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Abstract

In this paper we present a high-order density-based finite-volume frame-

work for all-speed flows. The formulation is based on high-order variable

reconstructions performed using Moving Least Squares approximations. In

particular, we show that combining high-order discretization schemes with

low-Mach fixes, it is possible to remove the grid dependency problem at low

Mach numbers on both structured and unstructured grids. In order to main-

tain the accuracy and the robustness of the numerical method at transonic

conditions, different procedures are proposed, based on the use of a selective

limiting.
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1. Introduction

Traditionally, two families of finite volume schemes have been devel-

oped to compute either compressible or incompressible flows. Density-based

solvers [1, 2, 3] are used for the computation of flows when compressibility

effects are important (mainly transonic, supersonic and hypersonic flows),

whereas pressure-based solvers [4, 5, 6] are designed to compute incompress-

ible flows. In both techniques, the velocity is obtained from the momentum

equations. The difference between the two approaches is the computation of

the pressure field. In density-based solvers, the density is computed from the

continuity equation and then the pressure is obtained from an equation of

state. Pressure-based solvers compute the pressure by solving a Poisson-type

equation, obtained from continuity and momentum equations.

In pressure-based solvers, the SIMPLE and related algorithms [5] have

been widely used to compute incompressible flows, and several authors have

developed methods to extend these algorithms to all-speed flows [7, 8].

From a practical point of view, density-based schemes are not suitable for

flows with Mach number lower than 0.3 [9]. These solvers present a number

of problems: stiffness of the equations, cancellation in the pressure variable

[10] and the loss of accuracy due to an excessive numerical diffusion (accuracy

problem).

In some cases, resorting to solvers dealing with all-speed flows cannot

be avoided because of the importance of flows where low and high Mach

regions are present (for example flow past an aerodynamic profile at high

angle of attack, or flow past a blunt body), or when compressibility effects are

important, even in low Mach number flows. Thus, the modification of density
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or pressure-based solvers to compute all-speed flows is a current active area

of research. It is known that the accuracy problem of density-based solvers

in low-Mach flows is originated by the introduction of spurious pressure and

velocity waves that avoid the velocity field to verify (or at least be close to)

the zero-divergence constraint [11, 12, 13, 14, 15]. Preconditioning techniques

[12, 13, 16, 17, 18] have been developed to increase the accuracy (and also to

overcome the stifness problem) of Godunov schemes in low Mach flows. The

preconditioning matrix multiplies the time derivatives of the set of equations,

with the effect of re-scaling the eigenvalues (acoustic-speed) of the system,

but paying the price of spoiling the temporal accuracy of the scheme. Thus,

this technique was initially developed for steady flows, but extensions to

unsteady flow have been proposed by using a dual time stepping technique

[19, 20]. An Asymptotic-Preserving methodology has been presented in [21].

In [22] a correction for the numerical dissipation of the Roe’s approximate

Riemann solver was introduced. This correction allows using Roe’s flux for

low Mach flows, and it was generalized to all-speed flows in [23]. In [24] it is

stated that the fix to the accuracy problem is related to cancellation of the

normal velocity jump. Related with this finding, it was reported [25] that

the accuracy problem is not observed when the Roe’s approximate Riemann

solver is used in a first-order finite volume scheme on triangular grids. Based

on these findings, some fixes for the numerical flux of Roe are presented

in [26, 27, 28]. Other fixes have also been proposed for Roe flux and for

other Riemann solvers, such as the HLL-family [29]. Several flux-splitting

type schemes accurate at low and also high Mach have been presented in

[30, 31, 32]. On the other hand, some authors have reported Discontinuous
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Galerkin (DG) solutions of low-Mach flow with and without preconditioning

[33, 34, 35]. The use of high-order discretization schemes reduces the jumps

in the normal velocity component alleviating the accuracy problem. It has

been shown, however, that the accuracy problem is not completely solved

[35], since a grid dependency with the Mach number still remains.

In this paper we present a high-order density-based finite-volume formu-

lation for all-speed flows. The high-order numerical discretization and the

selective limiting procedure are based on Moving Least Squares approxima-

tions [36, 37, 38, 39, 40].

The outline of this study is as follows. The general formulation of the

proposed all-speed scheme is presented in section 2. Then, the accuracy of

the numerical scheme is investigated in section 3. In section 4 we highlight

the problem of using slope limiters with low-Mach fixes, and we present

several procedures to solve this problem. The robustness and accuracy of the

present all-speed formulation is assessed in section 5 by the computation of an

unsteady transonic viscous flow over a circular cylinder. Finally, conclusions

are drawn in section 6.

2. General formulation

In this work, we used a finite volume numerical framework that allows

us to reach convergence orders in space greater than two [36, 38, 39]. This

formulation is based on the use of Moving Least Squares [41, 42] for the com-

putation of the derivatives required for the Taylor expansion in the recon-

struction step of a Godunov-like method. The fundamentals of this method

are exposed in the next section.
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2.1. Higher-order Finite volume schemes based on Moving Least Squares

The Navier-Stokes equations, written in a general form as a system of

conservation laws, read

∂uuu

∂t
+∇∇∇ ·

(
FFFH +FFFE

)
= SSS in Ω (1)

where uuu is the vector of variables, FFFH is the inviscid flux vector, FFFE is the

viscous flux vector and SSS is a source term. The set of equations needs to

be supplemented with suitable initial and boundary conditions. These are

a crucial point in low-Mach computations using the compressible system of

equations. It has been shown [12, 14, 43] that a set of “well-prepared” initial

conditions is required for the convergence of the solution of the compressible

system of equations to the solution of the incompressible set when M → 0.

In this context, “well-prepared” means that the initial pressure field scales

with the square of the Mach number and that the initial velocity field is close

to a divergence free field [12]. In addition, Dirichlet boundary conditions may

also lead to inaccurate results of low Mach finite volume schemes [14].

The fluxes have been generically split into a hyperbolic-like part, FFFH ,

and an elliptic-like part, FFFE, that is null for the Euler equations. Consider,

in addition, a partition of the domain Ω into a set of non-overlapping control

volumes or cells , T h = I. Furthermore, we define a reference point (node), xxxI

inside each cell (the cell centroid). The spatial representation of a variable

using MLS is explained in the following. Let us consider a function uuu(xxx),

given by its point values, uuuI = uuu(xxxI), at the cell centroids, with coordinates

xxxI .

We write the approximation uuuh(xxx) in terms of a set of shape functions
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{NI(xxx)} associated to the nodes, such that uuuh(xxx) is given by

uuuh(xxx) =

nI∑
j=1

Nj(xxx)uuuj (2)

which states that the approximation at a given position xxx is computed using

certain nI neighboring nodes. This set of nodes is referred to as the stencil

associated to the evaluation point xxx . This is schematically shown in Figure 1.

The set of basis functions NNN(xxx) is computed using the Moving Least Squares

method. The gradient can be computed as follows

∇∇∇uuuh(xxx) =

nI∑
j=1

∇∇∇Nj(xxx)uuuj (3)

and high-order derivatives can be computed using the same rationale. We

refer the interested reader to [36, 38, 39] for a complete description of the

computation of the MLS shape functions and its derivatives.

Figure 1: Scheme of the stencil of a reference control volume

Note that MLS approximations have a centered character. We also note

that, using MLS, the approximate function uuuh(xxx) is not a polynomial in

general. The value of MLS shape functions at a point depends on the number
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of neighbors considered for this point (nI), a kernel function and a polynomial

basis [36, 38]. The function of the kernel is to weight the importance of each

neighbor point in the approximation process. In this work we use a cubic

polynomial basis and an exponential kernel, defined in 1D as

W (xj, xI , sx) =
e−( d

c )
2

− e−( dm
c )

2

1− e−( dm
c )

2 (4)

where d = |xj − xI |, dm = 2 max (|xj − xI |), with j = 1, . . . , nI , c = dm
sx

, xI

is the position of a reference point, xj is the position of every cell centroid of

the stencil and sx is a shape parameter, which in the present work is set to

sx = 3.

A n-dimensional kernel can be obtained by multiplying n 1D kernels.

Thus, the 2D exponential kernel is the following

Wj(xxxj,xxxI , sx, sy) = Wj(xj, xI , sx)Wj(yj, yI , sy) (5)

The integral form of the system of conservation laws (1) for each control

volume I is

∫
ΩI

∂uuu

∂t
dΩ +

∫
ΓI

(
FFFH +FFFE

)
· nnn dΓ =

∫
ΩI

SSS dΩ (6)

where ΩI is the control volume area, ΓI is the control volume perimeter and

nnn = (nx, ny)
T is the unitary exterior normal of the contour.

Introducing the component-wise reconstructed function uuuh we obtain

∫
ΩI

∂uuuh

∂t
dΩ +

∫
ΓI

(
FFFhH +FFFhE

)
· nnn dΓ =

∫
ΩI

SSS(uuuh) dΩ (7)

For hyperbolic problems, we introduce a “broken” reconstruction, uuuhbI ,

which approximates uuuh(xxx) (and, therefore, uuu(xxx)) locally inside each cell I,
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and is discontinuous across cell interfaces [36]. This procedure allows us to

compute the numerical flux at Gauss points at the interfaces. Thus, we can

easily make use of Riemann solvers.

In general, we require the order of accuracy of the broken reconstruction

to be the same as that of the original continuous reconstruction. Thus, using

Taylor series expansions; a quadratic reconstruction inside cell I, reads

uuuhbI (xxx) = uuuhI +∇∇∇uuuhI · (xxx− xxxI) +
1

2
(xxx− xxxI)T HHHh (xxx− xxxI) (8)

where the gradient ∇∇∇uuuhI and the Hessian matrix HHHh involve the successive

derivatives of the continuous reconstruction uuuh(xxx), which are evaluated at

the cell centroids using MLS according to equation (3). This dual contin-

uous/discontinuous reconstruction of the solution is crucial in order to ob-

tain accurate and efficient numerical schemes for mixed parabolic/hyperbolic

problems. The cell-wise broken reconstruction defined here is actually a

piecewise continuous approximation to uuuh. The advantage is that it allows to

make use of Riemann solvers, limiters, and other standard finite volume tech-

nologies, while keeping some consistency in terms of functional representa-

tion. Thus, considering the Navier-Stokes equations, the general continuous

reconstruction is used to evaluate the viscous (elliptic-like) fluxes, whereas its

discontinuous approximation is used to evaluate the inviscid (hyperbolic-like)

fluxes.

The final semi-discrete scheme for the continuous/discontinuous approach

can be written as

8



∫
ΩI

∂uuuh

∂t
dΩ +

∫
ΓI

ΘΘΘ(uuuhb+,uuuhb−) dΓ +

∫
ΓI

FFFhE · nnn dΓ =

∫
ΩI

SSS(uuuh) dΩ (9)

where ΘΘΘ(uuuhb+,uuuhb−) is a suitable numerical flux, and + and − refers to the

left and right states of the cell I.

It is known that at low Mach numbers, the compressible Euler equations

present a stiff behavior due to large differences in wave speeds. Several

preconditioning techniques have been developed to alleviate this problem

(see [12, 13, 16, 17, 18] among others). Since such study is beyond the scope

of this paper, we employed the third-order Runge-Kutta TVD scheme of Shu

and Osher [44] as time-integration scheme.

2.2. Numerical Flux strategy for all-speed flows

In this paper, both Roe [1] and Rusanov [45] Riemann solvers are com-

bined with higher-order reconstruction schemes to perform all-speed flow

computations. Roe solver was selected due to the fact that it has been

shown that first-order schemes based in Roe flux does not present the accu-

racy problem on triangular grids [25].

It is known that one of the advantages of Rusanov flux is its simple

formulation, independently of the equation of state (EOS) used, in opposition

to Roe flux, for instance, which presents a more complex implementation

when the ideal gas EOS is changed.

However, the numerical entropy production is higher than for the Roe

scheme, and thus, the computation of low Mach flows with this scheme

presents more difficulties [46]. Moreover, the numerical dissipation of the

Rusanov scheme depends on the Mach number M in the form o( M
∆x

) as
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M → 0, resulting in an asymptotically inconsistent scheme with respect to

the Mach number.

2.2.1. Roe Flux

The Roe flux [1] can be written as

ΘΘΘi+ 1
2

=
1

2
(FFFhH+ +FFFhH−) · nnn− 1

2

4∑
k=1

α̃k|λ̃k|r̃rrk (10)

where the variables corresponding to the left and right states are evaluated

according to the Taylor series expansion (8) and MLS shape functions (2, 3).

In equation (10) λ̃k and r̃rrk are the eigenvalues and eigenvectors of the

approximated Jacobian [1] defined as

λ̃1 = ṽvv · nnn− c̃

λ̃2 = λ̃3 = ṽvv · nnn

λ̃4 = ṽvv · nnn+ c̃

(11)

[r̃rr1, r̃rr2, r̃rr3, r̃rr4] =


1 0 1 0

ũ− c̃nx −c̃ny ũ ũ+ c̃nx

ṽ − c̃ny −c̃nx ṽ ṽ + c̃ny

H̃ − c̃ ṽvv ·nnn c̃(ṽnx − ũny) 1
2 (ũ2 + ṽ2) H̃ + c̃ ṽvv ·nnn

 (12)

where H is the enthalpy, c is the sound velocity and ṽvv = (ũ, ṽ)T is the velocity

vector.

We also define α̃k as

α̃1 = 1
2c̃2

[∆(p)− ρ̃c̃ (∆(u)nx + ∆(v)ny)]

α̃2 = ρ̃
c̃

[∆(v)nx −∆(u)ny]

α̃3 = 1
c̃2

[∆(p)− c̃2∆(ρ)]

α̃4 = 1
2c̃2

[∆(p) + ρ̃c̃ (∆(u)nx + ∆(v)ny)]

(13)

10



where symbol ·̃ indicates Roe’s average [1], and ∆(·) = (·)−+(·)+ is computed

using the high-order MLS reconstruction scheme depicted in section 2.1.

2.2.2. Rieper’s Fix for the Roe flux

In this work, we use the low-Mach fix presented by Rieper in [27] as a

generalization of the low-Mach X schemes initially developed by Dellacherie

[14]. It consists in a reduction of the normal velocity jump that is the term

responsible of the accuracy problem. It is simply obtained by modifying the

terms α̃1 and α̃4 in equation (13) as follows

α̃1 = 1
2c̃2

[∆(p)− ρ̃c̃f(Ml) (∆(u)nx + ∆(v)ny)]

α̃4 = 1
2c̃2

[∆(p) + ρ̃c̃f(Ml) (∆(u)nx + ∆(v)ny)]
(14)

where f(Ml) is a function of the local Mach number that is active when

Ml < 1. It is defined for a cell I as

f(Ml) = min(Ml, 1) (15)

with

Ml =
|ũ|I + |ṽ|I

c̃I
(16)

2.2.3. Rusanov Flux

The Rusanov flux [45] can be written as

ΘΘΘi+ 1
2

=
1

2
(FFFhH+ +FFFhH−) · nnn− 1

2
S+∆(uuu) (17)

with

S+ = max(|vvv+|+ c+, |vvv−|+ c−) (18)

In equation (18) c is the sound velocity and |vvv| is the modulus of the velocity

vector at integration point and ∆(uuu) = (uuu+ − uuu−).
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2.2.4. Li and Gu’s fix for the Rusanov flux

Li and Gu [29] described the mechanism underlying several low-Mach

fixes for the Roe scheme and based on that description, they developed a

low-Mach fix for HLL schemes. Here, we have applied the fix proposed in

[29] to the Rusanov flux. It is simply obtained by multiplying the momentum

difference term in the momentum equations by the function f(Ml).

2.2.5. MLS-based shock sensor

In this work, the Van Albada [47], the Barth and Jespersen [48] and the

Venkatakrishnan [49] slope limiters are employed to enforce the Totally Vari-

ation Diminishing (TVD) condition of the numerical method for the compu-

tation of transonic flows. In order to guarantee that the limiting procedure

is not activated for smooth flow regions, thus avoiding the loss of the higher

order accuracy of the numerical scheme, we propose to use a selective limit-

ing procedure, based on the multiresolution properties of the Moving Least

Squares approximations [50].

Such procedure allows the separation of the high scale components of the

solution in order to develop a MLS-based wavelet function of the density that

acts as the reference variable. Following [50], the slope limiter algorithm is

activated when the following condition is verified∣∣∣∣∣
nI∑
j=1

ρj(Nj
sHx (xxx)−Nj

sLx (xxx))

∣∣∣∣∣ > Tv (19)

Setting sHx = 2sLx the term

nI∑
j=1

ρj(Nj
sHx (xxx)−Nj

sLx (xxx)) represents the high-

scale part of the density solution. The high-scale part has a greater value in
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the vicinity of shock waves. The threshold value Tv is a problem-dependent

parameter, defined as

Tv = Clc |∇ρ|I (AI)
1
d/max(Ml) (20)

where AI is the size (area in 2D) of the control volume I, d is the number of

dimensions of the problem, Clc is a case-dependent parameter and max(Ml)

is the maximum local Mach number in the computational domain. The range

of the Clc parameter is in the interval [0, 0.5]. If the parameter is chosen as

Clc = 0 the slope-limiter algorithm will be activated in the whole domain of

computation. As investigated in [50], a good compromise between robustness

and accuracy is obtained for Clc = 0.32.

3. Obtaining physical solution using higher-order MLS reconstruc-

tions

In this section we focus on the accuracy properties of the high-order

reconstructions by performing a grid refinement study using a sequence of

four refined O-type meshes with regular quad cells. Euler equations are

used to compute the potential flow past a circular cylinder at Mach numbers

ranging from M∞ = 10−6 to M∞ = 10−1. High-order MLS reconstructions

are achieved up to 4th order.

The coarsest grid, shown in Figure 2, is built from 32 points equally dis-

tributed in the circumferential direction and 16 points in the radial direction.

Three additional grids (48×24, 64×32 and 96×48) are obtained by refining

the coarsest mesh in both directions. The far-field is situated at 40 diameters

away from the cylinder.
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Figure 2: Close view of the coarsest and the finest structured O-grids employed for the

computation of the inviscid flow past a circular cylinder test case. The coarsest mesh (left)

has 32× 16 elements and the finest (right) 96× 48 elements.

All computations are initialized using a uniform flow, and they are con-

verged until the L2 norm of the residuals falls below 10−10.

3.1. Roe scheme

3.1.1. Numerical experiment

Here, we investigate the effect of using higher-order MLS reconstruction

schemes on the accuracy of low-Mach flows computed using the numerical

flux of Roe (named hereafter the ROE-FV-MLS scheme). Freestream mach

number is M∞ = 10−3 and the 96× 48 mesh is employed. Figure 3 presents

a comparison of the pressure contours between the 1st order FV scheme and

those obtained with the 4th order FV-MLS method.

The low order solution exhibits the known “creep” unphysical solution

[46]. For this grid, this problem is circumvented using the high-order scheme.
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a) b)

Figure 3: Pressure contours for inviscid flow past a cylinder test case for M∞ = 10−3.

The solution is obtained in the 96× 48 grids by using a first order Roe scheme (a) and by

using the 4th order ROE-FV-MLS scheme (b).

Next, we study the order of accuracy of the 4th-order ROE-FV-MLS

scheme by computing the error in the drag coefficient for M∞ ranging from

10−1 to 10−3. Table 1 shows that the formal order of accuracy is recovered

for both M∞ = 10−1 and M∞ = 10−2. We notice that obtaining physical

solution for M∞ = 10−3 requires the use of a finer grid resolution than for

lower Mach numbers. This shows that the increase in the order of a finite

volume scheme helps to alleviate the accuracy problem for low-Mach flows.

However this procedure is not fully satisfactory since lack of robustness is

observed due to grid-dependent results. Note that the same remark holds for

Discontinous Galerkin schemes [35].

To get further insight in the behavior of the ROE-FV-MLS scheme at very

low Mach numbers, we now compute the normalized pressure fluctuations as
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Fourth order ROE-FV-MLS method

Mach Mesh CDRAG Order

32× 16 4.05× 10−2 -

10−1 48× 24 8.30× 10−3 3.91

64× 32 2.52× 10−3 4.15

96× 48 4.58× 10−4 4.20

32× 16 3.93× 10−1 -

10−2 48× 24 7.04× 10−2 4.24

64× 32 1.96× 10−2 4.44

96× 48 3.31× 10−3 4.39

32× 16
(
4.55× 100

)
-

10−3 48× 24
(
9.51× 10−1

)
-

64× 32
(
2.48× 10−1

)
-

96× 48 3.11× 10−2 -

Table 1: Inviscid flow past a cylinder test case. Accuracy orders for the 4th ROE-FV-MLS

scheme for different Mach numbers, where () denotes that the obtained solution is not

physical. For M∞ = 10−3 we have only obtained a physical solution for the finest grid.

pnorm =
pmax − pmin

pmax
(21)

where pmax and pmin are the maximum and minimum pressures on the com-
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putational domain.

In figure 4 (a), we observe that both 3rd and 4th ROE-FV-MLS numerical

simulations, performed on the 32×16 grid, exhibit pressure fluctuations that

are O(M2
∞) until a given Mach number.

The comparison in Figure 4 (b) of plots of the pressure fluctuations

against M∞ for two grid levels (namely the 32 × 16 and the 48 × 24 grids)

clearly shows the grid dependence of the correct O(M2
∞) pressure scaling for

a given Mach number.
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Figure 4: Inviscid flow past a cylinder test case. a) Pressure-Mach scaling for the 3rd

and 4th order ROE-FV-MLS scheme in the 32 × 16 grid. b) Influence of the grid on the

accuracy problem. Pressure-Mach scaling for the 4th order ROE-FV-MLS scheme using

different grids.

In [51] it is shown that, for the inviscid low-Mach flow past a cylinder, the

first order Roe scheme verifies a scaling with the Mach number of the form

N ∼ M−1
∞ , where N is the number of points on the cylinder wall required

to obtain a physical solution. We have performed a study of that scaling for

the 4th order FV-MLS scheme, and we have obtained a scaling of the form

N ∼M−0.388
∞ . It is clear that increasing the order of the scheme decreases the
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Mach number of the flow that is possible to accurately compute on a given

grid, but the Mach dependency is not completely eliminated. Note that the

scaling study has been performed considering that a solution is accepted if

the relative error in the O(M2
∞) scaling of the pressure fluctuations is smaller

than a 10%.

3.1.2. Discussion

Following [27, 29] we can write the dissipation term of the Roe scheme in

the i-direction as

FdFdFd = −1

2


|U |


∆ρ

∆(ρu)

∆(ρv)

∆(ρE)

+ δU


ρ

ρu

ρv

H

+ δp


0

nx

ny

U




(22)

where U = nxu + nyv is the normal component of the velocity. Contri-

butions to the modification to the interface fluxes (terms of δU) and to the

modification to the interface pressure (terms of δp) can be written as

δU = (c− |U |)∆p

ρc2
+
U

c
∆U (23)

δp = (c− |U |)ρ∆U +
U

c
∆p (24)

In [14, 27, 29] it is shown that the term cρ∆U of equation (24) associated to

the dissipation of the momentum equation is the responsible of the accuracy

problem. Rieper’s fix (and others such as those of [23, 28]) modify this term

by replacing the velocity of sound c by a modified velocity c′ = f(M)c, that

reduces the product cρ∆U , and obtains the right asymptotic behavior of the
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discrete scheme. In particular, Rieper’s fix modifies the dissipation term as

follows

δU = (c− |U |)∆p

ρc2
+
U

c
f(M)∆U (25)

δp = (c′ − f(M)|U |)ρ∆U +
U

c
∆p (26)

When the order of the numerical scheme is increased (or the grid is re-

fined), jumps of the variable at the interfaces are reduced. Thus, the product

cρ∆U is also reduced and the accuracy problem is alleviated. Following [29],

the key to correct the accuracy problem is to set c′ ≤ O(c0). Increasing the

order only, the reduction of ∆U for a given order in a given grid may not be

enough to eliminate completely the accuracy problem, since the first-order

artificial-viscosity term cρ∆U is still there in the asymptotic limit.

3.1.3. ROE-FV-MLS results with Rieper’s fix

As a consequence of the previous analysis, we now investigate the com-

bination of the high-order ROE-FV-MLS scheme with the Rieper’s fix pre-

sented in section 2.2.2. Figure 5 shows the contours of entropy production

for the M = 10−3 inviscid flow past a cylinder test case. In this example, all

the entropy generated is due to the numerical discretization. It is observed

that the entropy is transported by convection for all the schemes. Moreover

the entropy generation is considerably reduced when using the low Mach fix.

As expected, increasing the order further reduce the entropy generation.

Next, we perform an accuracy analysis by computing the error in the drag

coefficient for M∞ = 10−1, M∞ = 10−2 and M∞ = 10−3. It can be clearly

seen in Table 2 that the convergence orders are successfully recovered for
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a) b)

c) d)

Figure 5: Contours of entropy production and transport for the M = 10−3 inviscid flow

past a cylinder test case 96 × 48 grid. a) First order-Roe scheme. b) First-order Roe

scheme with Rieper’s fix. c) 4th order ROE-FV-MLS scheme with no fix. d) 4th order

ROE-FV-MLS scheme with Rieper’s fix.

all the Mach numbers considered. Contrary to the high-order scheme with

no fix case, the use of the Rieper’s fix with the high-order scheme allows

physical solutions whatever the grid size (as the right asymptotic behaviour

is recovered), thus removing the Mach dependency problem.

As for the no fix case, we analyze the pressure scaling for low-Mach com-

putations with the high-order scheme with the low Mach fix of Rieper. Figure

6 shows that when the low-Mach fix is used, the correct O(M2) scaling of

the pressure fluctuations is recovered for all the computations.

As an illustration purpose, the pressure field obtained using a 4th order

ROE-FV-MLS scheme with Rieper’s Fix at M∞ = 10−6 for the mesh 32×16 is

plotted in Figure 7. We notice that the numerical solution, which is free from
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Third order Fourth order

Mach Mesh CDRAG Order CDRAG Order

32× 16 1.56× 10−2 - 1.96× 10−2 -

10−1 48× 24 2.61× 10−3 4.41 2.92× 10−3 4.70

64× 32 1.05× 10−3 3.17 8.49× 10−4 4.30

96× 48 2.68× 10−4 3.37 1.69× 10−4 3.98

32× 16 7.88× 10−3 - 1.21× 10−2 -

10−2 48× 24 1.18× 10−3 4.69 1.63× 10−3 4.95

64× 32 5.61× 10−4 2.58 4.46× 10−4 4.50

96× 48 1.59× 10−4 3.11 8.84× 10−5 4.00

32× 16 6.48× 10−3 - 1.08× 10−2 -

10−3 48× 24 8.76× 10−4 4.94 1.36× 10−3 5.10

64× 32 4.50× 10−4 2.31 3.58× 10−4 4.65

96× 48 1.34× 10−4 2.99 7.05× 10−5 4.01

Table 2: Inviscid flow past a cylinder test case. Accuracy orders for the 3rd and 4th order

ROE-FV-MLS scheme with Rieper’s Fix for different Mach numbers.

artificial wake downstream of the cylinder, presents a perfectly symmetric

flow with respect to the coordinates axis.
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Figure 6: Inviscid flow past a cylinder test case. Pressure-Mach scaling for the 4th order

ROE-FV-MLS scheme with Rieper’s Fix in the 32× 16 grid.
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Figure 7: Inviscid flow past a cylinder test case. Pressure contours for M∞ = 10−6. The

solution is obtained in the 32× 16 grid by using the 4th order ROE-FV-MLS scheme and

the low-Mach fix of Rieper.
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3.1.4. Fix with modification of the tangential velocity

The low Mach fix developed by Rieper [25] only modifies the normal

velocity component. It is interesting to investigate if an increase in accuracy

in low Mach conditions could be obtained if we modify both, the normal

and the tangential velocity component. To this end, the term α̃2 in (13) is

written as

α̃2 = ρ̃f(Ml)
c̃

[∆(v)nx −∆(u)ny] (27)

It is observed in figure 8 that entropy production decreases when the

low Mach fix is applied to the normal and tangential velocity components

compared to solution computed without fix (Figure 5).

a) b)

Figure 8: Contours of entropy production and transport for the M = 10−3 inviscid flow

past a cylinder test case 96 × 48 grid with low Mach fix correcting both the normal and

tangential velocities using a) First-order Roe scheme , b) 4th ROE-FV-MLS scheme.

Table 3 shows that the formal order of accuracy of the high order scheme

is not affected by this modification. In most cases, the drag coefficient is re-

duced when the fix is applied to the tangential velocity component compared

to the Rieper’s fix.
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Third order Fourth order

Mach Mesh CDRAG Order CDRAG Order

32× 16 1.46× 10−2 - 1.62× 10−2 -

10−1 48× 24 2.63× 10−3 4.23 2.59× 10−3 4.53

64× 32 9.94× 10−4 3.38 7.74× 10−4 4.19

96× 48 2.36× 10−4 3.54 1.52× 10−4 4.01

32× 16 6.69× 10−3 - 8.15× 10−3 -

10−2 48× 24 1.23× 10−3 4.17 1.27× 10−3 4.59

64× 32 5.00× 10−4 3.14 3.65× 10−4 4.33

96× 48 1.16× 10−4 3.61 6.56× 10−5 4.23

32× 16 5.36× 10−3 - 6.83× 10−3 -

10−3 48× 24 9.69× 10−4 4.22 1.03× 10−3 4.67

64× 32 4.07× 10−4 3.02 2.85× 10−4 4.46

96× 48 9.44× 10−5 3.60 5.35× 10−5 4.13

Table 3: Inviscid flow past a cylinder test case. Accuracy orders for the 3rd and 4th order

ROE-FV-MLS scheme correcting the normal and tangential velocities for different Mach

numbers.

3.2. Rusanov scheme

In this section, we extend the previous study to the FV-MLS solver with

Rusanov flux (namely the RUS-FV-MLS method). As shown in Table 4, we

note that the 4th order reconstruction scheme gives the expected order of

25



convergence for Mach numbers M∞ = 10−1 and M∞ = 10−2. Note however

that we were unable to obtain a physical solution for Mach numbers below

10−2.

Next, we analyze the results of the RUS-FV-MLS scheme combined with

the Li and Gu’s low-Mach fix presented in section 2.2.4. Figure 9 shows the

pressure contours obtained for M∞ = 10−2 on a 96 × 48 grid. Although

the 4th high-order scheme does not give a fully symmetrical solution, it can

be observed that the solution is greatly improved compared to its low order

counterpart. It is important to note that, for 1st order HLL schemes, the

low-Mach fix does not solve completely the checkerboard problem [29]. On

the contrary, the solution of the 4th order RUS-FV-MLS scheme with Li and

Gu’s fix is free from checkerboard.

In order to explain this, we consider the dissipation term of the Rusanov

scheme [29]

FFF d = −1

2
S+


∆ρ

∆(ρu)

∆(ρv)

∆(ρE)

 (28)

with

S+ = max(|vvv+|+ c+, |vvv−|+ c−) (29)

The checkerboard problem is due to the density difference term ∆ρ in

(28) which is related to the pressure difference term by ∆ρ = ∆p
c2

. Li and

Gu’s fix consists in modifying the dissipation term as
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Fourth order RUS-FV-MLS method

Mach Mesh CDRAG Order

32× 16 2.36× 10−1 -

10−1 48× 24 4.85× 10−2 3.90

64× 32 1.41× 10−2 4.30

96× 48 2.09× 10−3 4.71

32× 16 1.04× 100 -

10−2 48× 24 3.49× 10−1 2.70

64× 32 1.24× 10−1 3.59

96× 48 2.14× 10−2 4.34

32× 16
(
4.51× 100

)
-

10−3 48× 24
(
1.56× 100

)
-

64× 32
(
7.20× 10−1

)
-

96× 48
(
1.82× 10−1

)
-

Table 4: Inviscid flow past a cylinder test case. Accuracy orders for the 4th order RUS-

FV-MLS scheme for different Mach numbers. Quantities in () denotes that the obtained

solution is non-physical

.

FFF d = −1

2
S+


c−2∆p

f(M)∆(ρu)

f(M)∆(ρv)

∆(ρE)

 (30)
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where S+ = O(c) and S+∆pc−2 = O(c−1). In [29] it is shown that when

product of the terms multiplying ∆p in the numerical dissipation term of the

continuity equation is of the order O(c−1) a weak checkerboard is allowed.

Increasing the order of the numerical scheme does not modify the O(c−1)

character of this product, but as ∆p is reduced, the importance of the product

S+∆pc−2 is also reduced.

a) b)

Figure 9: Inviscid flow past a cylinder test case. Pressure contours for M∞ = 10−2. The

solution is obtained in the 96× 48 grid by using the Li and Gu’s low-Mach fix with a first

order FV Rusanov scheme (a) and the 4th order RUS-FV-MLS scheme. It is observed that

the first order scheme presents a weak checkerboard that is removed with the use of the

high-order scheme.

Table 5 shows that the use of the Li and Gu’s fix for the Rusanov scheme

allows to recover the expected order of accuracy for all the tested Mach

numbers. Recall that, with the grids considered, it was not possible to obtain

a physical solution for a Mach number below M∞ = 10−2 without using the

fix (Table 4).
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Fourth order Rusanov scheme with Li and Gu’s Fix

Mach Mesh CDRAG Order

32× 16 6.53× 10−2 -

10−1 48× 24 1.04× 10−2 4.54

64× 32 2.84× 10−3 4.51

96× 48 4.40× 10−4 4.59

32× 16 5.31× 10−2 -

10−2 48× 24 8.46× 10−3 4.53

64× 32 2.30× 10−3 4.52

96× 48 3.47× 10−4 4.67

32× 16 5.15× 10−2 -

10−3 48× 24 8.14× 10−3 4.55

64× 32 2.20× 10−3 4.55

96× 48 3.41× 10−4 4.58

Table 5: Inviscid flow past a cylinder test case. Accuracy orders for the 4th order RUS-

FV-MLS scheme with Li and Gu’s fix for different Mach numbers.

Figure 10 shows that the 4th RUS-FV-MLS scheme loses the right O(M2
∞)

pressure fluctuations from a greater value of the Mach number than those

obtained for the ROE-FV-MLS scheme. As for the Roe case, the low Mach

fix changes the terms S+∆(ρu) and S+∆(ρv). These terms play a similar role
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to cρ∆U in the Roe scheme. Using the high-order approach, the increase in

the order results in a decrease of the ∆uuu term of equation (28), reducing the

value of the product. However, when the low-Mach fix is used, the accuracy

problem is solving since S+ = O(c0).
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Figure 10: Inviscid flow past a cylinder test case. Comparison of the pressure-Mach scaling

for the 4th order RUS-FV-MLS scheme with and without the Li and Gu’s Fix for the 32×16

grid.

In figure 11 we show the distribution of the entropy contours for the

M = 10−2 inviscid flow past a cylinder test case. It is observed that for

the first-order Rusanov scheme without low Mach fix, the entropy presents a

dissipative transport. When the fix is applied, the entropy is convected. The

same behavior is obtained when the fourth-order scheme is applied with and

without fix. However, the use of the low Mach fix dramatically reduces the
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entropy production (figures 11 (a) and (b)).

a) b)

c) d)

Figure 11: Contours of entropy production and transport for the M = 10−2 inviscid flow

past a cylinder test case 96 × 48 grid. a) First order-Rusanov scheme. b) First-order

Rusanov scheme with Li and Gu’s fix. c) 4th order RUS-FV-MLS scheme with no fix. d)

4th order RUS-FV-MLS scheme with Rieper’s fix.

4. Low-Mach fixes and slope limiters

In this section, we combine the use of the previously investigated Low-

Mach fixes with slope limiters.

The idea behind the slope limiters, is to create a limited higher-order

(piecewise linear discontinuous) reconstruction of the solution with a limited
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gradient that enforces the TVD condition. For example, the limited second-

order reconstruction can be expressed as

uuuhbI (xxx) = uuuhI + χI∇∇∇uuuhI · (xxx− xxxI) (31)

where the value χI is obtained with the slope limiter.

Ideally, the limiter should not be active in smooth or low Mach regions,

in order to keep the accuracy of the high-order scheme. To illustrate this

point, we compute in the following the inviscid flow past a circular cylinder

at M∞ = 10−3.

4.1. Roe scheme with Rieper’s fix

Here, we consider the Roe scheme with Rieper’s fix and a fourth-order

MLS reconstruction scheme. The unstructured mesh shown in Figure 12 has

64 elements on the cylinder surface and the total number of elements is 2320.

Figure 12: Close view of the unstructured O-grid employed for the computation of the

inviscid flow past a circular cylinder test case using slope limiters.
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Figures 13 a) and b) present the pressure contours obtained by combining

the Barth and Jespersen [48] and the Venkatakrishnan [49] slope limiters

with Rieper’s fix. As suggested in [52], Figure 13 a) shows that spurious

oscillations are avoided using the Venkatakrishnan limiter.

The accuracy of the fix is clearly affected by the use of these limiting

strategies. The undesirable behaviour of the Barth and Jespersen limiter is

due to the unnecessary activation of the limiter in smooth regions as clearly

observed in figure 13 c). The good result obtained using the Venkatakrishnan

limiter with Rieper’s fix is explained by the fact that only few cells close to

the cylinder are selected for the application of the slope limiting procedure

(figure 13 d)).

To avoid such problems for any limiter, whatever the considered type of

slope limiter, we apply the MLS-based shock sensor strategy presented in

section 2.2.5 on the Barth-Jespersen limiter with Rieper’s low-Mach. Figure

14 shows that the MLS sensor perfectly succeeds in prevented unwanted

activation of the limiter for smooth flow in comparison with figure 13 a).

Table 6 summarizes the drag coefficient CDRAG obtained with the dif-

ferent slope limiting strategies. We observe that Barth-Jespersen and Van-

Albada slope limiters give unacceptable values of CDRAG compared to the

reference solution without slope limiter. On the contrary, the use of the

MLS-based shock sensor allow the recover the reference value for CDRAG.

Again, the difference between the reference solution and the solution ob-

tained with Venkatakrishnan limiter is due to the unnecessary activation of

the slope limiter.
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a) b)

c) d)

Figure 13: Inviscid M∞ = 10−3 flow past a cylinder on an unstructured grid. Pressure

contours with Rieper’s low-Mach fix using Barth-Jespersen limiter (a) and Venkatakr-

ishnan limiter (b). Limited cells using Barth-Jespersen limiter (c) and Venkatakrishnan

limiter (d).

34



a) b)

Figure 14: Inviscid M∞ = 10−3 flow past a cylinder on an unstructured grid. Pressure

contours with Barth-Jespersen limiter with Rieper’s low-Mach fix and MLS-based sensor

(a). Activated cells using Barth-Jespersen limiter and MLS-based sensor with (Clc = 0.32).

Limiter CDRAG

Barth-Jespersen [48] 8.64× 10−2

Van Albada [47] 2.37× 10−1

Venkatakrishnan [49] 3.43× 10−3

Barth-Jespersen + MLS-based sensor 3.34× 10−3

Van Albada + MLS-based sensor 3.34× 10−3

No limiter 3.34× 10−3

Table 6: Inviscid M∞ = 10−3 flow past a cylinder on an unstructured grid. Comparison

of the drag coefficient for different slope limiters. The solutions are obtained with a fourth

order Rieper’s Fix Roe FV-MLS scheme on an unstructured mesh.
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4.2. Rusanov scheme with Li and Gu’s fix

The application of slope limiters to the low-Mach fix of Li and Gu pro-

duces the same problems than those reported in the previous section for

the Rieper’s fix. In Figure 15 a) and b) we observe that the use of Barth-

Jespersen and Van Albada limiters with the low Mach fix gives spurious

pressure oscillations. As in the Roe’s case, the use of the Venkatakrishnan

limiter or the MLS-based sensor does not introduce spurious oscillations, as

it is shown in Figure 15 c) and Figure 15 d).

5. Unsteady transonic viscous flow over a circular cylinder

This last example aims to highlight the robustness and accuracy capabil-

ities of the present high-order solver for all-speed flows. To this end, we com-

pute the transonic viscous flow past a circular cylinder at free-stream Mach

number equal to 0.8. This configuration involves complex viscous-shock in-

teractions and vortex shedding in the vicinity of the wake as investigated

experimentally in [53].

The Reynolds number based on a diameter of the cylinder D = 1 m

is Re = 166.000. For this example no turbulence model has been used,

according to the approach adopted in [54, 55].

The outer boundary of the O-topology mesh is located at a distance of 200

diameters from the center of the cylinder. The cylinder surface is discretized

with 720 control volumes. The normal distance of the first centroid to the

cylinder wall is yn = 2.85 × 10−4D. The total number of control volumes is

206.150.

Figure 16 present the magnitude of the temperature gradient computed
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a) b)

c) d)

Figure 15: Inviscid M∞ = 10−3 flow past a cylinder on an unstructured grid. Pressure

contours. Rusanov’s low-Mach fix with: Barth-Jespersen limiter (a), Van Albada limiter

(b). Rieper’s low-Mach fix with Barth-Jespersen limiter (c) and with Van Albada limiter

and MLS-based sensor (d).

for t∗ = tUinlet/D equal to 49.93. This result was obtained by using a 3rd

order ROE-FV-MLS scheme with the Rieper’s fix. The MLS-based shock

sensor is applied to the Van Albada slope limiter. We clearly observe the

complex viscous-shock interaction pattern near the cylinder as experimen-
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tally investigated in [53].

Figure 16: Unsteady transonic viscous flow over a circular cylinder. Magnitude of the

temperature gradient near the cylinder for t∗ = 49.93.

The computation of the Mach field at the same non-dimensional time

(t∗ = 49.93) in Figure 17 shows that a von Kármán vortex street is formed

after the viscous-shock interaction region.
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Figure 17: Unsteady transonic viscous flow over a circular cylinder. Mach number field

for t∗ = 49.93.

The efficiency of the present shock-sensor strategy is highlighted in Figure

18. Due to the use of the MLS-based shock sensor, the Van Albada limiter

are inactive on a great part of the low-mach region, thus preserving the

accuracy of high order numerical scheme.
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Figure 18: Unsteady transonic viscous flow over a circular cylinder. Pressure field and

selective limiting for t∗ = 49.93. Shaded cells indicates the elements where the slope

limiter is activated.

In order to investigate the performance of using low Mach fixes and MLS

sensor, we now compute the time-averaged pressure coefficient Cpm over the

cylinder wall [56]
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Cpm =
(m− 1)Cpm−1 + Cpm

m
(32)

where m is the number of the averaged instants, and the pressure coefficient

Cpm is obtained for each position θ as

Cpm(θ) =
p(θ)− p∞
1
2
ρ∞|u∞|

(33)

The angle θ used for this definition is schematically shown in Figure 19.

D=1

�

Figure 19: Definition of θ for the computation of Cpm over the cylinder wall.

Figure 20 presents a comparison of the distribution of Cpm obtained for

various numerical strategies. We remark that it is necessary to consider both

the low Mach fix and the MLS sensor in order to obtain a correct mean

position of the boundary layer separation point , situated at around 70 de-

grees [53]. On the contrary, computations without low Mach fix predicts a

position of the boundary layer separation point around 60 degrees, which
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corresponds to a more dissipative solution. In addition, the use of the MLS

sensor gives less dissipative results than those obtained using the Venkatakr-

ishnan limiter. Minor discrepancies are visible for θ greater than 100 degrees

between results obtained using the Rieper’s fix or the tangential fix presented

in Section 3.1.4.

Figure 20: Unsteady transonic viscous flow over a circular cylinder.Time-averaged surface

pressure coefficient around the cylinder.

Conclusions

In this work we have presented a high-order density-based finite volume

framework for all-speed flows. The main ingredients of this formulation re-

lies on a MLS-based finite volume formulation, a low-Mach fix and a slope
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limiting strategy coupled with a MLS-based shock sensor. We have shown

that the accuracy problem in finite volume schemes can be alleviated simply

using high-order discretization scheme. The problem of grid dependency of

the solution accuracy with the Mach number was thoroughly investigated for

both the fluxes of Roe and Rusanov. In particular, we have found that this

dependence is smaller than for the first-order numerical scheme. Moreover we

demonstrated that use of high-order schemes in conjunction with low-Mach

fixes proposed by Rieper for the first-order Roe scheme and those proposed

by Li and Gu for the Rusanov fluxes successfully preserves the accuracy of

the solution at low Mach numbers. Finally the use of MLS-based shock wave

sensor prevents unnecessarily activation of the slope limiter, thus avoiding

the presence of spurious pressure oscillations in low-Mach regions.
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