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ABSTRACT
We continue our investigation of particle acceleration in the pulsar equatorial current sheet
(ECS). Our basic premise has been that the charge carriers in the current sheet originate in the
polar caps as electron–positron pairs, and are carried along field lines that enter the ECS beyond
the magnetospheric Y-point. In this work, we investigate further the charge replenishment of
the ECS. We discovered that the flow of pairs from the rims of the polar caps cannot supply both
the electric charge and the electric current of the ECS. The ECS must contain an extra amount of
positronic (or electronic depending on orientation) electric current that originates in the stellar
surface and flows outwards along the separatrices. We develop an iterative hybrid approach that
self-consistently combines ideal force-free electrodynamics in the bulk of the magnetosphere
with particle acceleration along the ECS. We derive analytic approximations for the orbits
of the particles, and obtain the structure of the pulsar magnetosphere for various values of
the pair formation multiplicity parameter κ . For realistic values κ � 1, the magnetosphere is
practically indistinguishable from the ideal force-free one, and therefore, the calculation of the
spectrum of high energy radiation must rely on analytic approximations for the distribution of
the accelerating electric field in the ECS.
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1 IN T RO D U C T I O N

We continue our investigation of electromagnetic (Poynting) energy
dissipation in the axisymmetric pulsar magnetosphere following
the ‘hybrid’ approach of Contopoulos (2007a,b), Contopoulos,
Kazanas & Kalapotharakos (2014), Contopoulos (2019, hereafter
Paper I), and Contopoulos & Stefanou (2019, hereafter Paper II).
The pulsar magnetosphere is considered to be everywhere ideal and
force-free except in a dissipative layer that develops beyond the tip
of the closed line region along the equatorial current sheet (ECS).
The ECS is threaded by magnetic field lines that originate around
the rim of the polar cap and contain a finite amount of magnetic
flux,

�ECS = 2πrpcδB∗ = 2δ

rpc
�open � �open = πr2

pcB∗. (1)

Here, �open ≈ 1.25�open dipole is the total amount of magnetic flux
that crosses the light cylinder at a distance rlc ≡ c/�, �open dipole ≡
πr3

∗B∗/rlc is the amount of dipole magnetic flux that crosses the
equator beyond the light cylinder (Contopoulos, Kazanas & Fendt
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1999; Spitkovsky 2006; Timokhin 2006), rpc ≈ √
1.25rpc dipole ≡√

1.25r3
∗/rlc is the radius of the so-called ‘polar cap’, and � is the

angular velocity of stellar rotation. These magnetic field lines carry
the electrons and positrons required to support the electric current
of the ECS, and transfer electromagnetic energy from the central
‘generator’ (the stellar rotation) to the electrons and positrons in the
ECS. The thickness δ of the polar cap rim that supplies the ECS with
charge carriers and electromagnetic energy is inversely proportional
to the pair formation multiplicity κ � 1 (how many pairs are
produced per Goldreich–Julian charge particle in the polar cap;
Papers I and II). Without loss of generality, we will only consider
aligned rotators with B along � at the poles.

In our ‘hybrid’ approach, particle orbits are only considered
in the dissipative ECS where positrons are accelerated outwards
and electrons inwards. Electrons and positrons are in general
extremely relativistic (Lorentz factors �103), and, during their
acceleration by the radial electric field that develops in the ECS,
they both radiate high energy radiation along the direction of their
motion. There is no point to follow their motion in the rest of
the ideal magnetosphere where they simply flow along magnetic
field lines and drift across them with drift velocity cE × B/B2

and gyroradii much smaller than the macroscopic dimensions of
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the magnetosphere.1 The main reason we opted for this ‘hybrid’
approach (ideal force-free everywhere with consideration of particle
dynamics only in the ECS) is that we believe it is too early for an
ab initio reconstruction of the pulsar magnetosphere with Particle-
in-Cell (PIC) numerical simulations (Contopoulos 2016). This is
due to insufficient numerical resolution (a few hundred grid points
inside the light cylinder is grossly inadequate as has been shown
clearly in fig. 1 of Tchekhovskoy, Spitkovsky & Li 2013) and
unphysical simulation parameters (Larmor radii on the order of
the light cylinder radius instead of at least nine orders of magnitude
smaller, Lorentz factors smaller than about 103 instead of at least
five orders of magnitude larger, etc.). Moreover, it is not clear
whether the dissipation obtained with present day numerical PIC

codes (∼30 per cent of Ė within a few rlc just outside the light
cylinder) is indeed physical (as e.g. in Contopoulos et al. 2014) or
numerical (compare e.g. fig. 6 of Cerutti et al. 2015 with fig. 13
of Parfrey, Beloborodov & Hui 2012 and fig. 1c of Tchekhovskoy
et al. 2013). This makes them inadequate to study the physical
electromagnetic energy dissipation without a deeper understanding
of the physical processes that take place in that region.

In this work, we will improve the ‘ring-of-fire’ model proposed
in Paper II. In that model, we had assumed for simplicity that
the dissipation layer (denoted by DL in that paper) had a finite
radial extent at the origin of the ECS beyond the tip of the closed-
line region near the light cylinder. Beyond that region, the ECS
was considered dissipationless all the way to infinity. We will now
relax that assumption since it seems more natural that the ECS is
everywhere dissipative.

2 SUPPLY O F PAIRS

The dissipation layer extends from the tip of the closed-line region
at r ≈ rlc to infinity, i.e. the dissipation layer and the ECS are one
and the same. This is a natural way to connect the region of flux
�ECS with the force-free electrodynamics (FFE) solution outside
(see Fig. 1). In the limit that �ECS � �open, the solution must
be almost indistinguishable from the dissipationless FFE solution
of Contopoulos et al. (1999) with a very narrow region between
the last open field lines and the separatrix and ECSs. Notice that
Fig. 1 and the lower subfigures in Fig. 4 below are consistent with
most ‘ab initio’ PIC simulations in the literature that show extended
field line closure beyond the light cylinder (e.g. Cerutti et al. 2015;
Kalapotharakos et al. 2018).

The ECS contains a radial electric current, IECS, has a distribution
of surface electric charge density σ , and is threaded by a finite
amount of magnetic flux �ECS. The magnetosphere just above the
dissipation layer is an ideal force-free magnetosphere with

Er = −xBz, (2)

Ez = xBr = 2πσ, (3)

Bφ = − IECS

xrlcc
. (4)

We have introduced here the notation r/rlc ≡ x. As we discussed
in Paper I of this series, the magnetic field lines that enter the
equatorial dissipation layer carry a total flux of electron–positron
pairs (number of electron–positron pairs that enter the ECS per unit

1Equivalently, this drift is the definition of field line velocity and dragging
of particles by the magnetic field.

Figure 1. Example of a highly dissipative magnetosphere with κ = 2 (see
below). Light cylinder at x = 1. Thick red line: separatrix current sheet.
Thick blue line: boundary between open field lines, and lines that enter the
ECS (yellow line). Thin lines: lines of constant �. � = 0 along the axis,
and neighbouring lines differ by 0.05�open dipole. The thin magnetospheric
zone between the red and blue lines originates in the rim of the polar cap
and supplies the electromagnetic energy that is dissipated in the ECS, and
50 per cent of the charges needed to support the electric charge and the
electric current of the ECS (see text). Dissipation extends all the way to
infinity, but most of it takes place near the light cylinder.

time and unit area) equal to 2npairs|vz| = 2npairsvp(|Bz|/Bp), where
vp, vz are the poloidal and vertical component of the pair velocity,
npairs is the number density of pairs, and Bp is the poloidal magnetic
field.2 The extra factor of 2 is due to the two contributions from
above and below the equatorial plane. These magnetic field lines
originate on the polar cap, where the pairs are generated and outflow
at close to the speed of light. Conservation of the pair flux implies
that

npairsvp

Bp
= npairsvp

Bp

∣∣∣∣
∗

≈ κ �B∗
2πce

c

B∗
= κ�

2πe
. (5)

Here, �B∗/(2πc) ≡ ρGJ is the Goldreich–Julian charge density at
the polar caps, and e is the electron/positron charge. If this is the
only source of charges in the dissipation layer, then the surface
charge density σ at some distance r in the dissipation layer is equal
to the sum of the positive surface charge density σ+ carried by
the positrons that enter the dissipation layer inside distance r and
move outwards towards r, and the negative surface charge density
σ− carried by the electrons that enter outside distance r and move
inwards towards r (see Fig. 2). A detailed balance of the number of
charge carriers that enter the ECS from above and below yields the
following preliminary expression:

σ = σ+ + σ−

= 2e

{∫ r

rlc
2πr ′dr ′npairs|vz|

2πrvr+
+ − ∫ ∞

r
2πr ′dr ′npairs|vz|
−2πrvr−

}

≈ 2e

r|vr |
{∫ r

rlc

r ′dr ′npairs|vz| −
∫ ∞

r

r ′dr ′npairs|vz|
}

= 2e

r|vr |
{

2
∫ r

rlc

r ′dr ′npairs|vz| −
∫ ∞

rlc

r ′dr ′npairs|vz|
}

. (6)

2We have assumed that there are many more pairs than primary particles in
these field lines, i.e. that κ � 1. This allows us to ignore the electric current
carried by the primary particles. In a future publication, we will generalize
our analysis in the limit 1 ≥ κ ≥ 0.
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Figure 2. Detail of the magnetospheric replenishment of the electric current
and electric charge in the ECS near the tip of the closed-line region for the
solution shown in Fig. 1. Neighbouring � lines differ by 0.01�open dipole.
Grey/green/blue arrows: pairs/electrons/positrons, respectively. What is not
shown here is the extra positronic electric current component that flows
along the separatrix and the ECS (equation 7).

Here, vr+/vr− are the radial velocity of the positrons/electrons in
the ECS, respectively, and as we will see below, vr+ ≡ |vr| ≈ −vr−
at every position along the mid-plane. Equation (6) has one major
flaw: as r → r+

lc , σ does not approach zero as it should (Timokhin
2006). The only way to reconcile this discrepancy is to introduce
an extra outward flow of positrons through the separatrix and ECSs
equal to

IECS separatrix = 4πe

∫ ∞

rlc

r ′dr ′npairs|vz|. (7)

This electric current component of the ECS may be due to electron–
positron pairs that outflow along the separatrices, and when they
reach the Y-point, the positrons outflow along the ECS, and the
electrons flow back to the star along the separatrices. We will discuss
the physical significance of this extra electric current component
in a forthcoming publication. Adding the above component to
equation (6) we obtain our final expressions for the equatorial
electric current density and the total equatorial electric current,
namely

σ = σ+ + σ− + IECS separatrix

2πr|vr |
= 4e

r|vr |
∫ r

rlc

r ′dr ′npairs|vz|, (8)

IECS ≈ 2πr|vr |(σ+ − σ−) + IECS separatrix

= 4e

∫ ∞

rlc

2πr ′dr ′npairs|vz|

= 4e

∫ ∞

rlc

2πr ′dr ′
(

npairsvp

Bp

)
|Bz|

= 4e
κ�

2πe

∫ ∞

rlc

2πr ′dr ′|Bz|

≡ 2κ�

π
�ECS. (9)

Furthermore, Contopoulos et al. (1999), Spitkovsky (2006), and
Timokhin (2006) obtained numerically that

IECS ≈ ��open dipole

2π
= 1

2
�B∗r2

pc dipole. (10)

This very interesting numerical result has never before been pointed
out in the literature.3 Reversing equation (9) and using equation (10)
above, we obtain the amount of magnetic flux �ECS along the rim of
the polar cap that contains the electric charges needed in the ECS,
namely

�ECS = 2δ

rpc
�open = πIECS

2κ�
≈ �open dipole

4κ
≈ �open

5κ
. (11)

This relation allows us to obtain the thickness δ of the rim of the
polar cap, namely

δ ≈ rpc

10κ
. (12)

Note that the above detailed considerations yielded a correction in
the expression for δ with respect to the one in Paper I (equation 9).

3 PARTI CLE ORBI TS I N THE ECS

Let us now consider the motion of electrons and positrons at the mid-
plane of the dissipation layer beyond the light cylinder. Electrons
and positrons do not just move radially. They move very close to the
speed of light, but they are also deflected in the azimuthal direction
together with the overall pulsar rotation. At the mid-plane, Bφ = 0
and E = Er = x|Bz| > |Bz| = B. The total electromagnetic force
acting on the positrons in the mid-plane is equal to

e(Er r̂ + |v|Bzv̂ × ẑ/c) ≈ e(Er r̂ + Bzv̂ × ẑ) (13)

(vectors with hats denote unit vectors along them). For an extremely
relativistic particle with |v| ≈ c, the total electromagnetic force must
be equal to

me
d(
v)

dt
= mec

d


dt
v̂ + me


c2

Rc
v̂⊥. (14)

The second term in the above expression is the centrifugal force.
Here, Rc is the radius of curvature of the particle orbit in the
equatorial plane, and v̂⊥ ≡ v̂ × ẑ is the unit vector away from the
centre of the instantaneous circular orbit. We will henceforth make
the approximation that the instantaneous radius of curvature is so
large that the centrifugal force term is much smaller than the parallel
acceleration term. Decomposing equation (13) along v̂ and v̂⊥ we
obtain

e(Er r̂ + Bzv̂ × ẑ) = eEr (r̂ · v̂)v̂ + e(Er (r̂ · v̂⊥) + Bz)v̂⊥
= eE||v̂ + e(E⊥ + Bz)v̂⊥. (15)

The expressions in equations (15) and (14) must be equal to each
other, and therefore, the term along v̂⊥ must almost vanish. Thus,
E⊥ + Bz ≈ 0, and since E⊥ = Ercos α = −xBz cos α,

cos α = 1

x
. (16)

3As is well known since Contopoulos et al. (1999), the electric current
distribution along open magnetic field lines has a maximum value near the
maximum electric current of a split monopole magnetic field configuration
with the same amount of open magnetic flux �open, namely ��open/(2π).
Beyond that maximum, the magnetosphere contains a region of distributed
return electric current near the equator. We now point out for the first time that
the amount of distributed return electric current is such that the remaining
return current that flows along the ECS is equal to ��open dipole/(2π), and
not ��open/(2π) as would be naively expected from the analogy with a split
monopole configuration. As κ decreases, the amount of distributed return
electric current increases.
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5582 I. Contopoulos, J. Pétri, and P. Stefanou

Here, α is the angle between the azimuthal direction φ̂ and the
direction of particle motion v̂. We remind the reader that, beyond the
light cylinder, E > B in the equatorial plane. Similar considerations
apply to the electrons in the ECS. From the above, one can easily
show that

|vr | ≡ |v| sin α ≈
√

x2 − 1

x
c, (17)

vφ ≡ |v| cos α ≈ 1

x
c. (18)

With the above two equations4 we reach the following unexpected
result: after the electrons and positrons enter the ECS, they follow
straight lines that are tangent to the light cylinder! The positrons
travel outwards, whereas the electrons travel inwards. Both travel
in the direction of pulsar rotation (see Fig. 3 for details). The closer
we are to the light cylinder, the more azimuthal the orbits, and
the further away, the more radial they are. Straight lines have an
infinite radius of curvature, and therefore, equations ( 17) and (18)
are exact. It would be nice to check whether particle trajectories in
the ECS are also along straight lines in PIC numerical simulations
(e.g. Cerutti, Philippov & Spitkovksy 2016; Kalapotharakos et al.
2018).

The raison d’être of the above discussion is that we prefer to avoid
the complex integration of the Speiser-like orbits that the particles
follow when they enter the ECS (Speiser 1965, see Paper II). After
all, as the particles gain energy, they are confined more and more
towards the mid-plane of the ECS where Bφ = 0. We thus ignored the
meandering motion due to the azimuthal component of the magnetic
field Bφ in a guiding centre-type approximation. In a forthcoming
publication, when we will consider the effect of radiation reaction
in the particles’ motion, we will need to evaluate the radius of
curvature of the meandering particle trajectory.

Putting everything together and differentiating equation (8) we
obtain

d

dr
(r|vr |σ ) = d

dx
(σ
√

x2 − 1c) = 4ernpairs|vz|

= 4ernpairsvp(|Bz|/Bp) = 2κ�r

π
|Bz|. (19)

Solving for the distribution of Bz along the dissipation layer, and
remembering that σ = Ez/(2π) = xBr/(2π) yields

Bz = − 1

4κx

d

dx
(x
√

x2 − 1Br ). (20)

Notice that Bz is negative. The latter simple result is the basis of
the hybrid approach proposed below that yields the ideal force-
free magnetosphere with a realistic dissipative equatorial boundary
condition.

4 H Y B R I D N U M E R I C A L M E T H O D

The new element of this work is that the ECS and the dissipation
layer are one and the same (or in other words that the magnetic flux
�ECS from the rim of the polar cap is distributed all along the ECS).
The realization that the ECS is not dissipationless modifies the
global solution in a subtle way. We propose the following iterative
numerical approach that allows us to obtain a self-consistent

4Note added in proof: these are the same as the components of the so-called
ÀAristotelian’ speed of light velocities for electrons and positrons in the
ECS postulated by Gruzinov (2012).

Figure 3. Positron (top) and electron (bottom) trajectories (thick grey lines)
in the ECS along the equatorial plane z = 0 seen from above. Vector notation
as in text. Black arrows: velocity components. Red arrows: electric field
components. |v| ≈ c. Both trajectories are straight lines tangential to the
light cylinder (dashed circle). Positrons that enter the ECS move along φ̂

and outwards. Electrons that enter the ECS move along φ̂ and inwards.
Electron trajectories end on the light cylinder.

global solution that is ideal force-free everywhere except in
the ECS.

(i) We use the solver introduced in Contopoulos et al. (1999)
to solve the pulsar equation. This allows us to obtain the unique
axisymmetric ideal force-free magnetospheric solution that crosses
the light cylinder smoothly for a particular equatorial boundary
condition beyond the light cylinder (see also e.g. Contopoulos
2007a,b).

(ii) We obtain first the dissipationless solution of Contopoulos
et al. (1999) (the so-called CKF solution) by setting � =�open along
the equator beyond the light cylinder, and iteratively adjusting the
value of �open. This solution contains a dissipationless equatorial
return current sheet connected to two separatrix return current sheets
at the Y-point that develops at the tip of the corotating closed-line
region.

(iii) From the solution, we obtain the distribution of Br just above
the ECS. Then, according to equation (20),

�(r ≥ rlc) = �(rlc) +
∫ r

rlc

2πBz r ′dr ′

= �open − πr2
lc

2κ
x
√

x2 − 1Br. (21)
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(iv) Given this new Dirichlet-type boundary condition along the
ECS, we solve again the pulsar equation above the ECS. This yields
a new Br distribution.

(v) We repeat the above steps (iii) and (iv) till the solution relaxes
to a steady-state configuration in which both the electric current and
the electric charge of the ECS are accounted for self-consistently,
and equation (19) is satisfied everywhere along the ECS.

We implemented the above numerical method and obtained the
global magnetospheric structure of an aligned pulsar rotator for
various values of the pair formation multiplicity parameter κ ≥
1 (Fig. 4). Each iteration runs on a 200 × 200 spatial numerical
grid and takes about 1 h to converge. The stellar dipole boundary
condition is imposed in the central circle of radius 0.1rlc. The
separatrix return current sheet has a width of about 0.05�open

inside the red lines of Figs 1, 2, and 4. For κ � 40, the solution
is almost indistinguishable from the ideal solution of Contopoulos
et al. (1999). In that case, the calculation of dissipation, particle
acceleration, and high energy radiation can only be based on
analytical approximations of the equatorial electric and magnetic
fields (see equations 22–25 below). Notice that our analysis is valid
for κ � 2 since below that value, our approximation that �ECS =
(5κ)−1�open � �open breaks down. We also calculated the outgoing
Poynting flux integrated over a sphere of radius x as a function
of radius for various values of κ (Fig. 5). Most dissipation takes
place within about 2 light cylinder radii from the light cylinder, and
exceeds a few tens of per cent of Ė only for pulsars with extremely
low pair formation multiplicity.

Notice the similarity between case κ = 1 in Fig. 4 and case
‘finj = 1’ in fig. 3 of Cerutti et al. (2015), as well as between
Fig. 5 and fig. 6 of that paper. This similarity is by itself very
interesting. It implies that global PIC simulations with the lowest
possible (numerically) amount of dissipation shown in the literature
(e.g. Cerutti et al. 2016; Kalapotharakos et al. 2018) are very similar
to our dissipative solutions that describe pulsars with very low pair
formation multiplicities κ ≈ 1, not young pulsars with κ � 1.
This confirms our concern that ab initio numerical simulations
are presently inadequate to study the physical electromagnetic
energy dissipation in the pulsar magnetosphere. Our hybrid method,
however, allows us to have better control over the numerical
dissipation since the bulk of the magnetosphere is by construction
ideal, and dissipation is restricted to the ECS. This is why we are
able to run simulations with extremely low dissipation and very
high κ values.

5 U SEFUL A PPROX IMATIONS

In young pulsars with high pair formation multiplicity κ � 1, the
distribution of Br just above the ECS that we obtained numerically
with the above procedure may be approximated by the expression

Br ≈ 1

x2

(
1 − 1

x2

)0.7

Blc dipole. (22)

Here, Blc dipole ≡ B∗r3
∗/(2r3

lc) is the equatorial value of the vacuum
dipole magnetic field at the light cylinder. Therefore, according to
equations (2) and (20),

Bz ≈ − 3

5κx4

(
1 − 1

x2

)0.2

Blc dipole, (23)

Er ≈ 3

5κx3

(
1 − 1

x2

)0.2

Blc dipole. (24)

Notice the very sharp decrease of Bz and Er with distance. Finally,
let us also introduce

Bφ = − IECS

xrlcc
≈ −�r2

pc dipoleB∗
2xrlcc

= −Blc dipole

x
. (25)

This is a nice simple result that derives from equation (9). We
can now obtain analytically the distribution of electromagnetic
(Poynting) flux that enters the ECS, namely

ĖECS = 2
∫ x

x=1
2πr2

lc

c

4π
Er |Bφ | x dx

= IECS

2πrlc

∫ x

x=1
2πr2

lc|Bz| x dx

≈ IECS�ECS

2πrlc

(
1 − 1

x2

)1.2

≈ 6

25κ
Ė

(
1 − 1

x2

)1.2

. (26)

The factor of 2 in equation (26) takes into account the fact that both
hemispheres emit Poynting flux. Here, Ė ≈ (2/3)�2(�open/2π)2/c

is the total electromagnetic spin-down energy loss rate (Contopou-
los & Spitkovsky 2006). Equivalently, the outgoing Poynting flux
integrated over a sphere of radius r is equal to

ĖPoynting(x) = Ė − ĖECS(x)

≈
{

Ė
(

1 − 6
25κ

(
1 − 1

x2

)1.2
)

if x ≥ 1,

Ė otherwise.
(27)

As we can see in Fig. 5, the fits are almost perfect for κ � 2,
and break down for κ ≤ 1. Most of the particle acceleration and
consequent radiation in the ECS take place very close to the light
cylinder, hence the justification of the term ‘ring-of-fire’ introduced
in Paper II.

Up to now, we have assumed that the pair formation multiplicity
κ is very high. However, in order to attain observed dissipation
efficiencies on the order of 1–10 per cent, we need κ values on the
order of 10–2. We suspect that these are not typical values for the
bulk of the polar cap, and that κ → 0 as we approach the edge of the
polar cap along the separatrix between field lines that close inside
and outside the light cylinder. This idea certainly needs further
investigation.

6 C O N C L U S I O N

In this series of three papers, we associate the magnetospheric
dissipation with the ‘struggle’ of the magnetosphere to supply
the electric charges required to support the electric charge and the
electric current of the ECS. During our self-consistent investigation
we discovered that the supply of pairs from the rims of the
polar caps is not sufficient. The ECS requires an extra amount of
positronic electric current that originates in the stellar surface and
flows outwards along the separatrices. We will discuss the physical
significance of this extra positronic electric current in a forthcoming
publication.

The hybrid numerical method presented in this work allows
us to study the magnetospheric dissipation in a realistic pulsar
magnetosphere at a level never before being possible with stan-
dard numerical simulations (field calculations and ab initio PIC

calculations). We have obtained analytical expressions for the
distribution of dissipation along the ECS as a function of the pair
formation multiplicity κ . As shown also in several previous works,
magnetospheric dissipation indeed takes place within a couple of
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5584 I. Contopoulos, J. Pétri, and P. Stefanou

Figure 4. Magnetospheric structure for various values of κ � 1. η ≡ ĖECS/Ė is the corresponding dissipation efficiency. Red line: separatrix. Lines as in
Fig. 1. Clockwise from top left: κ = ∞, 40, 4, 1, 2, 8.
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Hybrid simulations 5585

Figure 5. Outgoing Poynting flux integrated over a sphere of radius x as a
function of radius for various values of κ (black lines) and corresponding
analytical fits according to equation (27) (red lines). Energy flux normalized
to the spin-down power of an aligned pulsar without dissipation (CKF
solution; blue line). Most dissipation takes place within about 2 light cylinder
radii from the light cylinder, and exceeds 20 per cent of Ė only for pulsars
with very low pair formation multiplicity.

light cylinder radii beyond the tip of the closed-line region at the
light cylinder, hence the name ‘ring-of-fire’ introduced in Paper II
of this series.

The analytical expressions for Bz and Er in the ECS that we
derived above allow us to calculate directly not only the distribution
of dissipated electromagnetic energy, but also the detailed outward
acceleration of the positrons and the inward acceleration of the
electrons in the ECS in the presence of radiation reaction. For the
particular straight line motion along the ECS discussed in Section 3
above, if we consider the radius of curvature Rc of the meandering
motion above and below the equator, the force balance equation
along the instantaneous direction of motion in the presence of
radiation reaction (equation 14, Paper I) becomes

d


dx
= eBlcrlc

mec2

{
3

5κx3

(
1 − 1

x2

)0.2

− 
4/
4
rrl

(Rc/rlc)4

(
1 − 1

x2

)−0.5
}

.

(28)

Here, 
rrl ≡ (3r2
lcBlc/2e)1/4 = 4 × 107(B∗/1013 G)1/4(P/1 s)−1/4,

and P is the pulsar period. The integration of equation (28) will yield
the spectrum of the emitted γ -ray radiation, and will be performed
in a forthcoming publication.
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