SHARP CONDITION FOR THE LIOUVILLE PROPERTY IN A CLASS OF NONLINEAR ELLIPTIC INEQUALITIES - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

SHARP CONDITION FOR THE LIOUVILLE PROPERTY IN A CLASS OF NONLINEAR ELLIPTIC INEQUALITIES

Philippe Souplet
  • Fonction : Auteur
  • PersonId : 963620

Résumé

We study a class of elliptic inequalities which arise in the study of blow-up rate estimates for parabolic problems, and obtain a sharp existence/nonexistence result. Namely, for any p ≥ 1, we show that the inequality ∆u + u p ≤ ε in R n with u(0) = 1 admits a radial, positive nonincreasing solution for all ε > 0, if and only if n ≥ 2. This solves a problem left open in [Souplet & Tayachi, Colloq. Math. 2001]. The result stands in contrast with the classical case ε = 0.
Fichier principal
Vignette du fichier
SoupletEllipticIneq2020-final.pdf (316.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02446681 , version 1 (21-01-2020)

Identifiants

  • HAL Id : hal-02446681 , version 1

Citer

Philippe Souplet. SHARP CONDITION FOR THE LIOUVILLE PROPERTY IN A CLASS OF NONLINEAR ELLIPTIC INEQUALITIES. 2020. ⟨hal-02446681⟩

Relations

80 Consultations
148 Téléchargements

Partager

More