
HAL Id: hal-02446354
https://hal.science/hal-02446354v1

Submitted on 27 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fuzzy directional enlacement landscapes for the
evaluation of complex spatial relations
Michaël Clément, Camille Kurtz, Laurent Wendling

To cite this version:
Michaël Clément, Camille Kurtz, Laurent Wendling. Fuzzy directional enlacement landscapes
for the evaluation of complex spatial relations. Pattern Recognition, 2020, 101, pp.107185.
�10.1016/j.patcog.2019.107185�. �hal-02446354�

https://hal.science/hal-02446354v1
https://hal.archives-ouvertes.fr


Fuzzy Directional Enlacement Landscapes for the
Evaluation of Complex Spatial Relations

Michaël Clémenta,∗, Camille Kurtzb, Laurent Wendlingb

aBordeaux INP, Univ. Bordeaux, CNRS, LaBRI UMR 5800, F-33400 Talence, France
bUniversité de Paris, LIPADE EA 2517, 75006 Paris, France

Abstract

Structural spatial relations between image components are fundamental in the human perception of image
similarity, and constitute a challenging topic in the domain of image analysis. By definition, some specific
relations are ambiguous and difficult to formalize precisely by humans. In this work, we deal with the
issue of evaluating complex spatial configurations, where objects can surround each other, potentially with
multiple levels of depth. Based on a recently introduced spatial relation called enlacement, which generalizes
the idea of surrounding for arbitrary objects, we propose a fuzzy landscape model that allows both to
visualize and evaluate this relation directly in the image space, following different directions. Experiments
on several characteristic examples highlight the interest and the behavior of this approach, allowing for rich
interpretations of these complex spatial configurations.
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1. Introduction

In recent years, there has been an increasing in-
terest in using the spatial organization of objects
in the field of image analysis. Characterizing such
spatial relations is indeed a promising way to in-
crease both the understanding and the accuracy of
similarity perception between visual scenes or sit-
uations. Despite the fact that humans seem ca-
pable of apprehending spatial configurations with
little to no efforts, in many cases it can be ex-
ceedingly difficult to quantitatively model these re-
lations, mainly because they are highly prone to
subjectivity. Standard all-or-nothing relations are
clearly not suitable, and the interest of fuzzy re-
lations was initially suggested by Freeman in the
70s [1] since they take imprecisions into account.
Following this seminal work, numerous approaches
were proposed for the analysis of spatial relations
in various domains, ranging from shape recognition
to computer vision [2]. These approaches provide
interesting features that are able to describe effi-
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ciently most spatial relations (i.e., metric, direc-
tional and topological relations).

Nevertheless, some specific spatial configurations
remain difficult to describe without ambiguities. In
particular, a challenging case is when objects of ar-
bitrary shape are surrounding each other in com-
plex patterns. Indeed, when objects exhibit multi-
ple levels of depth (i.e., spirals or spiky patterns) or
are constituted of multiple connected components,
using only the surrounding relation might not be
sufficient to effectively model the spatial configura-
tion. As an illustrative example, let us refer to the
intuitive situations presented in Fig. 1. In these
cases, we might be interested in modeling the re-
gion of space that is being surrounded by ghosts
(reference object A). By answering such questions,
it then becomes possible to quantify to which de-
gree the character Mario (target object B) is sur-
rounded, depending both on its shape and relative
position to A. However, most existing models for
the surrounding relation fall short at properly cap-
turing the multiple components, the thickness, and
the levels of depth of the reference object A, some-
times yielding counter-intuitive results.

To better formalize these complex spatial config-
urations, a new spatial relation called “enlacement”
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Figure 1: Illustrative examples of spatial configurations where ghosts (reference object A) are enlacing the character Mario
(target object B) to different degrees.

was recently introduced in [3]. In this work, the
latter is defined as a generalization of spatial con-
figurations where an arbitrary, potentially complex
object surrounds or squeezes another object. Intu-
itively, an object is enlaced if it is unable to move
from its initial location to a new one (in a particular
direction) without having to cross the other object,
taking into account its thickness and/or its levels
of depth. For example, this allows to distinguish
situations where an object would be enlaced by a
thick rope or by a very thin sewing string. It is
established as a relative concept, in the sense that
it is always assessed for an object with regards to
another. Also note that the relation is not symmet-
ric: an object can be enlaced by another, but the
opposite might not hold. From this definition, the
more basic surrounding relation can be seen as a
particular case of the enlacement relation: an ob-
ject is surrounded if it is enlaced in all directions.
Following the same intuition, the “interlacement”
relation is further defined as a mutual enlacement
of two objects (for example with two U-shapes or
spirals imbricating each other).

The goal of this article – which is an extended
version of [4] – is to propose an alternative method
to quantify and evaluate these recently formalized
spatial relations. Here, we seek to model the en-
lacement locally in the image, by quantifying to
which degree each point in space is enlaced by an
object. To this end, the rest of this article is or-
ganized as follows. In Section 2, we review related
works to our approach, providing a more thorough
background on the modeling of spatial relations for
image analysis, and we further detail our contribu-
tions. Section 3 then recalls the model of [3] to build
enlacement and interlacement descriptors. Based
on the latter, and inspired by the works of Bloch
on fuzzy landscapes [5], we present in Section 4 a
generic model that allows to evaluate and visual-
ize enlacement configurations from a local point of
view and with directional granularity. Section 5

presents experimental results on different example
tasks, showing the behavior and the interest of this
model. In Section 6, we conclude and discuss some
perspectives of this work.

2. Related Work

In the domain of spatial relations, two major re-
search axes can usually be distinguished in the liter-
ature, based on two dual concepts [6]: the concept
of spatial relationship and that of relative position.

On the one hand, it is possible to formulate a
fuzzy evaluation of a spatial relation (for exam-
ple “to the left of ”) for two objects, in order to
describe their relative position. The fuzzy land-
scape model is a widely used method for providing
these types of assessments [5]. This approach re-
lies on the fuzzy modeling of a given spatial rela-
tion, directly in the image space, using morpholog-
ical operators. From these landscapes, fuzzy mea-
sures such as the necessity-possibility intervals [7]
can be used to evaluate the relation for different
target objects. Typical applications include for ex-
ample graph-based face recognition [8], brain seg-
mentation from MRI [9], or handwritten text recog-
nition [10].

On the other hand, the location of an object with
regards to another can be modeled by a quantita-
tive representation, in the form of a relative po-
sition descriptor. Different spatial relations can
be assessed from this representation and the as-
sociated descriptors can be integrated in pattern
recognition systems to match similar spatial config-
urations. Among the various relative position de-
scriptors, the histograms of angles [11] and the his-
tograms of forces [12] are widely used due to their
ability to process pairwise information following a
set of directions. They have a known behavior with
regards to affine transformations [13], and efficient
algorithms have been designed for their computa-
tion [14]. These descriptors are applied in differ-
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ent works, such as the linguistic description of spa-
tial relations [15], scene matching [16] or image re-
trieval [17, 18].

To summarize, fuzzy landscapes consist in de-
termining the region of space matching a specific
spatial relation, and relative position descriptors
consist in characterizing the position of an object
with regards to another, by combining different spa-
tial features into a whole descriptor. However, al-
though these two types of approaches allow inter-
pretation of most typical spatial relations between
objects, they usually cannot properly describe more
complex configurations. In particular, many ambi-
guities arise when the objects are concave and/or
composed of multiple connected components [19].
Consequently, several dedicated methods were pro-
posed, focusing on more specific complex spatial
relationships.

The “surrounded by” relation was first studied by
Rosenfeld [20] and deepened by Vanegas [21] with
a dedicated approach based on fuzzy landscapes.
This relation has also been studied from the point
of view of relative position descriptors, using an ad
hoc method based on force histograms [22]. How-
ever, both of these approaches present some short-
comings: the former does not explicitly take into
account the thickness of the objects (i.e., it consid-
ers only the boundaries of the objects), while the
latter suffers from what is called the “semantic in-
verse” problem (i.e., it cannot properly distinguish
if A surrounds B or the opposite). Another specific
spatial relation is “between”. This relation has been
studied in detail in [19], involving definitions based
on convex hulls and specific morphological opera-
tors. Applications of this spatial configuration for
the analysis of histological images have been pro-
posed by [23]. Other works have also been done
on the spatial relation “along” [24], or to character-
ize the “alignment” and “parallelism” of objects in
satellite images [25].

More recently, the φ-descriptor [26, 27] was intro-
duced, which provides a generic framework to assess
any spatial relation from a set of specific operators,
notably inspired by Allen intervals [28]. This de-
scriptor provides an important advancement, while
requiring an extraction of a set of suitable oper-
ators dedicated to each usual spatial relation. It
can detect whether if two objects are enlaced, but
it is not directly able to quantify the importance
of such a relationship (i.e., it cannot measure how
many times parts of an object are among parts of
another), as it would require another level of inte-

gration.
In this context, recent works [3, 29] introduced

both enlacement and interlacement descriptors,
from the relative position point of view, in order to
obtain a robust modeling of these relations for 2D
objects. Based on this model, we propose to tackle
the dual point of view, by considering fuzzy enlace-
ment landscapes instead of enlacement descriptors.
Initially introduced in [4], the goal of fuzzy enlace-
ment landscapes is to visualize and evaluate these
spatial configurations directly in the image space.
Notably, it allows to highlight the local concavities
of an object according to different directions. In-
spired by these ideas, [30] also proposed a method
based on quadrants to measure local concavities,
but the approach is global and cannot take different
directions into account. In the present article, our
objective is to more thoroughly describe the fuzzy
enlacement model, in particular by putting an em-
phasis on the geometrical properties of these fuzzy
landscapes. Furthermore, we propose extended ex-
perimental validations, demonstrating the interest
of this approach to characterize enlacement and sur-
rounding configurations in various cases.

3. Directional Enlacement Model

The directional enlacement model was initially
introduced in [3], mostly from the point of view of
the relative position descriptors. In this section, we
briefly recall the main definitions and principles of
this model, which constitute the basis of our pro-
posed approach.

3.1. Definitions

Two-Dimensional Objects. We define a 2D object
A as a nonempty, bounded set of points, i.e., A ⊂
R2. Equivalently, A can be defined by its charac-
teristic (membership) function 1A : R2 → {0, 1},
which associates a binary value to each point
(x, y) ∈ R2. This definition can easily be extended
to the fuzzy case, where A is then defined as a
fuzzy subset represented by its membership func-
tion µA : R2 → [0, 1]. More generally, it is also pos-
sible to interpret 2D objects as functions of compact
support from R2 to R, allowing for a more analytical
manipulation, i.e., A is defined by its representative
function fA : R2 → R.

Longitudinal Cuts. For ease of notation, through-
out the rest of the article, the Euclidean plane R2
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Figure 2: Illustrative examples of the definitions used in the directional enlacement model [3].

and the complex plane C are equivalently identified
by the isomorphism (x, y) ∈ R2 7→ (x+ iy) ∈ C.

Let θ ∈ R be an orientation angle, and ρ ∈ R
a distance from the origin. We define the oriented
line of angle θ at the altitude ρ by the following set:

∆(θ,ρ) = {eiθ(t+ iρ), t ∈ R}, (1)

where t ∈ R denotes the coordinate of a point rel-
atively to the line ∆(θ,ρ). Let ∆(θ,ρ) be such an
oriented line, and A be an object. The subset
A ∩∆(θ,ρ) represents a one-dimensional slice of A,
also called a longitudinal cut. In the case of binary
objects, such a cut is either empty (the line does
not intersect with the object) or composed of a fi-
nite number of segments, as illustrated in Fig. 2(a).
In the continuous case, similarly to the functional
notation of objects defined previously, a longitudi-
nal cut of A along the line ∆(θ,ρ) can be formalized
as a function f (θ,ρ)A such that:

f
(θ,ρ)
A : R −→ R

t 7−→ fA(eiθ(t+ iρ)),
(2)

where t represents the 1D coordinate of a point
along the line ∆(θ,ρ) and f (θ,ρ)A (t) is the representa-
tive value of this point on the plane, according to
object A.

3.2. Enlacement Model

Let (A,B) be a couple of objects. The goal is to
describe how A is enlaced by B. The intuition is to
capture the occurrences of points of A being between
points of B. To determine such occurrences, objects
are handled in a one-dimensional case, using longi-
tudinal cuts along oriented lines. For a given ori-
ented line ∆(θ,ρ), the idea is to combine the quantity

of object A (represented by f (θ,ρ)A ) located simulta-
neously before and after object B (represented by
f
(θ,ρ)
B ). Let f and g be two bounded measurable
functions with compact support from R to R. The
enlacement of f with regards to g is defined as:

E(f, g) =

∫
R
g(x)

∫ +∞

x

f(y)

∫ +∞

y

g(z) dz dy dx.

(3)
The scalar value E(f

(θ,ρ)
A , f

(θ,ρ)
B ) represents the

enlacement of A by B along the oriented line ∆(θ,ρ).
For binary objects, it corresponds to the total num-
ber of ordered triplets of points on the oriented line,
which can be seen as arguments to put in favor of
the proposition “A is enlaced by B” in the direction
θ. More details about algorithmical considerations
can be found in [3].

The set of parallel lines {∆(θ,ρ), ρ ∈ R} in di-
rection θ slices the objects into sets of longitudi-
nal cut functions (see Fig. 2(b)). To measure the
global enlacement of A with regards to B in di-
rection θ, we aggregate the one-dimensional enlace-
ment values obtained for each of these longitudinal
cuts. The enlacement of A by B in direction θ is
therefore defined by:

EAB(θ) =
1

‖A‖1‖B‖1

∫ +∞

−∞
E(f

(θ,ρ)
A , f

(θ,ρ)
B ) dρ,

(4)
where ‖A‖1 and ‖B‖1 denote the areas of A and B.
This normalization results in scale invariance [3].
In the binary case, this definition corresponds to
a number of triplets of points to put in favor of
“A is enlaced by B” along the longitudinal cuts in
this direction. Intuitively, it can be interpreted as
the quantity of B traversed while sliding the object
A in the direction θ, but also with regards to the
quantity of B located on the opposite direction.
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(a) Object A (b) µAE (π2 , 0) (c) µAE (π2 ,
π
6 ) (d) µAE (π2 ,

π
3 )

Figure 3: Fuzz-DELs of a binary object A, for fixed direction θ and increasing width ω. In (b, c and d), A is outlined in white.

In [3], this model was considered from the point of
view of the relative position descriptors, by building
an enlacement histogram EAB , which characterizes
how A is enlaced by B in different directions. In
the next section, we propose to adapt this model
from a local evaluation point of view, using a fuzzy
approach that allows to represent enlacement con-
figurations directly in the image space.

4. Fuzzy Enlacement Landscapes

We present here how to extend the directional
enlacement model to evaluate the enlacement of ob-
jects in the image space from a local point of view,
inspired by the works of Bloch [5] on fuzzy land-
scapes for classical spatial relations.

4.1. Definition

A fuzzy enlacement landscape of an object A
should be a representation of the region of space
that is enlaced by A. The initial enlacement model
being essentially directional, we propose to follow
the same philosophy and to define directional en-
lacement landscapes. Let A be a binary object
(i.e., represented here as fA : R2 → {0, 1}). In
a given direction θ, for a point outside of A located
at (ρ, t) coordinates in the rotated frame, its local
enlacement value can be defined as the quantity of
object A located simultaneously before and after
the point along the considered oriented line. This
principle can be formalized by the following prod-
uct of two integrals:

EA(θ)(ρ, t) =
1

‖A‖1

∫ +∞

t

f
(θ,ρ)
A (x) dx

∫ t

−∞
f
(θ,ρ)
A (x) dx.

(5)
When applied for all (ρ, t) coordinates, EA(θ) can
actually be seen as a 2D landscape representing the
local enlacement values of the points outside of the

object A. This image can be normalized into the
[0, 1] range of values in order to be interpreted as
a fuzzy set, which we call a Fuzzy Directional En-
lacement Landscape (Fuzz-DEL). It can be defined
by the following functional:

µAE : R −→ (R2 −→ R)
θ 7−→ (ρ, t) ∈ R2 7−→ µAE (θ)(ρ, t),

(6)

where we have

µAE (θ)(ρ, t) =
EA(θ)(ρ, t)

max
ρ,t
EA(θ)(ρ, t)

. (7)

The goal of such a landscape is to assess and vi-
sualize to which degree each point is enlaced by the
object A in a fixed direction θ. It is interesting to
note that the non-zero values of this landscape are
necessarily located inside the object’s concavities.
This is particularly interesting from an algorithmic
point of view, since it allows restriction of the com-
putation to points located in the convex hull of A
(and outside of A).

As the definition of µAE (θ) is focused on a sin-
gle direction, we also propose to aggregate fuzzy
landscapes across multiple orientation angles. Let
θ ∈ [0, π] be an orientation angle and ω ∈ [0, π]
a width parameter. The Fuzz-DEL on the interval
[θ − ω

2 , θ + ω
2 ] is defined as follows:

µAE (θ, ω)(ρ, t) =
1

ω

∫ θ+ω
2

θ−ω2
µAE (α)(ρ, t) dα, (8)

where θ represents the direction on which the fuzzy
landscape is focused, while ω controls the width of
the interval, allowing to measure either a narrow
direction or a more global one. In particular, the
landscape that aggregates all directions is denoted
by µ̃AE = µAE (π2 , π).

In order to illustrate these definitions, Fig. 3
and 4 show the Fuzz-DELs obtained for two differ-
ent objects. On the one hand, Fig. 3 illustrates the
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(a) Object A (b) µAE (0, π3 ) (c) µAE (π4 ,
π
3 ) (d) µAE (π2 ,

π
3 )

Figure 4: Fuzz-DELs of a binary object A, for fixed width ω and different directions θ. In (b, c and d), A is outlined in white.

impact of the width parameter ω for a fixed vertical
direction (θ = π

2 ). Note that the landscape would
be identical for the opposite direction (θ = 3π

2 ) be-
cause of symmetry (this is notably checked in the
next section discussing geometrical properties). For
ω = 0, zero-valued points are found in the center
of the object, showing that these points are not en-
laced vertically by A. Intuitively, if another object
was located here, it would be able to move in the
vertical direction without crossing A (i.e., the ob-
ject could slide downwards). We also observe that
when ω increases, the fuzzy landscape progressively
gets smoother, taking into account a wider range of
directions. On the other hand, Fig. 4 shows enlace-
ment landscapes on another object for different di-
rections θ (with a fixed width ω = π

3 ). From these
examples, we can see that Fuzz-DELs are able to
capture directional concavities. Most notably, in
the horizontal direction (θ = 0), the local enlace-
ment is relatively high, and the values are higher
the deeper we get inside the shape. In the vertical
direction (θ = π

2 ), the Fuzz-DEL is mostly empty,
except for some small concavities.

4.2. Geometrical Properties
Here, we enumerate some mathematical proper-

ties of the proposed fuzzy enlacement landscapes
with regards to some geometric transformations.
The proofs for these properties are provided in Ap-
pendix A.

Property 1 (Translation). A translation of an
object A also translates the corresponding enlace-
ment landscapes. Let Tv be a translation by vector
v = [vρ, vt] ∈ R2. For any (ρ, t) ∈ R2, we have:

µ
Tv(A)
E (θ)(ρ, t) = µAE (θ)(ρ− vρ, t− vt). (9)

Property 2 (Rotation). A rotation of an object
A also rotates the corresponding enlacement land-
scapes. Let Rα be a rotation of angle α ∈ R. For

any (ρ, t) ∈ R2, we have:

µ
Rα(A)
E (θ)(ρ, t) = µAE (θ − α)(ρ, t). (10)

Property 3 (Periodicity). For an object A, en-
lacement landscapes are symmetric, with period π.
For all θ ∈ R, we have:

µAE (θ + π) = µAE (θ). (11)

Property 4 (Scaling). A scaling of an object A
also scales the corresponding enlacement landscapes
by the same scaling factor. Let Sλ be a scaling of
factor λ ∈ R. For any (ρ, t) ∈ R2, we have:

µ
Sλ(A)
E (θ)(ρ, t) = µAE (θ)(λρ, λt). (12)

Note that these properties extend naturally for
Fuzz-DELs with a width parameter ω. Moreover,
some of these properties (i.e., rotation and scaling)
are also verified experimentally in Section 5.2.

4.3. Algorithmic Considerations
The definitions of Fuzz-DELs have been intro-

duced theoretically in the continuous domain, using
analytical notations to manipulate 2D objects as 1D
cuts. In this section, we discuss the practical im-
plementation of our approach for discrete, binary
objects defined on a classical pixel grid. A naive
Python implementation of this algorithm has been
made available online1, allowing for the computa-
tion of Fuzz-DELs for binary objects in different
directions.

For the sake of simplicity, we consider discrete
square images composed of N pixels (i.e., images
of size

√
N ×

√
N), where an object corresponds to

a set of binary pixels. Note that these object pix-
els do not have to be spatially connected, allowing

1https://github.com/clememic/enlacement
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for objects made up of multiple components. For a
given object A, the Fuzz-DEL µAE (θ) in direction θ
can be mapped to a gray-valued image of the same
size. To compute the values of this image, we first
generate all the discrete parallel lines in direction θ
of the image (Equation 1). An initial line of suffi-
cient length is built using the classical Bresenham
line-drawing algorithm. This line is then shifted to
obtain all the parallel lines, ensuring that each pixel
is counted once and only once. From these lines, we
consider the longitudinal cuts of A (segments cross-
ing the object), as well as the cuts of its complement
Ā in the image support (segments crossing the back-
ground). We then assign to the segments of Ā, the
cumulated product of segments of A that are simul-
taneously before and after (Equation 5); if there is
no such case, the whole segment is assigned to zero
values. The segment lengths are computed in an
isotropic manner, taking into account the orienta-
tion angle (i.e., the number of pixels in a segment
is normalized by the sine/cosine depending on the
quadrant). This allows to mitigate some discretiza-
tion issues due to the square nature of the pixel
grid. Note that more advanced strategies regarding
these discrete aspects could be considered, such as
in the works of [31] for example.

In terms of complexity, the number of points on
a line is in O(

√
N), and the lookup for segments

results in a cubic complexity (i.e., for each seg-
ment in Ā, we need to enumerate segments of A
before and after), inducing a worst-case complexity
in O(N

√
N). The number of parallel lines in the

image is bounded by
√
N . In the end, the compu-

tation of the Fuzz-DEL µAE (θ) in a direction θ has
an upper bound worst-case complexity of O(N2)
where N is the number of pixels in the image. Note
that this complexity is not achieved in practice, as
it would correspond to a highly distorted object,
for example following a checkerboard pattern. The
actual complexity is relative to the number of cuts
in each parallel line, which depends on the shape of
the considered object.

4.4. Fuzzy Evaluations
In the previous definitions, a reference object A is

considered, and different Fuzz-DELs can be derived
from it. These fuzzy landscapes allow to visual-
ize the enlacement that A exerts around itself. In
the following, we show how to further exploit these
landscapes to evaluate the degree to which a target
object B is enlaced by A, using classical fuzzy oper-
ators such as necessity and possibility. Indeed, sev-

eral works on spatial relations have used measures
based on fuzzy sets to evaluate their approaches
[8, 9, 10] (the reader can also refer to [32] for a
summary of classical fuzzy measures). Let µA and
µB be two fuzzy sets over R2. To evaluate how µB
matches with µA, the necessity N and possibility Π
are respectively defined as follows:

Π(µA, µB) = sup
x,y

t(µA(x, y), µB(x, y)), (13)

N(µA, µB) = inf
x,y

T (µA(x, y), 1− µB(x, y)), (14)

where t is a fuzzy intersection (t-norm) and T is a
fuzzy union (t-conorm). In this work, the min and
max operators are chosen for t-norm and t-conorm
respectively, but other fuzzy operators could be
considered. The mean value is also commonly used:

M(µA, µB) =

∑
x,y t(µA(x, y), µB(x, y))∑

x,y µA(x, y)
(15)

In our context, these fuzzy measures can
be applied to evaluate how a target object B
(represented by its membership function µB)
matches with a Fuzz-DEL µAE (θ, ω) of a refer-
ence object A. The necessity-possibility interval
[N(µAE (θ, ω), µB),Π(µAE (θ, ω), µB)] is a fuzzy eval-
uation of how B is enlaced by A in direction θ,
with the necessity being a pessimist point of view
(i.e., the evaluation cannot be larger than the mini-
mum value), while the possibility represents a more
optimistic point of view (by using the maximum
value). For example, this interval allows to nuance
the interpretation depending on the thickness of the
reference object: the possibility will be 1 as long as
the object is enlaced by a 1-pixel thin border, but
the necessity could be lower if the thickness is not
homogeneous relative to its area.

The geometrical properties of Fuzz-DELs pre-
sented in Section 4.2 naturally induce some proper-
ties on these evaluations. Because they are overall
measures on the fuzzy landscapes (i.e., minimum,
maximum and mean values), it follows that they
are invariant with regards to translations and scal-
ings of the objects (because of area normalization),
and that rotations result in circular shifts of the
evaluations equivalent to the rotation angle. This
evaluation strategy will be further studied in the
upcoming experiments.

5. Experimental Results

In this section, we report experimental results on
different illustrative examples to highlight the in-
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Figure 5: Examples of typical surrounding configurations (gray: reference object A; white: target object B).
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Figure 6: Directional necessity, possibility and mean profiles measuring the surrounding configurations of Fig. 5.

terest and the behavior of our model. These exper-
iments are organized around two main applications.
The first one is to evaluate the specific relation “sur-
rounded by” on typical configurations (Section 5.1).
As mentioned previously, this relation can be con-
sidered as a particular case that can be derived
from the directional enlacement model. We also
present a robustness study highlighting the geomet-
rical properties of the fuzzy enlacement landscapes
with regards to these configurations (Section 5.2).
The second application is to evaluate the spatial
relation “enlaced by” in a more generic sense (Sec-
tion 5.3), in particular when the reference objects
have multiple degrees of concavities. To this end,
we first illustrate the model on an illustrative exam-
ple, then we propose a more thorough experiment
on the MPEG7 shape dataset. Finally, we also pro-
pose some preliminary results on the prospective
concept of interlacement landscapes (Section 5.4).

5.1. Surrounding relation

The “surrounded by” relation is easily appre-
hended by human perception, but is particularly
challenging to evaluate quantitatively. It is usually
modeled by the “all directions” point of view, i.e., an
object surrounds another object if it is located in
all directions. In the following, we adopt the same
insight, but we adapt it to the enlacement model:
an object is surrounded if it is enlaced by the other
object in all directions.

Fig. 5 presents characteristic examples of sur-
rounding configurations that we assessed using our
fuzzy evaluation strategy. In each image, the refer-
ence object A is in gray and the target object B is
the white circle at the image center.

For this application, we propose a specific way
to evaluate the surrounding relation using our en-
lacement landscapes. The target object B is pro-
jected into a Fuzz-DEL µAE (θ, ω), and normalized as
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Table 1: surrounding evaluations (necessity-possibility intervals and mean values) obtained for the configurations (a) to (f) of
Fig. 5. For the approach of [22], only mean values are available.

Matsakis et al. [22] Vanegas et al. [21] Enlacement EAB [3] [NAB
S ,ΠAB

S ], MAB
S

(a) 0.99 [1.00, 1.00], 1.00 [1.00, 1.00], 1.00 [0.94, 1.00], 0.96
(b) 0.50 [0.70, 0.79], 0.76 [0.50, 0.63], 0.55 [0.36, 0.64], 0.48
(c) 0.74 [0.50, 0.54], 0.52 [0.40, 0.49], 0.45 [0.25, 0.53], 0.39
(d) 0.94 [0.93, 1.00], 0.97 [0.75, 1.00], 0.95 [0.54, 1.00], 0.79
(e) 0.16 [0.76, 0.90], 0.85 [0.52, 1.00], 0.73 [0.07, 1.00], 0.36
(f) 0.25 [0.94, 1.00], 0.99 [0.48, 1.00], 0.82 [0.77, 1.00], 0.85

a fuzzy set by the following:

µABE (θ, ω) =
min
ρ,t

(µAE (θ, ω)(ρ, t), µB(ρ, t))

max
ρ,t

µAE (θ, ω)(ρ, t)
. (16)

Then, the necessity N(µABE (θ, ω), µB) and possibil-
ity Π(µABE (θ, ω), µB) evaluations are obtained for
different values of θ ∈ [0, π]. This results in infor-
mative directional necessity and possibility profiles,
which can be further exploited to derive global eval-
uations of how B is surrounded by A. Such evalua-
tions can be obtained by averaging the profiles over
all directions:

NAB
S =

1

π

∫ π

0

N(µABE (θ, ω), µB) dθ, (17)

ΠAB
S =

1

π

∫ π

0

Π(µABE (θ, ω), µB) dθ, (18)

MAB
S =

1

π

∫ π

0

M(µABE (θ, ω), µB) dθ. (19)

In practice, these are derived by averaging over
a finite set of discrete directions in [0, π]. In these
experiments, the number of discrete directions was
fixed to k = 180. Moreover, we fixed ω to a low
value of π

36 (5 degrees) to take into account dif-
ferent directions individually, while smoothing out
some discretization issues. These evaluations thus
correspond to average necessities, possibilities and
means over all directions.

Fig. 6 shows the directional necessity and pos-
sibility profiles obtained for the six configurations
of Fig. 5. To complement these results, Table 1
also presents the average surrounding necessity-
possibility intervals [NAB

S ,ΠAB
S ], obtained from the

previous directional profiles, to quantitatively eval-
uate the global surrounding of the target objects
for these configurations. For comparison purposes,
we also present the results of the related approach
proposed by Matsakis et al. [22], which is based on

the force histogram between the objects, but can-
not distinguish which object surrounds the other.
We also report the results from the approach of
Vanegas et al. [21] which is also based on a fuzzy
landscape framework, dedicated to the surrounding
relation by considering only the visible concavities
of the reference object. Note that this approach
does not explicitly take into account the thickness
of the objects, thus potentially explaining the main
differences in the evaluations. The results obtained
by [3] with the initial enlacement descriptors are
also reported in this comparative study.

Considering the fact that surrounding evalua-
tions are highly subjective, our goal here is not to
argue that an approach is better than another, but
to illustrate that the proposed Fuzz-DELs can pro-
vide a pertinent evaluation and novel point of view
regarding this surrounding spatial relation. In this
context, we briefly discuss the results of each config-
uration, highlighting the main differences with the
comparative approaches:

• In situation (a), the object is completely sur-
rounded. Both our necessity and possibility
evaluations agree that the reference object A
is surrounded in all directions. The pessimistic
point of view is not always equal to 1 due to
some discretization issues at the pixel level.
The other approaches also provide similar eval-
uations. However, note that if we evaluate the
opposite scenario (i.e., if we exchange A and
B), the approach of [22] still gives 0.99, which
is counter-intuitive, while our approach gives
evaluations of 0, as expected. This observation
is also true for the following examples;

• In configuration (b), the object is only partially
surrounded. Both our pessimistic and opti-
mistic profiles agree that the reference object A
is surrounded in the vertical directions, but not
in the horizontal directions. The gradual tran-
sition of the configuration (notably captured

9



(a) Original image (b) Segmentation (c) µ̃AE

(d) µAE (0, π6 ) (e) µAE (π3 ,
π
12 ) (f) µAE ( 3π

4 ,
π
6 )

Figure 7: Applicative example of a real world surround-
ing configuration. The satellite image represents the Bassin
d’Arcachon (France). (b) Object A is gray and object B is
white. (c–f) A is outlined in white and B is outlined in red.

by the mean profile in blue) can be seen along
the diagonal directions. Depending on the ap-
proaches, global evaluations in Table 1 can
be a bit divergent but not counter-intuitive,
with mean values ranging from 0.48 for our ap-
proach to 0.76 for [21];

• The object is also partially surrounded in situ-
ation (c), where about half of the surrounding
circle has been cut out. We can observe the
same kind of gradual transition in our profiles
corresponding to the directions where the sur-
rounding circle is cut. Again, global evalua-
tions follow the intuition, ranging from 0.39 to
0.74 for mean values;

• In scenario (d), small parts were added pre-
venting the object to leave without crossing
the surrounding object, and therefore our op-
timistic profile is 1 for all directions, while
the pessimist one oscillates but is never zero.
Most comparative approaches tend to agree
that that the object is surrounded to high de-
grees. Our approach provides a more moderate
mean value of 0.79;

• Configuration (e) shows a reference object of
varying thickness, that our approach is specif-
ically designed to take into account. In this
case, the possibility profile is always 1 (the tar-
get object is considered as surrounded), yet the
necessity and mean profiles reveal that in the
vertical directions, the object could escape by

0 π/4 π/2 3π/4 π
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(a)

Matsakis et al. [22] 0.51
Vanegas et al. [21] [0.68, 0.85], 0.79

Enlacement EAB [3] [0.35, 1.00], 0.62

[NAB
S ,ΠAB

S ], MAB
S [0.63, 1.00], 0.80

(b)

Figure 8: Surrounding evaluations for the configuration de-
picted in Fig. 7. (a) Directional necessity, possibility and
mean profiles. (b) Overall evaluations and comparison with
related approaches, as in Table 1.

crossing a small portion of the reference ob-
ject, and therefore surrounding evaluations are
lower;

• Finally, these observations about thickness are
reinforced in the situation (f), where the white
object can not escape in any direction with-
out crossing at least partially the gray object.
Therefore, the possibility profile is 1 every-
where. However, because the reference object
is thinner in its upper part, the necessity and
mean profiles are lower in most directions, with
an average of 0.85. Note that [22] gives a non-
intuitive evaluation of 0.25, while the approach
of [21] does not take the thickness into account,
and therefore gives an evaluation of 0.99.

To show the potential of our approach on real
data, we evaluated the “surrounded by” relation on
geographical objects extracted from a satellite im-
age (Fig. 7 (a)). This image2 represents the Bassin
d’Arcachon (France) and has been acquired by the
Formosat-2 satellite (with a spatial resolution of
8 meters) and four spectral bands (Near-Infrared,
Red, Green and Blue). The image was segmented
with the Mean-Shift algorithm to produce a 3-class
image (Fig. 7 (b)) composed of an island (i.e., l’île

2Thanks to the CNES agency and the Kalideos project
(http://kalideos.cnes.fr/).
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aux oiseaux, reference object A) enclosed into the
bay and the land coast (target object B). For il-
lustrative purposes, Fig. 7 (c–f) present the Fuzz-
DELs of the bay object for different directions θ
and widths ω. In particular, (c) shows the over-
all landscape µ̃AE that aggregates all directions, and
(e) shows the direction where the target object is
the least enlaced (i.e., for θ = π

3 ). The correspond-
ing directional necessity and possibility profiles are
plotted in Fig. 8 (a), and the respective fuzzy sur-
rounding evaluations [NAB

S ,ΠAB
S ] are reported in

Fig. 8 (b) along with comparative methods. We
can observe different mean surrounding evaluations
for the different approaches. However, our possi-
bility evaluation is 1.00, meaning that the target
object cannot escape the area without crossing at
least some parts of the reference object.

5.2. Robustness study
In this section, we propose to study the robust-

ness of our approach to different types of transfor-
mations and alterations applied to the input ob-
jects. This study allows us to highlight the behavior
of our evaluation model with regards to the geomet-
rical properties (from Section 4.2) of our model in
the context of the surrounding spatial relation.

5.2.1. Rotations
In order to check the quasi-invariance of enlace-

ment landscapes with regards to rotations in the
discrete domain, we applied global rotations to the
images of Fig. 5, with no interpolation to preserve
the binary nature of the configurations. Because
of the directional nature of the enlacement land-
scapes, our hypothesis is that a rotation of the im-
age should induce a circular shift in the resulting
necessity-possibility profile.

This behavior is illustrated in Fig. 9, where three
profiles are represented. To obtain these profiles, we
performed three successive rotations (by setting the
rotation angle θ to π

4 ,
π
2 and π) of the image related

to configuration (b) from Fig. 5. For each rotated
image, we built the directional necessity and pos-
sibility profiles from the corresponding Fuzz-DELs.
As it was expected, the profiles obtained from the
rotated images present homogeneous circular shifts
where the shifting values are equal to the rotation
angle θ of the image. Note that the rotation of π
(Fig. 9(c)) also illustrates the π-periodicity prop-
erty of our model (i.e., same profiles as Fig. 6(b)).
Naturally, the surrounding necessity-possibility in-
tervals [NAB

S ,ΠAB
S ] related to these rotated images

Table 2: MSE obtained between the directional necessity-
possibility and mean profiles from reference images of Fig. 5
and their downscaled versions (10 successive downscalings
with linearly spaced factors in [0, 1]).

NAB
S ΠAB

S MAB
S

(a) 6.8e-04 0.0e+00 2.1e-04
(b) 2.5e-04 5.6e-03 9.7e-05
(c) 1.7e-04 1.9e-03 8.4e-05
(d) 9.4e-04 0.0e+00 2.5e-04
(e) 1.1e-04 0.0e+00 9.5e-05
(f) 8.3e-04 0.0e+00 2.7e-04

(reported in the captions of Fig. 9) are similar to
line (b) of Table 1. Some slight differences can be
observed and may be due to potential discretization
issues when rotating the images without interpola-
tion. Then, we applied this rotation protocol over
16 angles on the six proposed surrounding configu-
rations, and we obtained an overall mean-squared
error (MSE) in the order of 10−4 on average for the
necessity-possibility and mean profiles compared to
the reference ones manually shifted by the rotation
angles.

5.2.2. Scaling
In the same spirit, we propose to evaluate the

robustness of Fuzz-DELs with regards to the down-
scaling (i.e., homothety transformations) of the im-
ages of Fig. 5. From these configurations, depicted
by initial images of size 500×500, we applied 10 suc-
cessive downscalings with linearly spaced factors in
[0, 1], resulting in images of sizes down to 31 × 31.
For each of these downscalings, we computed the
corresponding Fuzz-DELs in all directions and gen-
erated the overall surrounding evaluations.

In Table 2, we report the average mean-squared
errors (MSE) obtained between the directional
necessity-possibility and mean profiles from the ref-
erence image and the downscaled ones. From these
results, and similarly to the rotation experiments,
we observe very small errors, of the order of 10−4

on average, highlighting the robustnesses of our ap-
proach to the downscaling and discretization of the
studied objects. Notably, we can notice the very
small error for the optimistic point of view on con-
figurations (b) and (c), which correspond to the
only two configurations where the possibility eval-
uations are not equal 1 in all directions (see Fig. 6
(b) and (c)) and therefore the downscalings of the
images may introduce some small discontinuities.
Such results seem to experimentally confirm that
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(b) θ = π
2 , [0.36, 0.66], 0.48
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(c) θ = π, [0.36, 0.64], 0.48

Figure 9: Behavior of surrounding profiles and evaluations with Fuzz-DELs for different rotations of the objects from the
configuration (b) of Fig. 5.
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(a) Configuration (c), [0.05, 0.53], 0.22
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(b) Configuration (e), [0.01, 1.00], 0.22

Figure 10: Behavior of surrounding profiles and evaluations
with Fuzz-DELs following the degradation of the reference
object with Speckle noise (variance of σ = 0.28). The two ex-
amples correspond to the configurations (c) and (e) of Fig. 5.

our enlacement landscapes are invariant to scaling
transformations, up to some negligible discretiza-
tion issues.

5.2.3. Robustness to noise
Finally, we evaluated the behavior of Fuzz-DELs

with regards to the application of artificial noise to
the reference object. We gradually added Speckle
noise, which is a multiplicative noise degrading the
interior of the object, to the reference object prior
to computing the corresponding Fuzz-DELs and
surrounding evaluations. This kind of noise can
have a strong impact on the behavior of the ap-

proach, as it can change the topology of the object
by creating different cavities, holes and discontinu-
ities.

In Fig. 10, we present some examples of obtained
results for the surrounding configurations (c) and
(e) from Fig. 5. These two examples correspond to
a Speckle noise applied with a variance of σ2 = 0.28.
From these results, and by comparison to the re-
sults of Fig. 6 and Table 1, we can observe that
the overall shapes of the necessity-possibility and
mean profiles are preserved following the degrada-
tion of the reference object. The possibility profiles
remain unchanged (since Speckle noise does not add
pixels outside of the initial object), while the neces-
sity values are lower, as Speckle noise may create
small holes and cavities inside the object. By inter-
preting the enlacement as the surface area (i.e., the
amount of material) to be traversed to escape from
the reference object in a given direction, this is the
expected behavior when applying this kind of noise.
These experiences strengthen us in our intuition
that our approach for the evaluation of surround-
ing (and more generally enlacement) configurations
can provide relevant evaluation results even in the
case of noisy objects, a situation that can often oc-
cur, for example, if the objects have been extracted
using segmentation algorithms.

5.3. Enlacement relation

To pursue our study and to go further than the
surrounding, we now consider the spatial relation
“enlaced by” in a more generic sense, in particular
when the reference object has multiple degrees of
concavities.

5.3.1. Illustrative example
Fig. 11 (a) presents a complex spatial configura-

tion involving a spiral and different colored target
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(a) (b) µ̃AE

• (red) [0.77, 0.89]
• (green) [0.58, 0.63]
• (blue) [0.53, 0.56]
• (yellow) [0.33, 0.34]
• (purple) [0.33, 0.35]
• (cyan) [0.00, 0.08]

(c) Necessity-possibility intervals

Figure 11: Fuzzy enlacement landscape of a spiral (reference
object A) and evaluation for different target objects inside
the spiral (represented in different colors).

objects enclosed into it, from the center of the spiral
to its “tail”. The spiral is the reference object A, and
we consider here its Fuzz-DEL µ̃AE that aggregates
all directions. From this landscape (Fig. 11 (b)),
we can observe the decreasing pattern (from white
pixels to dark gray pixels) as we shift away from
the center of the spiral. To assess this behavior,
we measure the necessity-possibility scores between
µ̃AE and each target object µB . Fig. 11 (c) presents
the intervals [N(µ̃AE , µB),Π(µ̃AE , µB)] measuring the
global enlacement for the different target objects
inside the spiral. Note that for this general enlace-
ment experiment, we are not using the normalized
projection of Equation 16, which was specifically
introduced for the surrounding relation.

Note that other comparative approaches cannot
take into account the depth within the spiral. For
instance, the approach of Vanegas et al. [21], which
was designed specifically to evaluate the surround-
ing relation, provides the same evaluations for the
green, blue, yellow and pink objects (i.e., around
0.50), because it does not consider the reference
object as a whole, but only looks at the visible con-
cavities from the boundaries of the target object.

5.3.2. Application to the MPEG7 shape dataset
In this experiment, we propose to apply our

model to measure the quantity of enlacement that
objects can exert around themselves. We consid-

ered the MPEG7 dataset3, which is composed of
1400 images of binary shapes of various sizes, cat-
egorized into 73 different classes. This dataset is
commonly used to benchmark shape classification
methods [33]. Here, instead of considering classifi-
cation, we use it to rank the object shapes according
to their average quantity of enlacement, which can
be considered as an appropriate measure of shape
concavity and complexity.

We have first applied a pre-processing step to the
dataset by: (1) applying a morphological closing to
remove holes smaller than 1% of the object area,
and then (2) removing shapes with more than one
connected component since they are not particu-
larly relevant for this experiment. Following this,
we obtain a clean set of 1325 shapes with 71 classes.

For each shape A, we have computed the aggre-
gated enlacement landscape µ̃AE (as in Fig. 11 (b) for
example), obtained by averaging individual land-
scapes for a set of k = 180 linearly spaced θ ∈ [0, π].
Then, we considered the average value in this aggre-
gated landscape, summarizing into a single scalar
value the quantity of enlacement exerted by the
object, which we refer to as the mean enlacement
value. Based on this framework, we decided to sort
the different shapes of the dataset according to their
respective mean enlacement values. We then simply
normalized these ranking values into the [0, 1] inter-
val, such that the object with the maximum (resp.
minimum) enlacement has a value of 1 (resp. 0).
According to our model, objects with the highest
rankings should correspond to concave shapes, as
well as shapes exhibiting complex alternating pat-
terns. In the same spirit, those with the lowest
values should correspond to strictly convex shapes.

For comparison purposes, we applied a similar
ranking framework with the recently proposed Q-
concavity approach [30]. This method relies on
counting the number of background pixels in each
of the four quadrants for every point in the image,
which can be efficiently computed using integral im-
ages and appropriate flips. From these counts, an
average concavity degree is computed using appro-
priate normalization. In the same way, we applied
a normalized ranking into [0, 1] according to the Q-
concavity evaluations, and we sorted the objects of
the dataset from the highest to the lowest.

The results of this experiment can be observed
in Fig. 12 and Fig. 13. On the one hand, Fig. 12

3http://www.dabi.temple.edu/~shape/MPEG7/dataset.
html
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#1: 1.00 #2: 0.91 #13: 0.70 #14: 0.70
#15: 0.70 #18: 0.65 #20: 0.52 #21: 0.51

#22: 0.51 #25: 0.50 #27: 0.49 #29: 0.49 #34: 0.46 #37: 0.46 #40: 0.45 #43: 0.45

#47: 0.44 #48: 0.44 #62: 0.42 #65: 0.41 #68: 0.41 #71: 0.40 #79: 0.38 #82: 0.37

(a) 24 of the top ranked shapes according to our enlacement model

#1: 1.00 #2: 0.90 #15: 0.45 #16: 0.43 #18: 0.36 #19: 0.36 #22: 0.32 #23: 0.30

#24: 0.26 #25: 0.26 #31: 0.22 #37: 0.21 #40: 0.21 #47: 0.19 #51: 0.18 #59: 0.15

#60: 0.15 #61: 0.14 #62: 0.14 #64: 0.13 #68: 0.13 #69: 0.13 #70: 0.12 #73: 0.12

(b) 24 of the top ranked shapes according to the Q-concavity approach [30]

Figure 12: 24 of the top ranked shapes from the MPEG7 dataset (from left to right and top to bottom, limited to the top 2
shapes per class for better visualization) according to the normalized ranking values obtained from (a) our fuzzy enlacement
landscape model, and (b) the Q-concavity approach proposed by [30].

shows the top 24 shapes with the highest normal-
ized values for (a) our enlacement model and (b)
the Q-concavity approach [30]. Notice how our en-
lacement model (a) allows to find concave patterns
such as U-shape objects, but also more complex en-
lacement configurations such as spirals, tentacles or
spiky extremities. While the comparative approach
(b) also has concave shapes in the highest rankings,
it seems to be less capable of finding more complex
patterns with multiple levels of depths.

On the other hand, Fig. 13 shows the 24 shapes
with the lowest normalized rankings. As expected,
our approach only returns strictly convex shapes.
However, the Q-concavity approach still finds ob-
jects with thin cavities (ranks #14 or #31 for ex-
ample), as well as “T-shapes” (ranks #43 or #44)
that are not convex. This might be due to the fact
that this approach only considers a global informa-
tion based on quadrants, and does not include direc-
tional information. Note that more specific results
could be obtained for our approach according the
the application requirement (i.e., focus on a specific
direction for example), while it is not possible with
the approach of [30].

As an additional experiment, Fig. 14 shows the
normalized ranking values for each shape of the
dataset, sorted in a decreasing order (i.e., left part
of the curves correspond to shapes of Fig. 12, right
part to shapes of Fig. 13). From this graph, we
can observe a smoother decreasing profile for our
proposed enlacement model, compared to the steep
decreasing values obtained with the comparative Q-
concavity approach. This result shows that our ap-
proach seems better suited to distinguish a wide va-
riety of shape patterns, from very high complexity
to more simple, strictly convex shapes. This could
be useful in many pattern recognition applications.

5.4. Towards Fuzzy Interlacement Landscapes

Here, we also propose some preliminary results
on the idea of interlacement landscapes. The term
interlacement is intended as a mutual enlacement of
two objects. If we aggregate all directions, a fuzzy
interlacement landscape between two objects A and
B can be obtained by: µ̃ABI = µ̃AE + µ̃BE .

Fig. 15 shows the fuzzy interlacement landscapes
obtained for several illustrative images, which have
been respectively segmented into two objects (with
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#1: 0.00 #2: 0.00 #3: 0.00 #4: 0.00 #6: 0.00 #9: 0.00 #10: 0.00 #11: 0.00

#16: 0.00 #17: 0.00 #18: 0.00 #20: 0.00 #24: 0.00 #25: 0.00 #45: 0.00 #46: 0.00

#57: 0.00 #71: 0.00 #74: 0.00 #75: 0.00 #79: 0.00 #100: 0.00 #103: 0.00 #113: 0.00

(a) 24 of the bottom ranked shapes according to our enlacement model

#1: 0.00 #2: 0.00 #3: 0.00
#4: 0.00 #6: 0.00 #7: 0.00 #13: 0.00 #14: 0.00

#20: 0.00 #21: 0.00
#23: 0.00

#25: 0.00 #26: 0.00 #27: 0.00
#28: 0.00

#31: 0.00

#32: 0.00 #33: 0.00 #34: 0.00 #36: 0.00 #43: 0.00 #44: 0.00 #46: 0.00 #47: 0.00

(b) 24 of the bottom ranked shapes according to the Q-concavity approach [30]

Figure 13: 24 of the bottom ranked shapes in the MPEG7 dataset (from left to right and top to bottom, limited to the bottom
2 shapes per class for better visualization) according to the normalized ranking values obtained from (a) our fuzzy enlacement
landscape model, and (b) the Q-concavity approach proposed by [30].
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Figure 14: Sorted ranking values of the shapes of the MPEG7
dataset, for our fuzzy enlacement model and the Q-concavity
approach of [30].

background in gray when applicable). The first
landscape is obtained from an image of a zebra
whose coat features an alternating stripes pattern.
We can observe the high interlacement values con-
centrated in the center of the animal’s coat. We
can make the same kind of observation for wing
patterns of the butterfly on the second example.
The third landscape is obtained from an ASTER

satellite image4 covering a large delta river. Note
that the interlacement is mainly located around the
ramifications between the river and the mangrove.
Such interlacement visualization could be useful, for
instance, for ecological landscape monitoring. Fi-
nally, the last image is a decorative drop cap issued
from an historical document, which has been bi-
narized with a basic Otsu thresholding (therefore
there is no background for this image). We can
notice the stronger interlacement as we reach the
center of the letter. We intend to exploit this visu-
alization strategy more thoroughly in further works.

6. Conclusion

We introduced a generic fuzzy model for the eval-
uation of complex spatial configurations of binary
objects represented in images. In particular, we fo-
cused on the enlacement relation, which generalizes
the notion of surrounding, by taking into account
object thickness and multiple components. Based

4U.S./Japan ASTER Science Team,
NASA/GSFC/METI/ERSDAC/JAROS.
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(a) Zebra (b) Butterfly (c) Delta river (d) Drop cap letter

Figure 15: Examples of fuzzy interlacement landscapes. The top line corresponds to the initial images, the second line shows
the respective segmentations of the objects (white: object A; black: object B), and the third line shows the interlacement
landscapes as heatmaps.

on the enlacement model [3], we proposed fuzzy en-
lacement landscape to assess this relation from a
local point of view, taking into account the con-
cavities of the objects in a directional fashion. We
also put an emphasis on the invariance properties
of these landscapes, such as translations, rotations
and homotheties, which are often required in many
pattern recognition tasks.

An experimental study carried out on different il-
lustrative examples highlighted the interest of this
model to evaluate the surrounding relation for var-
ious objects, and also to rank a wide variety of
shape patterns, from high complexity to more sim-
ple, convex shapes. Furthermore, the behavior of
our proposed fuzzy enlacement landscapes regard-
ing to different types of transformations and alter-
ations (rotations, scaling, noise) was studied, show-
ing interesting properties that confirm our theoret-
ical model.

In terms of limitations, our model could poten-
tially suffer from some discontinuity issues, notably
for example in the case of noise when pixels can
be added outside of the reference object. To pre-
vent this, we plan to design a more appropriate nor-
malization strategy, also relying on the bandwidth
parameter ω, or by considering non-standard dis-
crete representations. This will be studied in future
works. We also plan to further study how to exploit
fuzzy interlacement landscapes, in particular with
overlapping objects. Finally, our goal is to extend
the model by integrating a measure of spacing in in-

terlacement configurations, allowing to better take
into account the distance between the objects.
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Appendix A. Proofs of Geometrical Prop-
erties

We provide hereinafter the proofs of the mathe-
matical properties of the proposed fuzzy enlacement
landscapes with regards to some geometric transfor-
mations.

Proof 1 (Translation). In the frame oriented in
direction θ, the translation operator Tv by vector
v = [vρ, vt] ∈ R2 can be written as:

f
(θ,ρ)
Tv(A)(t) = f

(θ,ρ−vρ)
A (t− vt). (A.1)

Therefore, for any (ρ, t) ∈ R2, we have:

ETv(A)(θ)(ρ, t) (A.2)

=
1

‖Tv(A)‖1

∫ t

−∞
f
(θ,ρ)
Tv(A)(x) dx

∫ +∞

t

f
(θ,ρ)
Tv(A)(x) dx

(A.3)

=
1

‖A‖1

∫ t−vt

−∞
f
(θ,ρ−vρ)
A (x) dx

∫ +∞

t−vt
f
(θ,ρ−vρ)
A (x) dx

(A.4)

= EA(θ)(ρ− vρ, t− vt) (A.5)
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It follows that µTv(A)
E (θ)(ρ, t) = µAE (θ)(ρ−vρ, t−vt).

�

Proof 2 (Rotation). In the frame oriented in di-
rection θ, the rotation operator Rα by angle α ∈ R
can be written as:

f
(θ,ρ)
Rα(A)(t) = f

(θ−α,ρ)
A (t). (A.6)

Therefore, for any (ρ, t) ∈ R2, we have:

ERα(A)(θ)(ρ, t) (A.7)

=
1

‖Rα(A)‖1

∫ t

−∞
f
(θ,ρ)
Rα(A)(x) dx

∫ +∞

t

f
(θ,ρ)
Rα(A)(x) dx

(A.8)

=
1

‖A‖1

∫ t

−∞
f
(θ−α,ρ)
A (x) dx

∫ +∞

t

f
(θ−α,ρ)
A (x) dx

(A.9)

= EA(θ − α)(ρ, t). (A.10)

It follows that µRα(A)
E (θ)(ρ, t) = µAE (θ − α)(ρ, t). �

Proof 3 (Periodicity). By definition we have,
for any θ, t ∈ R,

f
(θ+π,ρ)
A (t) = f (θ,−ρ)(−t). (A.11)

Hence, we have:

EA(θ + π)(ρ, t) (A.12)

=

∫ t

−∞
f
(θ+π,ρ)
A (x) dx

∫ +∞

t

f
(θ+π,ρ)
A (x) dx

(A.13)

=

∫ t

−∞
f
(θ,−ρ)
A (−x) dx

∫ +∞

t

f
(θ,−ρ)
A (−x) dx

(A.14)

=

∫ +∞

t

f
(θ,ρ)
A (x) dx

∫ t

−∞
f
(θ,ρ)
A (x) dx (A.15)

= EA(θ)(ρ, t). (A.16)

It follows that µAE (θ + π) = µAE (θ). �

Proof 4 (Scaling). For λ ∈ R, we have:

‖Sλ(A)‖1 = λ2‖A‖1, (A.17)

and:

f
(θ,ρ)
Sλ(A)(t) = fA(eiθ(λt+ iλρ)) (A.18)

= f
(θ,λρ)
A (λt). (A.19)

Therefore, using change of variable y = λx, we can
write:

ESλ(A)(θ)(ρ, t) (A.20)

=
1

‖Sλ(A)‖1

∫ t

−∞
f
(θ,ρ)
Sλ(A)(x) dx

∫ +∞

t

f
(θ,ρ)
Sλ(A)(x) dx

(A.21)

=
1

λ2‖A‖1

∫ t

−∞
f
(θ,λρ)
A (λx) dx

∫ +∞

t

f
(θ,λρ)
A (λx) dx

(A.22)

=
y=λx

λ2

λ2‖A‖1

∫ λt

−∞
f
(θ,λρ)
A (y) dy

∫ +∞

λt

f
(θ,λρ)
A (y) dy

(A.23)

= EA(θ)(λρ, λt). (A.24)

It follows that µSλ(A)
E (θ)(ρ, t) = µAE (θ)(λρ, λt). �
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