̄

Rt̄

1−R
=
Kµ−1

0 fφ<
1− δ

(G.10)

Injecting (G.6) and (G.8) into this:

((
F − f<

1− rt̄

1− r

)
1−R
Rt̄

) φ
µ−1

(
M̄

K0
− a
)

=

(
fφ<

1− δ
1−R
Rt̄

δµt̄

) 1
µ−1

(G.11)

Combining this with (G.9) we have an equation in f<:

f
φ−1
µ −

φ
µ−1

<

((
F − f<

1− rt̄

1− r

)
1−R
Rt̄

) φ
µ−1−

φ−1
µ

= δ−t̄
(
δµt̄

1− δ
1−R
Rt̄

) 1
µ−1

(
F

f<
− 1− rt̄

1− r

)
1−R
Rt̄

= bµ (G.12)

where b :=
(

δt̄

1−δ
1−R
Rt̄

) 1
µ+φ−1

.

f< =

(
bµ

Rt̄

1−R
+

1− rt̄

1− r

)−1

F =
1− δ
a+ c

F (G.13)

where:

c := bµ
Rt̄

1−R
(1− δ) =

(
1− δ
δt̄

Rt̄

1−R

) −µ
µ+φ−1 Rt̄

1−R
(1− δ) =

(
(1− δ) Rt̄

1−R

) φ−1
µ+φ−1

δ
µt̄

µ+φ−1

Injecting (G.12) into (G.9) (at the second line), we deduce K0:

K0 = M̄

f φ−1
µ

<

((
F − f<

1− rt̄

1− r

)
1−R
Rt̄

)−φ−1
µ

δt̄ + a

−1

=
M̄

b1−φδt̄ + a
=

M̄

a+ c
(G.14)

Injecting (G.14) into (G.8), we deduce Kt̄:

Kt̄ =
cM̄

a+ c
= cK0 = b1−φδt̄K0 (G.15)

We get f> from (G.6) and (G.13):

f> =
1−R
Rt̄

(
F − f<

1− rt̄

1− r

)
= bµf< (G.16)
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Finally, the inter-temporal welfare writes:

Wt̄ =
fφ0 m

µ
0

1− ε
+

t̄−1∑
x=1

(1 + ρ)
−x f

φ
xK

µ
x

1− ε
+ (1 + ρ)

−t̄ f
φ
t̄ K

µ
t̄

1− ε
+
∑
x>t̄

(1 + ρ)
−x f

φ
xK

µ
t̄

1− ε
δµ(x−t̄)

=
1

1− ε

(
fφ<K

µ
0 +

t̄−1∑
x=1

(1 + ρ)
−x
fφ<r

φxKµ
0 r

µx + (1 + ρ)
−t̄
fφ>R

φt̄Kµ
t̄ +

∑
x>t̄

(1 + ρ)
−x
fφ>R

φxKµ
t̄ δ

µ(x−t̄)

)

=
1

1− ε

fφ<Kµ
0

1−
(
rφ+µ

1+ρ

)t̄
1− rφ+µ

1+ρ

+ (1 + ρ)
−t̄
bµφfφ<R

φt̄bµ(1−φ)δµt̄Kµ
0 + fφ>K

µ
t̄ δ
−µt̄ R

t̄+1

1−R


=

1

1− ε

fφ<Kµ
0

1−
(
rφ+µ

1+ρ

)t̄
1− rφ+µ

1+ρ

+ bµδµt̄
(
Rφt̄ (1 + ρ)

−t̄
+ δ−µt̄

Rt̄+1

1−R

)


=
1

1− ε

(
FφM̄µ

(
1− δ
a+ c

)φ
(a+ c)

−µ
(

1− rt̄

1− r
+ bµ

Rt̄

1−R

))

=
1

1− ε

(
FφM̄µ (1− δ)φ−1

(a+ c)
1−φ−µ

)

H On-line Appendix: Welfare analysis

In case (2.a) of Proposition 1 the inter-temporal welfare takes the value:

W∞ =
∑
t≥0

(1 + ρ)
−t f

φ
t K

µ
t

1− ε

=
fφ0 m

µ
0

1− ε
+
∑
t≥1

(1 + ρ)
−t f

φ
t K

µ
t

1− ε

=
fφ0 m

µ
0

1− ε
+
fφ0 m

µ
0

1− ε
∑
t≥1

(
rφ+µ

1 + ρ

)t

=
fφ0 m

µ
0

1− ε

(
1 +

r

1− r

)
=
FφMµ

1− ε
(1− r)φ+µ−1

(1− δ)−µ (H.1)

In the previous computations, we used rφ+µ

1+ρ = (1 + ρ)
φ+µ
φ+µ−1−1

= (1 + ρ)
1

φ+µ−1 = r. It follows that:

∂W∞
∂δ

= FφMµ (1− r)φ+µ−1
(1− α) (1− δ)−µ−1

> 0

In case (1) of Proposition 1 the inter-temporal welfare takes the value:

W0 =
∑
t≥0

(1 + ρ)
−t

1− ε
fφt m

µ
0 δ
µt

=
1

1− ε
MµFφ (1−R)

φ
∑
t≥0

(1 + ρ)
−t
δµtRφt

=
1

1− ε
MµFφ (1−R)

φ−1
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In the computations, we used (1 + ρ)
−1
δµRφ = R1−φRφ = R. It follows that

∂W0

∂δ
=

1− φ
1− ε

MµFφ (1−R)
φ−2 ∂R

∂δ

=

(+) · (+) > 0 for ε ∈ (0, 1)

(−) · (−) > 0 for ε > 1

Welfare increases with δ also in case (2.b) since it is a mix of the two cases above.
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