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WELL-POSEDNESS AND APPROXIMATION OF SOME ONE-DIMENSIONAL

LÉVY-DRIVEN NON-LINEAR SDES.

NOUFEL FRIKHA AND LIBO LI

Abstract. In this article, we are interested in the strong well-posedness together with the numerical approximation

of some one-dimensional stochastic differential equations with a non-linear drift, in the sense of McKean-Vlasov,
driven by a spectrally-positive Lévy process and a Brownian motion. We provide criteria for the existence of

strong solutions under non-Lipschitz conditions of Yamada-Watanabe type without non-degeneracy assumption.

The strong convergence rate of the propagation of chaos for the associated particle system and of the corresponding
Euler-Maruyama scheme are also investigated. In particular, the strong convergence rate of the Euler-Maruyama

scheme exhibits an interplay between the regularity of the coefficients and the order of singularity of the Lévy

measure around zero.

1. Introduction

In this paper, we are interested in the strong well-posedness as well as the numerical approximation of the
following one-dimensional non-linear stochastic differential equation (SDE for short) with positive jumps and with
dynamics

Xt = ξ +

∫ t

0

b(s,Xs, [Xs]) ds+

∫ t

0

σ(s,Xs) dWs +

∫ t

0

h(s,Xs−) dZs,(1)

Zt =

∫ t

0

∫ ∞
0

zÑ(ds, dz)(2)

where W = (Wt)t≥0 is a standard one-dimensional Brownian motion, Ñ is a compensated Poisson random measure
with intensity measure dsν(dz) satisfying the condition

∫∞
0

(z ∧ z2)ν(dz) < ∞ and with starting point ξ (with

law µ). We here assume that the random variables ξ, W and Ñ are defined on some filtered probability space
(Ω,F , (Ft)t≥0,P) satisfying the usual conditions and that they are mutually independent. Throughout the article,
we will denote by P(R) the space of probability measures on R, Pq(R) the subset of probability measures in P(R)
that have finite moment of order q > 0, equipped with the corresponding Wasserstein distance Wq, and by [θ] the
law of a random variable θ.

The SDE (1) generally appears as the mean-field limit of an individual particle evolving within a system of
particles, which interact with each other only through the empirical measure of the whole system, when the number
of particles goes to infinity. This property is commonly referred in the literature as the propagation of chaos
phenomenon. The weak and strong well-posedness in the diffusive setting, i.e. when h ≡ 0, have attracted
considerable attention of the research community from the last decades to the present day. We refer the reader to the
works of Funaki [11], Oelschlaeger [31], Gärtner [12], Sznitman [33], Jourdain [18] and more recently, Li and Min [26],
Chaudru de Raynal [2], Mishura and Veretennikov [30], Lacker [25], Chaudru de Raynal and Frikha [3] for a small and
incomplete sample. When Z is a square integrable Lévy process, the strong well-posedness of multi-dimensional
non-linear SDEs with time-homogeneous Lipschitz coefficients Rd × P2(Rd) 3 (x, µ) 7→ b(x, µ), σ(x, µ), h(x, µ)
together with the strong convergence rate of propagation of chaos have been investigated by Jourdain, Méléard and
Woyczynski [19]. The well-posedness in the weak and strong sense of some multi-dimensional non-linear SDEs driven
by non-degenerate symmetric α-stable Lévy processes, α ∈ (0, 2), under some mild Hölder regularity assumptions on
the drift and diffusion coefficients with respect to both space and measure variables have been recently established
by Frikha, Konakov and Menozzi [9].

In the absence of the Lipschitz regularity of coefficients and/or non-degeneracy of the underlying noise, it ac-
tually turns out to be challenging to establish the well-posedness of such non-linear dynamics and to obtain some
quantitative rates of convergence for the propagation of chaos by the related system of particles and for the time
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discretization by the so-called Euler-Maruyama scheme. Concerning the well-posedness, we again mention the works
[2, 3, 9, 18, 25]. For some quantitative rates of propagation of chaos in the diffusive setting, we mention the recent
work of Holding [16] who studies systems of interacting particles with a constant diffusion coefficient and a drift
coefficient given by an Hölder continuous interacting kernel of convolution type are established. Still in the non-
degenerate diffusive setting, some new quantitative estimates for propagation of chaos have been recently obtained
by Chaudru de Raynal and Frikha [4] for McKean-Vlasov SDEs under some mild Hölder regularity assumptions on
the drift and diffusion coefficients with respect to both space and measure variables.

Our main objective here is twofold as it consists specifically in investigating the strong well-posedness and the
numerical approximation of the one-dimensional non-linear SDE (1) without any non-degeneracy condition on the
underlying noise and only assuming that R× P1(R) 3 (x, µ) 7→ b(t, x, µ) is one-sided Lipschitz, uniformly in time,
and that both coefficients σ and h are Hölder continuous in space, uniformly in time.

Motivated by the recent developments of continuous-state branching processes, the well-posedness of such dy-
namics in the linear setting, i.e. when there is no dependence with respect to the measure argument in the drift
coefficient, was first addressed by Fu and Li [10] and then later extended by Li and Mytnik [27]. Equations of such
type have recently found applications in financial mathematics due to the positivity of the solution and the ability
to capture self-exciting effects through the inclusion of the Lévy component Z. We refer to the works of Jiao et al.
[22, 23, 24] for the modelling of sovereign interest rate, electricity prices and stochastic volatility. For multi-curve
term structure models we refer to Fontana et al. [5]. Our results thus allow to consider and to study from both
theoretical and numerical point of view some mean-field extension of the models proposed in the aforementioned
references. In this direction, it is worth mentioning for instance the recent works of Bo and Capponi [1] and of
Fouque and Ichiba [6] for the modelling of systemic risk of a banking system through the lens of interacting particle
system driven by independent Brownian motions.

Concerning the study of the time discretization schemes in the linear framework, we can mention the two recent
works of Li and Taguchi [28, 29] concerning the strong rate of convergence of the corresponding Euler-Maruyama
approximation scheme and of a positivity preserving time discretization scheme. In the spirit of the aforementioned
works, we employ the Yamada-Watanabe approximation technique to derive both theoretical and numerical results.
Let us however mention that compared to the two recent works [28, 29], we here improve the strong convergence
rate of the Euler-Maruyama scheme and we also remove the restrictive boundedness assumption on the diffusion
and jump coefficients at the price of some integrability constraints. Let us also mention that such boundedness
assumption on the jump coefficient h has appeared persistently in the literature on the numerical approximation of
α-stable driven SDEs by the Euler-Maruyama scheme, see for example the works of Hashimoto [14] and Hashimoto
and Tsuchiya [15].

The organization of the paper is as follows. The main theorems together with their proofs are presented in
Section 2. In Section 3, we mention briefly conditions for which positivity of the solution holds and some potential
applications. Section 4 is an appendix and contains some important but auxiliary results. In particular, a general
weak existence result as well as as some moment estimates for some non-linear SDEs of jump-type with continuous
coefficients having at most linear growth are presented.

2. Assumptions and main results

2.1. Strong solutions to the mean-field SDE. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space satisfying
the usual conditions. On this probability space, let us consider a standard one-dimensional (Ft)t≥0-Brownian

motion W and a compensated (Ft)t≥0-Poisson random measure Ñ with Lévy measure ν on (R+,B(R+)) such that∫
R+
z ∧ z2 ν(dz) < ∞. Suppose that W and Ñ are independent. Given a real-valued random variable ξ defined

on (Ω,F , (Ft)t≥0,P) and independent of the pair (W, Ñ), we will say that strong existence holds for the non-linear
SDE (1) starting from ξ with law µ at time 0 if there exists a real-valued and càdlàg process X = (Xt)t≥0, with
marginal law [Xt] at time t, adapted to the augmented (and completed) natural filtration (Gt)t≥0 generated by W

and Ñ , that satisfies equation (1) almost surely for all t ≥ 0. We will say that weak existence holds for (1) starting

from ξ with law µ at time 0 if there exists a filtered probability space (Ω,F , (Ft)t≥0,P) and a triplet (X,W, Ñ) of

(Ft)t≥0-adapted process such that X is càdlàg with [X0] = µ, W is a Brownian motion, Ñ is a Poisson random
measure independent of W with Lévy measure ν and satisfying (1). We will say that pathwise uniqueness holds for
the same equation if for any two solutions X1 and X2 of (1) (possibly defined on two different filtered probability

spaces) satisfying X1
0 = X2

0 = ξ, W 1 = W 2 and Ñ1 = Ñ2, we have X1
t = X2

t almost surely for every t ≥ 0. In
particular, note that strong uniqueness implies uniqueness of marginal laws, i.e. [X1

t ] = [X2
t ] for all t ≥ 0, which in

turn implies that the non-linear SDE (1) may be regarded as a linear SDE with time-inhomogeneous coefficients.
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In the spirit of Li and Mytnik [27], we introduce the quantity

αν := inf{β > 1 : lim
x→0+

xβ−1

∫ ∞
x

z ν(dz) = 0}

which represents the order of singularity of the Lévy measure at zero. For instance, if ν is the Lévy measure of
a spectrally positive α-stable like process, that is, if ν(dz) = 1(0,∞)(z)g(z)/z1+α dz, with α ∈ [1, 2], g being a
non-negative bounded and continuous function on R+, one has αν = α and the infimum is actually achieved. We
recall from Lemma 2.1 of [27] that αν ∈ [1, 2]. Moreover, for any α > αν ,

(3) lim
x→0+

xα−2

∫ x

0

z2ν(dz) = 0 and lim
x→0+

xα−1

∫ ∞
x

zν(dz) = 0.

Note that in our current setting, both limits in (3) are also valid for α = 2. We now introduce our assumptions
on the coefficients b, σ and h in order to tackle the strong well-posedness of the SDE (1).

Assumption 2.1.

(i) The coefficients R+×R×P1(R) 3 (t, x, µ) 7→ b(t, x, µ), σ(t, x), h(t, x) are continuous functions, P1(R) being
equipped with the Wasserstein metric W1, and have at most linear growth in x and µ locally uniformly with
respect to t, that is, for any T > 0, there exists some positive constant CT such that for any (x, µ) ∈ R×P(R)

(4) sup
0≤t≤T

{|b(t, x, µ)|+ |σ(t, x)|+ |h(t, x)|} ≤ CT (1 + |x|+W1(µ, δ0)).

(ii) There exists some positive constant denoted by [b]L such that for all (t, x, y, µ, ν) ∈ [0,∞)× R2 × P1(R)2,

sign(x− y)(b(t, x, µ)− b(t, y, ν)) ≤ [b]L(|x− y|+W1(µ, ν)).

(iii) For any t ≥ 0, the diffusion coefficient x 7→ σ(t, x) is γ-Hölder continuous with γ ∈ [1/2, 1] and x 7→ h(t, x)
is η-Hölder continuous with η ∈ (1 − 1/αν , 1], uniformly with respect to t. We denote respectively by [σ]γ
and [h]η the (uniform) Hölder modulus of σ and h.

(iv) There exists a positive constant denoted by [h]L such that for all t ∈ [0,∞), for all x, y ∈ R,

sign(y − x)(h(t, x)− h(t, y)) ≤ [h]L|x− y|.

The assumption (i) is required in order to prove weak existence of solutions to the SDE (1) by employing a
compactness argument together with some moment estimates. Though the previous result seems natural, to the
best of our knowledge, it is new. The precise statement together with its proof are postponed to the Appendix, see
Lemma 4.1 in Section 4.1. The regularity assumptions (ii), (iii) and (iv) allow to prove pathwise uniqueness as well
as to study the propagation of chaos for the corresponding system of interacting particles. As already mentioned
in the introduction, we will rely on the Yamada-Watanabe approximation technique which is briefly exposed in
Section 4.2.

Before proceeding to the statement of our first main result, let us make some additional comments on Assumption
2.1. Observe that the condition on b holds as soon as b(t, x, µ) = b1(t, x) + b2(t, x, µ), with b1 non-increasing in
space, uniformly in time, and b2(t, ., .) Lipschitz-continuous on R × P1(R), uniformly with respect to time t. Our
assumption on h holds if h(t, x) = h1(t, x) + h2(t, x) with h1(t, .) Lipschitz continuous (uniformly in time) and
h2(t, .) η-Hölder continuous (uniformly in time) for some η ∈ (1 − 1/αν , 1] and non-decreasing in space. This last
assumption is reminiscent of those introduced in [27].

We now present two results concerning weak existence and pathwise uniqueness of solutions for the mean-field
SDE (1).

Lemma 2.2. Suppose that assumption 2.1 (i) holds and that
∫
R |x|

βµ(dx) +
∫
z≥1

zβν(dz) < ∞ for some β > 1.

Then, weak existence holds for the SDE (1) starting at time 0 from the initial point ξ with law µ.

Proof. Weak existence follows from a compactness argument stated in a more general form in Lemma 4.1 of the
Appendix in Section 4.1. �

Lemma 2.3. Suppose that assumption 2.1 holds. Then, pathwise uniqueness holds for the SDE (1) starting at time
0 from the initial point ξ with law µ ∈ P1(R).

Proof. Consider two solutions X and Y to (1) with the same input data (ξ,W,Z). We will use the notation
∆t := Xt − Yt and γt := σ(t,Xt) − σ(t, Yt), λt := h(t,Xt) − h(t, Yt). Let ε ∈ (0, 1) and δ ∈ (0, 1). Using (38) and
then applying Itô’s formula, we get

(5) |∆t| ≤ ε+ φδ,ε(∆t) = ε+M δ,ε
t + Iδ,εt + Jδ,εt +Kδ,ε

t ,
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where we set

Mδ,ε
t :=

∫ t

0

φ′δ,ε(∆s) γs dWs +

∫ t

0

∫ ∞
0

{φδ,ε(∆s− + λs−z)− φδ,ε(∆s−)} Ñ(ds, dz),

Iδ,εt :=

∫ t

0

φ′δ,ε(∆s){b(s,Xs, [Xs])− b(s, Ys, [Ys])}ds,

Jδ,εt :=
1

2

∫ t

0

φ′′δ,ε(∆s)|γs|2ds,

Kδ,ε
t :=

∫ t

0

∫ ∞
0

{
φδ,ε(∆s− + λs−z)− φδ,ε(∆s−)− λs−zφ′δ,ε(∆s−)

}
ν(dz)ds.

By a standard localization argument, we can define a sequence (τm)m≥1 satisfying τm ↑ ∞ as m ↑ ∞ and such

that (Mδ,ε
t∧τm)t≥0 is an L1(P)-martingale. After taking expectation and performing the above computations, one can

finally pass to the limit as m ↑ ∞ using Fatou’s lemma and the right-continuity of (∆t)t≥0. Since this procedure
is standard, for sake of simplicity, we omit it here and refer the reader to the proof of Theorem 2.2 in [27] for a

similar argument. We now quantify the contribution of Iδ,εt , Jδ,εt and Kδ,ε
t .

In order to deal with Iδ,εt we make use of Assumption 2.1 (iii)

φ′δ,ε(∆s){b(s,Xs, [Xs])− b(s, Ys, [Ys])} = |φ′δ,ε(∆s)|sign(∆s){b(s,Xs, [Xs])− b(s, Ys, [Ys])}
≤ [b]L(|∆s|+W1([Xs], [Ys]))

so that

Iδ,εt ≤ [b]L

∫ t

0

(|∆s|+W1([Xs], [Ys])) ds.

From Assumption 2.1 (iii) and (41), we directly get

Jδ,εt ≤ [σ]2γ

∫ t

0

|∆s|2γ

|∆s| log(δ)
1[ε/δ,ε](|∆s|)ds ≤ [σ]2γ

ε2γ−1

log(δ)
t.

In order to deal with Kδ,ε
t , we write it as the sum of K1,δ,ε

t and K2,δ,ε
t with

K1,δ,ε
t :=

∫ t

0

∫ ∞
0

{
φδ,ε(∆s− + λs−z)− φδ,ε(∆s−)− λs−zφ′δ,ε(∆s−)

}
1{∆s−λs−>0}ν(dz)ds,

K2,δ,ε
t :=

∫ t

0

∫ ∞
0

{
φδ,ε(∆s− + λs−z)− φδ,ε(∆s−)− λs−zφ′δ,ε(∆s−)

}
1{∆s−λs−<0}ν(dz)ds.

To deal with K1,δ,ε
t , we apply Lemma 4.2 with y = ∆s−, x = λs− and u > 0 to be chosen later. From Assumption

2.1 (iii), we obtain∫ ∞
0

{
φδ,ε(∆s− + λs−z)− φδ,ε(∆s−)− λs−zφ′δ,ε(∆s−)

}
1{∆s−λs−>0}ν(dz)

≤ 21{∆s−λs−>0}1(0,ε](|∆s−|)
{
|λs−|2

|∆s−| log δ

∫ u

0

z2ν(dz) + |λs−|
∫ ∞
u

zν(dz)

}
≤

2[h]2η
log(δ)

ε2η−1

∫ u

0

z2ν(dz) + [h]ηε
η

∫ ∞
u

zν(dz).(6)

To proceed, we aim at selecting a sufficiently small u, which equilibrates the two terms that appear in the above
upper-estimate. Having in mind (3), we observe that the upper-bound (6) can be further bounded as follows

2[h]2η
log(δ)

ε2η−1

∫ u

0

z2ν(dz) + [h]ηε
η

∫ ∞
u

zν(dz)

≤
2[h]2η
log(δ)

ε2η−1

uα−2
uα−2

∫ u

0

z2ν(dz) + [h]η
εη

uα−1
uα−1

∫ ∞
u

zν(dz)

≤
[

2[h]2η
log(δ)

ε2η−1

uα−2
+ [h]η

εη

uα−1

]
(Iαε + Jαε ) = (2[h]2η + [h]η)

ε1−α(1−η)

log(δ)α−1
(Iαε + Jαε )
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where in the last equality we have chosen u so that ε2η−1

log(δ)uα−2 = εη

uα−1 , that is, u = log(δ)ε1−η and introduced the

two quantities

Iαε := (log(δ)ε1−η)α−2

∫ log(δ)ε1−η

0

z2ν(dz) and Jαε := (log(δ)ε1−η)α−1

∫ ∞
log(δ)ε1−η

zν(dz)

for a fixed α ∈ (αν , 1/(1 − η)). Note that this choice of α is admissible since η ∈ (1 − 1/αν , 1]. If η < 1, from
(3), there exists ε0 := ε0(α, δ) > 0 such that Iαε + Jαε ≤ 1 for any ε ∈ (0, ε0). If η = 1, we select δ = 2 and from
Assumption 2.1, one may bound the quantity Iαε + Jαε by 2

∫∞
0
z ∧ z2ν(dz). From the above computation, for any

α ∈ (αν , 1/(1− η)), there exists a positive ε0 such that for any ε ∈ (0, ε0)

K1,δ,ε
t ≤ C ε

1−α(1−η)

log(δ)α−1
.

In order to deal with K2,δ,ε
t , we remark that on the set {∆s−λs− < 0}, from assumption 2.1 (iv), one has

0 < −sign(∆s−)λs− = |λs−| ≤ [h]L|∆s−| so that separating the ν(dz)-integral into the two domains z ∈ (0, |∆s−|
2|λs−|∧1]

and z ∈ ( |∆s−|
2|λs−| ∧ 1,∞), we get

∀z ∈
(

0,
|∆s−|
2|λs−|

∧ 1

]
, φδ,ε(∆s− + λs−z)− φδ,ε(∆s−)− λs−zφ′δ,ε(∆s−) ≤ C1(0,ε](|∆s−|)

|λs−|2

|∆s−| log δ
z2

and

∀z ∈
(
|∆s−|
2|λs−|

∧ 1,∞
)
, |φδ,ε(∆s− + λs−z)− φδ,ε(∆s−)|+ |λs−zφ′δ,ε(∆s−)| ≤ C|λs−|z ≤ C|∆s−|z.

Combining the two previous bounds, we obtain∫ ∞
0

{
φδ,ε(∆s− + λs−z)− φδ,ε(∆s−)− λs−zφ′δ,ε(∆s−)

}
1{∆s−λs−<0}ν(dz)

≤ C1(0,ε](|∆s−|)
|λs−|2

|∆s−| log δ

∫ |∆s−|
2|λs−|

∧1

0

z2ν(dz) + C|∆s−|
∫ ∞
|∆s−|
2|λs−|

∧1

zν(dz)

≤ C
{

ε

log(δ)
+ |∆s−|

}
.(7)

Hence,

K2,δ,ε
t ≤ C

{
ε

log(δ)
t+

∫ t

0

|∆s| ds
}
.

Taking expectation in (5) and gathering the above estimates we obtain

(8) E[|∆t|] ≤ C
[
ε

(
1 +

1

log(δ)

)
+

∫ t

0

(E[|∆s|] +W1([Xs], [Ys])) ds+
ε2γ−1

log(δ)
+
ε1−α(1−η)

log(δ)α−1

]
for any α ∈ (αν , 1/(1− η)) and for any ε ∈ (0, ε0). Hence, passing to the limit as ε ↓ 0 and then using Gronwall’s
lemma yield

E[|∆t|] ≤ C
∫ t

0

W1([Xs], [Ys])) ds

By the very definition of the Wasserstein metric of order one, one has W1([Xt], [Yt]) ≤ E[|∆t|] which combined
with the previous inequality allows us to conclude the proof. �

Combining the two previous lemmas with Yamada-Watanabe theorem, we thus obtain our first main result.

Theorem 2.4. Suppose that assumption 2.1 holds and that
∫
R |x|

βµ(dx) +
∫
z≥1

zβν(dz) < ∞ for some β > 1.

Then, there exists a unique strong solution to the SDE (1) starting at time 0 from the initial point ξ with law µ.

Remark 2.5. We recall that in the case of α-stable like Lévy measure, that is, ν(dz) = 1(0,∞)(z)g(z)/z1+α dz,
with α ∈ (1, 2], g being a non-negative bounded and continuous function on R+, one has αν = α. In this case, one
may slightly weaken assumption 2.1 (iii) by letting η ∈ [1 − 1/αν , 1], if α ∈ (1, 2]. Indeed, if η = 1 − 1/αν with
αν ∈ (1, 2], then the last term appearing in the right-hand side of (8) becomes log(δ)1−αν so that, after passing to
the limit as ε ↓ 0, one may conclude by letting δ ↑ ∞.
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2.2. Approximation of the mean-field limit dynamics by a system of interacting particles. In this section
we consider the approximation of the dynamics (1) by the corresponding system of particles. For a positive integer
N , let us introduce a sequence (ξi,W i, Zi)1≤i≤N of i.i.d. copies of (ξ,W,Z) which is assumed to be defined on the

same probability space (Ω,F ,P) for sake of simplicity. The system of interacting particles
{
Xi,N
t , 1 ≤ i ≤ N, t ≥ 0

}
is defined by the following N -dimensional SDE with dynamics

(9) Xi,N
t = ξi +

∫ t

0

b(s,Xi,N
s , µNs ) ds+

∫ t

0

σ(s,Xi,N
s ) dW i

s +

∫ t

0

h(s,Xi,N
s− ) dZis, 1 ≤ i ≤ N

where µNt := N−1
∑N
i=1 δXi,Nt

, t ≥ 0, is the empirical measure associated to (9) taken at time t.

Let us point out that even if the above system of particles appears as the natural candidate for the approximation
of the mean-field SDE (1), at the moment it is not clear if it is well-defined. Our first aim here is to investigate the
well-posedness in the strong sense of (9). We then provide an error bound for the L1-distance between Xi,N and
the dynamics X̄i,N constructed as i.i.d. copies of the limit equation (1) with the same input (ξi,W i, Zi)1≤i≤N as
the system (9), namely

(10) X̄i,N
t = ξi +

∫ t

0

b(s, X̄i,N
s , µis) ds+

∫ t

0

σ(s, X̄i,N
s ) dW i

s +

∫ t

0

h(s, X̄i,N
s− ) dZis, 1 ≤ i ≤ N

where µit = [X̄i,N
t ], t ≥ 0. Note that by weak uniqueness of solutions to the SDE (10) and interchangeability in

law of the ξi satisfying [ξi] = µ one has µit = µt, for any t ≥ 0 and for any i ∈ {1, · · · , N}, so that the system of
particles (X̄i,N )1≤i≤N indeed corresponds to i.i.d. copies of the SDE (1).

Theorem 2.6. Under assumption 2.1, the SDE (9) admits a unique strong solution for any initial distribution
µ ∈ P1(R).

Assume additionally that
∫
z≥1

zβ ν(dz) < ∞ for some β > 1, β 6= 2, and that the initial distribution µ ∈ P1(R)

of the SDE (1) has a finite β-moment, that is, Mβ(µ) =
∫
R |x|

βµ(dx) < ∞. Then, for any positive integer N , for
any T > 0, one has

(11) max
1≤i≤N

sup
0≤t≤T

E[|Xi,N
t − X̄i,N

t |] + sup
0≤t≤T

E[W1(µNt , µt)] ≤ C(N−1/2 +N−(β−1)/β)

for some positive constant C depending only on T , β and Mβ(µ).

Proof. Step 1: Weak existence. First let us note that under assumption 2.1 the maps R+ × RN 3 (t, x) 7→
b(t, xi, µ

N
x ), σ(t, xi), h(t, xi), with µNx := N−1

∑N
i=1 δxi , are continuous with at most linear growth for any 1 ≤

i ≤ N . Indeed, for any fixed N ≥ 1, if (tn, xn)n≥1 converges to (t, x) ∈ R+ × RN , then limnW1(µNxn , µ
N
x ) ≤

limnN
−1
∑N
i=1 |xni − xi| = 0. Therefore, the triple (b(tn, x

n
i , µ

N
xn), σ(tn, x

n
i ), h(tn, x

n
i ))n≥1 converges to the triple

(b(t, xi, µ
N
x ), σ(t, xi), h(t, xi)). In the spirit of step 2 in the proof of Lemma 4.1, we then introduce the sequence

(X(m) = (Xi,(m))1≤i≤N )m≥1 of SDEs with dynamics

(12) X
i,(m+1)
t = ξ +

∫ t

0

b(s,Xi,(m)
s , µN

X
(m)
s

) ds+

∫ t

0

σ(s,Xi,(m)
s ) dWs +

∫ t

0

h(s,X
i,(m)
s− ) dZi,ms , 1 ≤ i ≤ N

where Zi,mt =
∫ t

0

∫
R\{0} zÑ

i
m(ds, dz), Ñ i

m, 1 ≤ i ≤ N , being N -independent compensated Poisson random measures

on [0,∞)×R\{0} with intensity measure dt1|z|≤mν(dz). Following similar lines of reasonings as those employed in
the first step of Lemma 4.1, one may prove that for any weak solution to (12) with starting distribution µ ∈ P1(R),
for any T > 0, one has

sup
m≥1

max
1≤i≤N

E[ sup
0≤t≤T

|Xi,(m)
t |] <∞.

Similarly, relabelling the indices if necessary, one may assume that the sequence (Xi,(m), Zi,m, 1 ≤ i ≤ N)m≥1

converges in law to (Xi, Zi, 1 ≤ i ≤ N) in D([0,∞),RN ×RN ). The sequence (Zi,(m), 1 ≤ i ≤ N)m≥1 also satisfies
the P-UT property since

max
1≤i≤N

E[ sup
s∈[0,t]

|∆Zi,ms |] ≤ 1 + Ct

with C :=
∫
z≥1

zν(dz) < ∞. Finally, in a completely analogous manner as in step 2 of the proof of Lemma 4.1,

since the maps [0,∞) × RN 3 (t, x) 7→ b(t, xi, µ
N
x ), σ(t, xi), h(t, xi) are continuous, from the continuous mapping

theorem, the family

(X
i,(m+1)
t , b(t,X

i,(m+1)
t , µN

X
(m)
t

), σ(t,X
i,(m+1)
t ), h(t,X

i,(m+1)
t ),W i

t , Z
i,m
t , 1 ≤ i ≤ N)t≥0, m ≥ 0
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converges in law to (Xi
t , b(t,X

i
t , µ

N
Xt

), σ(t,Xi
t), h(t,Xi

t),W
i
t , Z

i
t , 1 ≤ i ≤ N)t≥0 in D([0,∞), (R6)N ). Thus, passing

to the limit in the dynamics (12), we deduce that there exists a weak solution to the SDE (9). It thus suffices to
prove pathwise uniqueness.

Step 2: Pathwise uniqueness. Let us consider two weak solutions XN := (Xi,N , 1 ≤ i ≤ N) and (Y i,N , 1 ≤ i ≤ N)
of (9) with the same input (ξi,W i, Zi)1≤i≤N . Following exactly the same lines of reasonings as those employed

in the proof of Theorem 2.4, introducing similarly the quantities ∆i
t := Xi,N

t − Y i,Nt for i = 1, · · · , N and νNt =

N−1
∑N
i=1 δY i,Nt

, instead of (8) we get

E[|∆i
t|] ≤ C

[
ε+

∫ t

0

(
E[|∆i

s|] + E
[
W1(µNs , ν

N
s )
])

ds+ ε2γ−1 + ε1−α(1−η)

]
for any α ∈ (1− 1/αν , 1/(1− η)). Passing to the limit as ε ↓ 0, then summing over i and finally using the standard

inequality W1(µNt , ν
N
t ) ≤ N−1

∑N
i=1 |∆i

t|, we get

1

N

N∑
i=1

E[|∆i
t|] ≤ C

∫ t

0

1

N

N∑
i=1

E[|∆i
s|] ds

so that, by Gronwall’s lemma, we deduce that E[W1(µNt , ν
N
t )] = 0 for all t ≥ 0. Hence, pathwise uniqueness holds

for the SDE (9) so that, by the Yamada-Watanabe theorem, it has a unique strong solution.

Step 3: Propagation of chaos. In order to prove (11), we again follow the lines of reasoning of the proof of Theorem

2.4. Namely, introducing the quantity ∆̄i
t := Xi,N

t − X̄i,N
t for i = 1, · · · , N and µ̄Nt = N−1

∑N
i=1 δX̄i,Nt

, instead of

(8) we get

E[|∆̄i
t|] ≤ C

[
ε+

∫ t

0

(
E[|∆̄i

s|] + E
[
W1(µNs , µs)

])
ds+ ε2γ−1 + ε1−α(1−η)

]
.

By the triangle inequality

(13) W1(µNs , µs) ≤W1(µNs , µ̄
N
s ) +W1(µ̄Ns , µs) ≤

1

N

N∑
i=1

|∆̄i
s|+W1(µ̄Ns , µs)

and noticing that the processes ((Xi,N , X̄i,N ))1≤i≤N are identically distributed yield

E[|∆̄1
t |] ≤ C

[
ε+

∫ t

0

(
E[|∆̄1

s|] + E
[
W1(µ̄Ns , µs)

])
ds+ ε2γ−1 + ε1−α(1−η)

]
.

Applying Gronwall’s lemma and then letting ε ↓ 0 we finally get

(14) E[|∆̄1
t |] ≤ C

∫ t

0

E
[
W1(µ̄Ns , µs)

]
ds.

We now discuss the rate of convergence stated in (11) under the additional assumption that the Lévy measure
satisfies

∫
z≥1

zβν(dz) <∞ and that the initial distribution µ has a finite moment of order β, for some β > 1. Now,

from Lemma 4.1 (i), it holds

max
1≤i≤N

E[ sup
0≤t≤T

|X̄i,N
t |β ] <∞.

It then follows from Theorem 4 in Fournier and Guillin [8] that there exists some positive constant C only
depending on β such that

E[W1(µ̄Nt , µt)] ≤ CE[|Xt|q]1/q(N−1/2 +N−(β−1)/β), β 6= 2.

Taking the supremum over t ∈ [0, T ] and plugging the above bound into (14) we firstly get the desired upper-
bound for the quantity max1≤i≤N sup0≤t≤T E[|∆̄i

t|]. Then, from (13), we derive the similar estimate for the quantity

sup0≤t≤T E[W1(µNt , µt)]. The proof is now complete. �
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2.3. Euler-Maruyama time-dscretization scheme for the system of particles. In the previous section,
we established a strong rate of convergence of propagation of chaos for the system of particles associated to the
McKean-Vlasov SDE (1). From a numerical perspective, the system of particles is not tractable and one usually has
to approximate the dynamics of the system (9) by considering the so-called Euler-Maruayama time discretization
scheme that we now introduce and analyze. To facilitate our computations, we here only consider the time-
homogeneous setting and we claim that, given appropriate regularity assumptions on the maps t 7→ b(t, x, µ),
t 7→ σ(t, x) and t 7→ h(t, x), the time non-homogeneous case could be dealt with from similar lines of reasonnings.

For a given finite time horizon T > 0 and a positive integer n, let us introduce the equally spaced time grid on
the interval [0, T ], given by 0 = t0 < t1 < t2 < · · · < tn = T , where tk = kδ and δ = T/n. We define η(t) = tk
for t ∈ (tk, tk+1], for k = 0, · · · , n − 1, η(0) = −∞ and η(t) = T for t > T . The Euler-Maruyama approximation
scheme (Xn,i,N )t∈[0,T ], i = 1, . . . , N , of the system of particles (9) is given by the following dynamics

(15) Xn,i,N
t = ξi +

∫ t

0

b(Xn,i,N
η(s) , µn,Nη(s))ds+

∫ t

0

σ(Xn,i,N
η(s) ) dW i

s +

∫ t

0

h(Xn,i,N
η(s) ) dZis

where we set µn,Ns := N−1
∑N
i=1 δXn,i,Ns

. We also introduce the integrability index of the tail of the Lévy measure

βν = sup{β ≤ 2 :

∫ ∞
1

zβν(dz) <∞}.

Note that the above supremum does exist and satisfies βν ≥ 1 since
∫∞

1
z ν(dz) < ∞. In the case of α-stable like

Lévy measure, with index α ∈ [1, 2], we have βν = αν = α and in the case of tempered α-stable Lévy measure, we
have βν = 2 and αν = α. In order to derive the strong L1(P) convergence rate of the Euler-Maruyama scheme, we
introduce the following additional assumptions on the coefficients and the Lévy measure:

Assumption 2.7.

(i) For any µ ∈ P1(R), the map x 7→ b(x, µ) is ρ-Hölder continuous, uniformly in µ, for some ρ ∈ (0, 1].
Namely, there exists some positive constant κ such that for any µ ∈ P1(R):

|b(x, µ)− b(y, µ)| ≤ κ|x− y|ρ.

(ii) γ ∈ [1/2, βν/2).
(iii) βν > ηαν .

The assumptions (ii) and (iii) stem from some integrability constraints when one investigates the convergence
rate of the Euler-Maruyama approximation schemes. Let us note that for α-stable like Lévy measure with index
α ∈ (1, 2], the assumption (ii) imposes γ ∈ [1/2, α/2) and (iii) imposes η < 1 while for tempered α-stable like Lévy
measure with index α ∈ [1, 2], the assumption (ii) imposes γ ∈ [1/2, 1) and (iii) is always satisfied if α 6= 2 and
imposes η < 1 for α = 2.

Before stating the main result of this section, we start with the following preparatory lemmas.

Lemma 2.8. Let S be a F-stopping time taking values in the interval [0, T ] then

(i) the random time τ(S) = inf{s ≥ 0 : η(s) ≥ S} is a F-stopping time and {τ(S) ≥ t} = {η(t) < S},
(ii) for any F-adapted process X, we have Xη(S) and η(S) are both FS− measurable.

Proof. (i) Using the fact that η is left-continuous, for any it holds

{τ(S) ≥ t} = {η(t) < S} =

(
n−1⋃
i=0

{ti < t ≤ ti+1} ∩ {ti < S}

)
∪
(
{T < t} ∩ {T < S}

)
∈ Ft−

(ii) For any c ∈ R, using the fact that S is a F-stopping time taking value in [0, T ] we have

{Xη(S) < c} =

n−1⋃
i=0

{ti < S ≤ ti+1} ∩ {Xti < c} ∈ FS−.

Similarly, we see that η(S) is FS− measurable. �

Lemma 2.9. Under the same assumptions as in the statement of Lemma 4.1 (i), for any T > 0, there exists a
positive constant CT such that for all positive integer n

max
1≤i≤N

E
[

sup
t∈[0,T ]

|Xn,i,N
t |β

]
≤ CT and max

1≤i≤N
sup

0≤t≤T
E
[
|Xn,i,N

t −Xn,i,N
η(t) |

β
]
≤ CTn−

β
2

where we recall that η(t) = tk for any t ∈ (tk, tk+1] and for any k = 0, · · · , n− 1.
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Proof. The proof of the first moment estimate follows from similar lines of reasonings as those employed to prove (31)
of Lemma 4.1. We focus below on the particularities which are induced by having piecewise constant coefficients.

Step 1: For notational convenience, in the proof of the first moment estimate, we write Xi := (Xn,i,N
t )0≤t≤T ,

µt = µn,Nt , t ∈ [0, T ], W i = (W i
t )0≤t≤T , Z̃i = (Z̃it)0≤t≤T and Ẑi = (Ẑi)0≤t≤T where we introduced the notations

Z̃it =
∫ t

0

∫ 1

0
zdÑ i(ds, dz) and Ẑit =

∫ t
0

∫∞
1
zdÑ i(ds, dz). From the Yamada-Watanabe theorem, there exists a

measurable map

ΦN : (Rd)N ×
(
C([0, T ];Rd)

)N
×
(
D([0, T ];Rd)

)N
×
(
D([0, T ];Rd)

)N
→
(
C([0, T ];Rd)

)N
such that

(X1, · · · , XN ) = ΦN ((ξ1, · · · , ξN ), (W 1, · · · ,WN ), (Z̃1, · · · , Z̃N ), (Ẑ1, · · · , ẐN ))

Moreover, by symmetry of the dynamics (15), for any permutation ζ of {1, · · · , N}, we get

(Xζ(1), · · · , Xζ(N)) = ΦN ((ξζ(1), · · · , ξζ(N)), (W ζ(1), · · · ,W ζ(N)), (Z̃ζ(1), · · · , Z̃ζ(N)), (Ẑζ(1), · · · , Ẑζ(N))).

Now, combining the fact that (Ẑ1, · · · , ẐN ) and
(
(ξ1, · · · , ξN ), (W 1, · · · ,WN ), (Z̃1, · · · , Z̃N )

)
are independent

together with the fact that (ξi,W i, Z̃i)1≤i≤N are i.i.d, we deduce that conditionally on (Ẑ1, · · · , ẐN ) the processes
(Xi)1≤i≤N are identically distributed.

Step 2: The integral against Ẑi generates jumps at discrete instants, that is, one may write the restriction of Ñ i to
the set [0,∞)× {z ≥ 1} as

∑
n≥1 δ(T in,Zin) where (T in)n≥1 are the jump times of a Poisson process J i with intensity

λ =
∫∞

1
ν(dz), the random variables (Zin)n≥1 being i.i.d. with law λ−11z≥1ν(dz). We denote by Gi := σ(T in, n ≥ 1)

the σ-algebra generated by all the jump times of the compound Poisson process Ẑi.
We now prove some conditional moment estimate for Xi. As the computations are similar between two successive

instants T in, T
i
n+1, we only give the estimate on the interval [T i1 ∧T, T i2 ∧T ]. The dynamics after T i1 ∧T and strictly

before T i2 ∧ T is given by

Xi
t = Xi

T i1∧T
+

∫
(T i1∧T,t]

b̃(Xi
η(s), µη(s))ds+

∫
(T i1∧T,t]

σ(Xi
η(s))dW

i
s +

∫
(T i1∧T,t]

h(Xi
η(s))dZ̃

i
s(16)

with b̃(x, µ) := b(x, µ)− h(x)
∫
z≥1

zν(dz).

By using Lemma 2.8 and the linear growth condition on b and h, for any t ∈ (T i1 ∧ T, T ), the absolute value of
the drift can bounded as follows∣∣∣ ∫

(T i1∧T,t]
b̃(Xi

η(s), µη(s))ds
∣∣∣

≤ CT
∫ t

T i1∧T
(1 + |Xi

η(T i1∧T )|) 1{s≤τ(T i1∧T )}ds+ CT

∫ t

T i1∧T
(1 + |Xi

η(s)|) 1{s>τ(T i1∧T )}ds+ CT

∫ t

T i1∧T

1

N

N∑
j=1

|Xj
η(s)| ds

≤ CT (1 + |Xi
η(T i1∧T )|)Tn

−1 + CT

∫ t

T i1∧T
1{η(s)≥T i1∧T}|X

i
η(s)|ds+ CT

∫ t

T i1∧T

1

N

N∑
j=1

|Xj
η(s)| ds

≤ CT

1 + |Xi
η(T i1∧T )|+

1

N

N∑
j=1

|Xj
η(T i1∧T )

|+
∫ t

T i1∧T
1{η(s)≥T i1∧T}|X

i
η(s))|ds+

∫ t

T i1∧T
1{η(s)≥T i1∧T}

1

N

N∑
j=1

|Xj
η(s)| ds

 .

where we have used the fact that |τ(s)− s| ≤ Tn−1 for all s ∈ [0, T ].

On the other hand, again by using Lemma 2.8, the stochastic integrals against the L2-martingales W i and Z̃i

can be similarly decomposed into∫
(T i1∧T,t]

σ(Xi
η(s))dW

i
s = σ(Xi

η(T i1∧T ))(W
i
τ(T i1∧T ) −W

i
T i1∧T

) +

∫
(T i1∧T,t]

σ(Xi
η(s))1{η(s)≥T i1∧T}dW

i
s .

By using the Burkholder-Davis-Gundy inequality and then the Jensen inequality, we obtain

E
[

sup
T i1∧T≤t<T i2∧T

|Xi
t |β
∣∣FT i1∧T ∨ σ(Ẑ1, · · · , ẐN )

]
≤ CT

(
1 + |Xi

T i1∧T
|β ∨ |Xi

η(T i1∧T )|
β +

1

N

N∑
j=1

|Xj
η(T i1∧T )

|β

+

∫ T i2∧T

T i1∧T
1{η(s)≥T i1∧T}E

[
|Xi

η(s)|
β
∣∣FT i1∧T ∨ σ(Ẑ1, · · · , ẐN )

]
ds
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+

∫ T i2∧T

T i1∧T
1{η(s)≥T i1∧T}

1

N

N∑
j=1

E
[
|Xj

η(s)|
β
∣∣ FT i1∧T ∨ σ(Ẑ1, · · · , ẐN )

]
ds

+ E
[ [ ∫ T i2∧T

T i1∧T
|Xi

η(s)∨(T i1∧T )|
2ds

] β
2
∣∣∣∣FT i1∧T ∨ σ(Ẑ1, · · · , ẐN )

])
.(17)

Next, in order to apply Grönwall’s inequality, we first notice that[∫ T i2∧T

T i1∧T
|Xi

η(s)∨(T i1∧T )|
2ds

] β
2

=

[∫ T i2∧T

T i1∧T

(
|Xi

η(s)∨(T i1∧T )|
β
) 2
β (1− β2 )

|Xi
η(s)∨(T i1∧T )|

βds

] β
2

≤

∫ T i2∧T

T i1∧T

(
sup

T i1∧T≤s<T i2∧T
|Xi

η(s)∨(T i1∧T )|
β

) 2
β (1− β2 )

|Xi
η(s)∨(T i1∧T )|

βds


β
2

≤

[
1

4CT
sup

T i1∧T≤s<T i2∧T
|Xi

η(s)∨(T i1∧T )|
β

](1− β2 ) [
(4CT )(1− β2 ) 2

β

∫ T i2∧T

T i1∧T
|Xi

η(s)∨(T i1∧T )|
βds

] β
2

and then we apply the Young inequality with p−1 = 1− β
2 and q−1 = β

2 to obtain[∫ T i2∧T

T i1∧T
|Xi

η(s)∨(T i1∧T )|
2ds

] β
2

≤ 1

4CT
sup

T i1∧T≤s<T i2∧T
|Xi

η(s)∨(T i1∧T )|
β + CT,β

∫ T i2∧T

T i1∧T
|Xi

η(s)∨(T i1∧T )|
βds.

Note that since CT × 1
4CT

= 1
4 < 1, we can move the first term appearing on the right-hand side of the above

inequality to the left hand side of (17) and obtain

E
[

sup
T i1∧T≤t<T i2∧T

|Xi
t |β
∣∣FT i1∧T ∨ σ(Ẑ1, · · · , ẐN )

]
≤ CT

1 + E[ sup
0≤t≤T i1∧T

|Xi
t |β | FT i1∧T ∨ σ(Ẑ1, · · · , ẐN )] +

1

N

N∑
j=1

E[|Xj
η(T i1∧T )

|β | FT i1∧T ∨ σ(Ẑ1, · · · , ẐN )]


+ CT

∫ T i2∧T

T i1∧T
1{η(s)≥T i1∧T}E

[
|Xi

η(s)|
β
∣∣FT i1∧T ∨ σ(Ẑ1, · · · , ẐN )

]
ds

+ CT

∫ T i2∧T

T i1∧T
1{η(s)≥T i1∧T}

1

N

N∑
j=1

E
[
|Xj

η(s)|
β
∣∣FT i1∧T ∨ σ(Ẑ1, · · · , ẐN )

]
ds.

In order to deal with the average term, we take the conditional expectation with respect to σ(Ẑ1, · · · , ẐN ) in the
preceding inequality, from the tower property of conditional expectation and the conclusion of step 1, we obtain

1

N

N∑
j=1

E
[
|Xj

η(s)|
β
∣∣σ(Ẑ1, · · · , ẐN )

]
= E

[
|Xi

η(s)|
β
∣∣σ(Ẑ1, · · · , ẐN )

]
.

We point out here that since Xi
η(s) is the Euler-Maruyama scheme at a grid point, it is clear that it is a functional

of the Brownian and the Lévy increments. From the previous computations, we thus get

E
[

sup
T i1∧T≤t<T i2∧T

|Xi
t |β
∣∣σ(Ẑ1, · · · , ẐN )

]
≤ CT

(
1 + E[ sup

0≤t≤T i1∧T
|Xi

t |β |σ(Ẑ1, · · · , ẐN )] +

∫ T i2∧T

T i1∧T
E
[

sup
T i1∧T≤t<s∧(T i2∧T )

|Xi
t |β
∣∣ σ(Ẑ1, · · · , ẐN )

])
so that, by Grönwall’s inequality

E
[

sup
T i1∧T≤t<T i2∧T

|Xi
t |β
∣∣σ(Ẑ1, · · · , ẐN )

]
≤ CT

(
1 + E[ sup

0≤t≤T i1∧T
|Xi

t |β |σ(Ẑ1, · · · , ẐN )]
)
,

and, taking conditional expectation w.r.t Gi, we thus obtain

E
[

sup
T i1∧T≤t<T i2∧T

|Xi
t |β
∣∣Gi] ≤ CT(1 + E[ sup

0≤t≤T i1∧T
|Xi

t |β |Gi]
)
.(18)
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In particular, the preceding upper-bound yields

E
[

sup
T i1∧T≤t≤T i2∧T

|Xi
t |β
∣∣Gi] ≤ CT(1 + E[ sup

0≤t≤T i1∧T
|Xi

t |β | Gi]
)

+ E
[
|Xi

T i2
|β
∣∣Gi]1{T i2<T}.(19)

Now at the jump time T i2, Xi
T i2

= Xi
T i2−

+ h(Xi
η(T i2)

)Zi2 and by using the linear growth assumption of coefficient h

(uniformly on [0, T ]), we have |Xi
T i2
|β ≤ CT (1 + |Xi

T i2−
|β ∨ |Xi

η(T i2)
|β)(1 + |Zi2|β) on the set

{
T i2 < T

}
. From (18)

and the fact that
∫∞

1
zβν(dz) <∞, we obtain

E[|Xi
T i2
|β |Gi] ≤ CT (1 + E[|Z2|β ])

(
1 + E[ sup

0≤t<T i2∧T
|Xi

t |β |Gi]
)

≤ CT (1 + E[|Z2|β ])
(

1 + E[ sup
0≤t≤T i1∧T

|Xi
t |β |Gi] + E[ sup

T i1∧T≤t<T i2∧T
|Xi

t |β |Gi]
)
.

≤ CT (1 + E[|Z2|β ])
(

1 + E[ sup
0≤t≤T i1∧T

|Xi
t |β |Gi]

)
.(20)

From (19) and (20) we deduce that there exists constant MT (now depending on
∫∞

1
zβν(dz)) such that

E
[

sup
T i1∧T≤t≤T i2∧T

|Xi
t |β
∣∣Gi] ≤MT

(
1 + E[ sup

0≤t≤T i1∧T
|Xi

t |β |Gi]
)
.

Performing similar computations on any time interval [T in ∧ T, T in+1 ∧ T ], one deduces that

E
[

sup
T in∧T≤t≤T in+1∧T

|Xi
t |β
∣∣Gi] ≤MT

(
1 + E[ sup

0≤t≤T in∧T
|Xi

t |β | Gi]
)

(21)

for any integer n, with the convention T i0 = 0.
Thus for any pair T ij < T ik, by setting S[T ij ,T

i
k] := E[supT ij∧T≤s≤T ik∧T |X

i
s|β | G] and by using (21), we observe that

1 + S[0,T ik+1] ≤ 1 + S[0,T ik] + S[T ik,T
i
k+1] ≤ 1 + S[0,T ik] +MT (1 + S[0,T ik]) ≤ (1 +MT )(1 + S[0,T ik]),

which implies that 1 + S[0,T ik+1] ≤ (1 + Mβ(µ))(1 + MT )k+1 where Mβ(µ) =
∫
R |x|

βdµ(x). Finally by setting

KT := (1 +Mβ(µ))(1 +MT ), we obtain

E[ sup
0≤t≤T

|Xi
t |β ] =

∑
n≥0

E[ sup
0≤t≤T

|Xi
t |β1{JiT=n}]

=
∑
n≥0

E
[
1{T in≤T<T in+1}E

[
sup

0≤t≤T in+1∧T
|Xi

t |β |Gi
]]

≤
∑
n≥0

Kn+1
T

(λT )n

n!
e−λT ds <∞.

Step 3: We now prove the moment estimate on the time increments of the Euler-Maruyama scheme. We note that
from the linear growth assumption of the coefficients and Jensen’s inequality for any t ∈ [0, T ] it holds

|Xn,i,N
t −Xn,i,N

η(t) |
β ≤ K

[
1 + |Xn,i,N

η(t) |
β +

1

N

N∑
j=1

|Xn,j,N
η(t) |

β
] (
|t− η(t)|β + |W i

t −W i
η(t)|

β + |Zit − Ziη(t)|
β
)
.(22)

We observe that max1≤i≤N E[|W i
t −W i

η(t)|
β ] ≤ Cn−

β
2 and

max
1≤i≤N

E[|Zit − Ziη(t)|
β ] ≤ C

(
(t− η(t))

β
2 + (t− η(t))β−1E

[ ∫ t

η(t)

∫
z≥1

zβN(ds, dz)

])
≤ C

(
n−

β
2 + n−β

∫
z≥1

zβν(dz)
)
≤ Cn−

β
2 .

Then, taking the expectation in (22), using the first moment estimate established in the previous step together with
the fact that the processes (Xn,i,N )1≤i≤N , are identically distributed, we obtain

max
1≤i≤N

sup
0≤t≤T

E[|Xn,i,N
t −Xn,i,N

η(t) |
β ] ≤ C

[
1 + max

1≤i≤N
E[ sup

0≤t≤T
|Xn,i,N

t |β ]
](
n−β + n−

β
2

)
≤ Cn−

β
2 .

�
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Theorem 2.10. Suppose that the assumptions of Theorem 2.4 and assumption 2.7 hold. Then, for all T > 0, there
exists a positive constant C (independent of n and N) such that

max
1≤i≤N

sup
0≤t≤T

E[|Xi,N
t −Xn,i,N

t |] ≤ Cεn

with

εn :=

{
n−

1
2ρ∧η + n−p

∗
, if γ ∈ (1/2, βν/2),

log(n)−1, if γ = 1/2

and

p∗ :=

 γ ∧ η − 1

2

γ ∧ η
γ

, if αν ∈ [1, 2 (1−γ)
1−η ],

η − η
2−αν(1−η)−δ , if αν ∈ (2 (1−γ)

1−η , 2]

for any δ ∈ (0, 1 − (1 − η)αν). In the special case where ν(dz) is an α-stable like Lévy measure for α ∈ [1, 2], we
can take αν = α and δ = 0 in p∗.

Remark 2.11. Before proceeding to the proof, let us make some comments about the convergence rate obtain
in Theorem 2.10. First, observe that in the case γ ≤ η (or equivalently 2(1 − γ)/(1 − η) ≥ 2), i.e. when the
jump coefficient h(.) is more regular than the diffusion coefficient σ(.), one obtains a convergence rate of order

n−
1
2ρ∧η + n−(γ− 1

2 ) for any αν ∈ [1, 2] which is the same as the one established in the Brownian setting by Gyöngy
and Rásonyi [13]. Otherwise, if γ > η, the rate is worse than the one corresponding to the Brownian setting.

Moreover, it becomes poorer and poorer as αν increases, starting from n−
1
2ρ∧η + n−(η− η

2γ ), which is less than the

rate of the Brownian setting, if αν ∈ [1, 2(1 − γ)/(1 − η)] down to n−
1
2ρ∧η + n−(η− 1

2−δ ) ≈ n−
1
2ρ∧η + n−(η− 1

2 ), for
any δ ∈ (0, 2η − 1), if αν = 2. We emphasize that the latter rate of convergence should not come as a big surprise
since, in the case of stable-like Lévy measure, it formally corresponds to the rate of the Brownian setting with a
jump coefficient h being η-Hölder continuous, η ∈ (1/2, 1].

Proof. For ε ∈ (0, 1) and δ ∈ (0, 1), to be chosen later, we apply the Yamada-Watanabe function φδ,ε to the
difference Y n,i := Xi,N −Xn,i,N . Employing (38) and then Itô’s formula, we get

(23) |Y n,it | ≤ ε+ φδ,ε(Y
n,i
t ) = ε+M i,n,δ,ε

t + Ii,n,δ,εt + J i,n,δ,εt +Ki,n,δ,ε
t ,

where we set

M i,n,δ,ε
t :=

∫ t

0

φ′δ,ε(Y
n,i
s ) (σ(Xi,N

s )− σ(Xn,i,N
η(s) )) dW i

s

+

∫ t

0

∫ ∞
0

{
φδ,ε(Y

n,i
s− + (h(Xi,N

s− )− h(Xn,i,N
η(s) ))z)− φδ,ε(Y n,is− )

}
Ñ i(ds, dz),

Ii,n,δ,εt :=

∫ t

0

φ′δ,ε(Y
n,i
s )(b(Xi,N

s , µNs )− b(Xn,i,N
η(s) , µn,Nη(s)))ds,

J i,n,δ,εt :=
1

2

∫ t

0

φ′′δ,ε(Y
n,i
s )|σ(Xi,N

s )− σ(Xn,i,N
η(s) )|2ds,

Ki,n,δ,ε
t :=

∫ t

0

∫ ∞
0

{
φδ,ε(Y

n,i
s− + (h(Xi,N

s− )− h(Xn,i,N
η(s) ))z)− φδ,ε(Y n,is− )− (h(Xi,N

s− )− h(Xn,i,N
η(s) ))zφ′δ,ε(Y

n,i
s− )

}
ν(dz)ds.

Once again, similarly to the proof of Theorem 2.4, one needs to employ a localization technique using a sequence

(τm)m≥1 so that (M i,n,δ,ε
t∧τm )t≥0 is an L1(P)-martingale and then pass to the limit as m ↑ ∞ using the fact that Y n,i

is right-continuous and Fatou’s lemma. Since this procedure is standard, we omit it for sake of simplicity. We now

quantify the contribution of the terms Ii,n,δ,εt , J i,n,δ,εt and Ki,n,δ,ε
t . For the rest of the proof, we denote by C a

positive constant that may change from line to line but depends neither on n nor N .
For the first term associated to the difference of the drift, we make use of assumption 2.1 (ii)

Ii,n,δ,εt =

∫ t

0

φ′δ,ε(Y
n,i
s )(b(Xi,N

s , µNs )− b(Xn,i,N
η(s) , µn,Nη(s)))ds

=

∫ t

0

φ′δ,ε(Y
n,i
s )(b(Xi,N

s , µNs )− b(Xn,i,N
s , µn,Nη(s)))ds+

∫ t

0

φ′δ,ε(Y
n,i
s )(b(Xn,i,N

s , µn,Nη(s))− b(X
n,i,N
η(s) , µn,Nη(s)))ds

≤ [b]L

∫ t

0

|Y n,is |ds+ [b]L

∫ t

0

W1(µNs , µ
n,N
η(s))ds+ κ

∫ t

0

|Xn,i,N
s −Xn,i,N

η(s) |
ρds.
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From the very definition of the Wasserstein distance and the triangle inequality

W1(µNs , µ
n,N
η(s)) ≤

1

N

N∑
j=1

|Y n,js |+ |Xn,j,N
s −Xn,j,N

η(s) |

so that

Ii,n,δ,εt ≤ C


∫ t

0

|Y n,is |ds+

∫ t

0

1

N

N∑
j=1

|Y n,js | ds+

∫ t

0

[
|Xn,i,N

s −Xn,i,N
η(s) |+ |X

n,i,N
s −Xn,i,N

η(s) |
ρ
]
ds

 .(24)

To estimate J i,n,δ,εt , we make use of assumption 2.1 (iii) and (41) so that

J i,n,δ,εt ≤ 2

∫ t

0

φ′′δ,ε(Y
n,i
s )|σ(Xi,N

s )− σ(Xn,i,N
s )|2ds+ 2

∫ t

0

φ′′δ,ε(Y
n,i
s )|σ(Xn,i,N

s )− σ(Xn,i,N
η(s) )|2ds

≤ C
[ ∫ t

0

1[ε/δ,ε](|Y n,is |)|Y n,is |2γ

|Y n,is | log δ
ds+

∫ t

0

1[ε/δ,ε](|Y n,is |)|Xn,i,N
s −Xn,i,N

η(s) |
2γ

|Y n,is | log δ
ds

]
≤ C

[
ε2γ−1

log δ
+

δ

ε log δ

∫ t

0

|Xn,i,N
s −Xn,i,N

η(s) |
2γds

]
.(25)

We then decompose Ki,n,δ,ε
t as the sum of two terms, namely

Ki,n,δ,ε
t = Ki,n,δ,ε,1

t +Ki,n,δ,ε,2
t

where Ki,n,δ,ε,1
t and Ki,n,δ,ε,2

t are given by

Ki,n,δ,ε,1
t :=

∫ t

0

∫ ∞
0

1{Y n,is 6=0}
{
φδ,ε(Y

n,i
s + {h(Xi,N

s )− h(Xn,i,N
s )}z)− φδ,ε(Y n,js )

− {h(Xi,N
s )− h(Xn,i,N

s )}zφ′δ,ε(Y n,is )
}
ν(dz)ds,

Ki,n,δ,ε,2
t :=

∫ t

0

∫ ∞
0

{
φδ,ε(Y

n,i
s + {h(Xi,N

s )− h(Xn,i,N
η(s) )}z)− φδ,ε(Y n,is + {h(Xi,N

s )− h(Xn,i,N
s )}z)

− {h(Xn,i,N
s )− h(Xn,i,N

η(s) )}zφ′δ,ε(Y n,is )
}
ν(dz)ds

where for the first integral we used the fact if Y n,is = 0 then h(Xi,N
s ) − h(Xn,i,N

s ) = 0, for any s ∈ [0, t]. Now, let
y = Y n,is and x = h(Xi,N

s )− h(Xn,i,N
s ). If yx > 0 we can apply Lemma 4.2. For any u > 0, we get∫ ∞

0

{
φδ,ε(Y

n,i
s + {h(Xi,N

s )− h(Xn,i,N
s )}z)− φδ,ε(Y n,is )− {h(Xi,N

s )− h(Xn,i,N
s )}zφδ,ε(Y n,is )

}
ν(dz)

≤
2|h(Xi,N

s )− h(Xn,i,N
s )|21(0,ε](|Y n,is |)

|Y n,is | log δ

∫ u

0

z2ν(dz) + 2|h(Xi,N
s )− h(Xn,i,N

s )|1(0,ε](|Y n,is |)
∫ ∞
u

zν(dz)

≤ C
[ |Y n,is |2η1(0,ε](|Y n,is |)

|Y n,is | log δ

∫ u

0

z2ν(dz) + |Y n,is |η1(0,ε](|Y n,is |)
∫ ∞
u

zν(dz)

]
≤ C

[
ε2η−1

log δ

∫ u

0

z2ν(dz) + εη
∫ ∞
u

zν(dz)

]
(26)

where in the second last inequality, we used the fact that h is an η-Hölder continuous function. Next, by picking
u = log(δ)ε1−η, the quantity appearing on the right-hand side of (26) can be further bounded by

C

[
1

log(δ)α1−1
ε2η−1−(1−η)(α−2)Iη,α1

ε,δ +
1

log(δ)α1−1
εη−(1−η)(α1−1)Jη,α1

ε,δ

]
≤ C ε

1−α1(1−η)

log(δ)α1−1

[
Iη,α1

ε,δ + Jη,α1

ε,δ

]
,

where, for sake of clarity, for any α > αν and any η ∈ (1− 1
αν
, 1], we introduced the quantities:

Iη,αε,δ := [log(δ)ε1−η]α−2

∫ log(δ)ε1−η

0

z2ν(dz) and Jη,αε,δ := [log(δ)ε1−η]α−1

∫ ∞
log(δ)ε1−η

zν(dz).

We select α1 such that αν < α1 < 1/(1 − η). Observe that this choice is admissible since η > 1 − 1/αν . Next,

we note that from (3), one has supε∈(0,1)

{
Iη,α1

ε,δ + Jη,α1

ε,δ

}
< ∞ (if η = 1, we set δ = 2 and bound the quantity

Iη,α1

ε,δ + Jη,α1

ε,δ by 2
∫∞

0
z ∧ z2ν(dz)).
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On the other hand, if yx < 0, using assumption 2.1 (iv) and following analogous computations as those used to
derive (7), we obtain∫ ∞

0

{
φδ,ε(Y

n,i
s + {h(Xi,N

s )− h(Xn,i,N
s )}z)− φδ,ε(Y n,is )− {h(Xi,N

s )− h(Xn,i,N
s )}zφδ,ε(Y n,is )

}
ν(dz)

≤ C
{

ε

log(δ)
+ |Y n,is |

}
.

From the above computations, we thus deduce that for any α1 ∈ (αν , 1/(1− η))

(27) Ki,n,δ,ε,1
t ≤ C

(
ε

log(δ)
+
ε1−α1(1−η)

log(δ)α1−1
+

∫ t

0

|Y n,is |ds
)

for some positive constant C independent of n and N .

To estimate Ki,n,δ,ε,2
t , we apply Lemma 4.3 with y = Y n,is , x = h(Xi,N

s )−h(Xn,i,N
η(s) ) and x′ = h(Xi,N

s )−h(Xn,i,N
s ).

Note that if yx′ < 0, by assumption 2.1 (iv), one has 0 < −sign(y)x′ = |x′| ≤ [h]L|y|. Therefore, for any α2 ∈ (αν , 2],
we obtain from Lemma 4.3

Ki,n,δ,ε,2
t ≤ C

∫ t

0

{
|h(Xn,i,N

s )− h(Xn,i,N
η(s) )|α2

δ

ε log δ
+ |h(Xn,i,N

s )− h(Xn,i,N
η(s) )|

+
1

log(δ)
|h(Xn,i,N

s )− h(Xn,i,N
η(s) )|+ |h(Xn,i,N

s )− h(Xn,i,N
η(s) )|

+ |h(Xn,i,N
s )− h(Xn,i,N

η(s) )|
[

1

ε1−η log δ

∫ u

0

z2ν(dz) +

∫ ∞
u

zν(dz)

]}
ds

≤ C
∫ t

0

{
|Xn,i,N

s −Xn,i,N
η(s) |

α2η
δ

ε log δ
+ |Xn,i,N

s −Xn,i,N
η(s) |

η +
1

log(δ)
|Xn,i,N

s −Xn,i,N
η(s) |

η

+ |Xn,i,N
s −Xn,i,N

η(s) |
η + |Xn,i,N

s −Xn,i,N
η(s) |

η

[
1

ε1−η log δ

∫ u

0

z2ν(dz) +

∫ ∞
u

zν(dz)

]}
ds.(28)

By taking the expectation in (23), (24), (25), (26), (27) and (28), for any t ∈ [0, T ], we obtain from Lemma 2.9,

E[|Y n,it |] ≤ ε+ E[In,δ,εt ] + E[Jn,δ,εt ] + E[Kn,δ,ε
t ]

≤ ε+ C

[ ∫ t

0

E[|Y n,is |]ds+
1

n1/2
+

1

nρ/2
+
ε2γ−1

log δ
+

δ

ε log(δ)

1

nγ
+

ε

log(δ)
+
ε1−α1(1−η)

log(δ)α1−1

+
1

nα2η/2

δ

ε log(δ)
+

1

nη/2
+

1

nη/2
1

log(δ)
+

1

nη/2

[
1

ε1−η log δ

∫ u

0

z2ν(dz) +

∫ ∞
u

zν(dz)

]]
where, due to integrability constraints, we require that 2γ < βν and select α2 ∈ (αν , βν/η) ∩ (αν , 2]. Note that if
αν = 2 then one may take α2 = 2. Then, by using Grönwall’s inequality

e−CTE[|Y n,it |] ≤ ε+ C

[
1

n1/2
+

1

nρ/2
+
ε2γ−1

log δ
+

δ

ε log(δ)

1

nγ
+

ε

log(δ)
+
ε1−α1(1−η)

log(δ)α1−1
(29)

+
1

nα2η/2

δ

ε log(δ)
+

1

nη/2
+

1

nη/2
1

log(δ)
+

1

nη/2

[
1

ε1−η log δ

∫ u

0

z2ν(dz) +

∫ ∞
u

zν(dz)

]]
.

To optimize the above bound, we proceed as follows.
Let us first consider the case γ ∈ (1/2, βν/2). In this case, we select δ = 2 and u = ε1−η. We obtain

E[|Y n,it |] ≤ C
{
ε+

1

n1/2
+

1

nρ/2
+ ε2γ−1 +

1

εnγ
+ ε1−α1(1−η) +

1

εnα2η/2
+

1

nη/2
+

(
u2−α3

ε1−η + u1−α3

)
1

nη/2

}
,

≤ C
{
ε+

1

n1/2
+

1

nρ/2
+ ε2γ−1 +

1

εnγ
+ ε1−α1(1−η) +

1

ε

1

nα2η/2
+

1

nη/2
+
ε(1−η)(2−α3)

ε1−η
1

nη/2

}
where, for the first inequality, we used the fact that for ε ≥ 0 sufficiently small, by (3), we have

[
ε(1−η)(α3−2)

∫ ε1−η
0

z2ν(dz)+

ε(1−η)(1−α3)
∫∞
ε1−η

zν(dz)
]
<∞ for any α3 > αν . We now regroup the above terms into

E[|Y n,it |] ≤ C
{[

1

n1/2
+

1

nρ/2
+

1

nη/2

]
+
[
ε+ ε2γ−1 + ε1−α1(1−η)

]
+

1

ε

[
1

nγ
+

1

nα2η/2

]
+

1

ε(α3−1)(1−η)

1

nη/2

}
≤ C

{
1

nζ1
+

1

nqζ2
+

1

nζ3−q
+

1

nζ4−ζ5q

}
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where we have set ε = n−q and

ζ1 =
1

2
(ρ ∧ η), ζ2 = (2γ − 1) ∧ (1− α1(1− η)), ζ3 = γ ∧ α2η

2
, ζ4 =

η

2
, ζ5 = (α3 − 1)(1− η)

with the constraints: α1 ∈ (αν , 1/(1−η)), α2 ∈ (αν , βν/η)∩(αν , 2] and α3 > αν , where we recall that if αν = 2 then
α2 = 2. We now need to pick the optimal q which maximises the above rate of convergence. By linear programming,
the optimal q is the minimum of the solution to qζ2 = ζ3 − q and qζ2 = ζ4 − qζ5, that is, the optimal q is given by

q∗ = min

(
ζ3

ζ2 + 1
,

ζ4
ζ2 + ζ5

)
.

From the above computations, we deduce

max
1≤i≤N

sup
0≤t≤T

E[|Xi,N
t −Xn,i,N

t |] ≤ C

nζ2q∗
.

Let us now discuss the optimal value of the parameters (α1, α2, α3) which maximizes the above rate of convergence.
We distinguish two different cases: αν < 2(1 − γ)/(1 − η) and αν ≥ 2(1 − γ)/(1 − η). In the first case αν <
2(1− γ)/(1− η), we select α1 = 2(1− γ)/(1− η) so that ζ2 = 2γ − 1. We now consider the two following sub-cases:
η ≤ γ (or equivalently 2(1 − γ)/(1 − η) ≤ 2) and η > γ (or equivalently 2(1 − γ)/(1 − η) > 2). In the first
sub-case η ≤ γ one has 2η ≤ 2γ < βν which implies 2 ≤ 2γ/η < βν/η. We thus take α2 = 2 so that ζ3 = η which
in turn implies ζ3/(ζ2 + 1) = η/(2γ). We finally pick α3 = α1 so that ζ2 + ζ5 ≤ η which in turn implies that
ζ4/(ζ2 + ζ5) ≥ 1/2. Hence, if η ≤ γ, one has ζ2q

∗ = η − η/(2γ). Now, in the second sub-case η > γ, we can pick
α2 ∈ [2γ/η, 2 ∧ (βν/η)) so that ζ3 = γ which in turn implies ζ3/(ζ2 + 1) = 1/2. With the same choice of α3, we

thus obtain ζ2q
∗ = γ − 1/2. To sum up, if αν ≤ 2(1− γ)/(1− η), one obtains a convergence rate of order n−(γ− 1

2 )

if γ ≤ η and n−(η− η
2γ ) if η < γ.

We now turn our attention to the second case, namely αν ≥ 2(1 − γ)/(1 − η). Note that since αν ∈ [1, 2] a
necessary condition is 2(1 − γ)/(1 − η) ≤ 2 which is equivalent to η ≤ γ. Then, one has ζ2 + 1 = 2 − α1(1 − η).
Since βν > 2γ ≥ 2η, we select α2 = 2 so that ζ3 = γ ∧ η = η. The maps α1 7→ ζ2(α1)ζ3/(ζ2(α1) + 1) and
α1 7→ ζ2(α1)ζ4/(ζ2(α1) + ζ5) are decreasing so that we select α1 as small as possible, namely α1 = αν + δ/(1− η),
with δ ∈ (0, 1 − (1 − η)αν) and we denote this choice of α1 by α+

ν in order to save notation. This in turn yields
ζ2ζ3/(ζ2 + 1) = η(1− α+

ν (1− η))/(2− α+
ν (1− η)). We finally select ζ5 = (α3 − 1)(1− η) = 1

2 (ζ2 + 1)− ζ2, that is,

α3 = 1 + 1
2α

+
ν . Note that this choice is admissible since α3 > αν is equivalent to 2 + δ/(1 − η) > αν . Hence, one

has ζ2ζ4/(ζ2 + ζ5) = ζ2ζ3/(ζ2 + 1). We thus obtain a convergence rate of order

n
−η (1−α+

ν (1−η))

2−α+
ν (1−η) = n−η(1− 1

2−αν (1−η)−δ )

for any δ ∈ (0, 1− (1− η)αν).
We conclude by investigating the case γ = 1/2. Coming back to (29), under the constraints α1 ∈ (αν , 1/(1− η)),

α2 ∈ (αν , βν/η) ∩ (αν , 2] and α3 > αν , we get

max
1≤i≤N

E[|Y n,it |] ≤ C
{(

1 +
1

log(δ)

)
ε+

1

n1/2
+
ε2γ−1

log(δ)
+

ε1−α1(1−η)

(log(δ))α1−1
+

1

nρ/2
+

δ

ε log(δ)

1

nγ

+
δ

ε log(δ)

1

nα2η/2
+

(
1 +

1

log(δ)

)
1

nη/2
+ u2−α3

(
1

ε1−η log(δ)
+

1

u

)
1

nη/2

}
,

for any u ∈ (0, r), r > 0 being fixed, we have again used the fact that by (3) we have supu∈(0,r)

[
uα3−2

∫ u
0
z2ν(dz) +

u1−α3
∫∞
u
zν(dz)

]
< ∞. To proceed, we pick u = un = ε1−η log(δ), ε = n−q and δ = np with p, q > 0. Note that

taking n large enough, one has un ∈ (0, r). We then select the couple (p, q) ∈ (R+)2\(0, 0) such that p+ q ≤ α2η
2 ∧γ

and η
2 − q(1 − η)(α3 − 1) > 0. For instance, if βν ≤ 2η, as previously done choose α2 large enough so that

2γ < α2η < βν , any α1 ∈ (αν , (1− η)−1), α3 = 1 + (1− η)−1γ−1η and then select p = q < γ/2. If βν > 2η, choose
α2 = 2, any α1 ∈ (αν , (1− η)−1), α3 = 1 + (1− η)−1(γ ∧ η)−1η and then select p = q < (γ ∧ η)/2. Hence, with this
choice of parameters, we obtain

max
1≤i≤N

E[|Y n,it |] ≤
C

log(n)

for some positive constant independent of n and N . The proof is now complete. �
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3. Positivity of the solution and applications

Finally, in this section, we briefly mention some potential applications and conditions under which the solution
of the McKean-Vlasov SDE (1) is positive. A possible application we have in mind is the mean-field extension of
the following equation

Xt = ξ +

∫ t

0

b(Xs)ds+

∫ t

0

σ1

√
XsdWs +

∫ t

0

σ2
α
√
Xs−dZs,

where W is a Brownian motion and Z is a spectrally positive α-stable process with index α ∈ (1, 2]. In particular,
when b(x) = (a− kx) where a and k are some positive constants, the above equation have recently attracted large
attention in financial modelling. We refer to the works of Jiao et al. [22, 23, 24] for the modelling of sovereign
interest rate, electricity prices and stochastic volatility. For multi-curve term structure models we refer to Fontana
et al. [5].

The additional introduction of a dependence with respect to the law in the drift b is motivated by the fact that in
the modelling of large credit portfolio or more generally of large financial markets, one tractable way to understand
systemic risk can be done through the lens of interacting particle systems. Indeed, it has now become more and
more important to capture not only self-exciting effects but also contagious effects, i.e. how the default of one firm
affects another firm with the aim of shedding light on macro-aspects of how crises emerge in large interconnected
systems. Researches in this direction have been considered e.g. by Giesecke et al. [20, 21], where the authors have
introduced a model for the default intensities of N firms, through the following system of interacting particles

dλit = (a− kλit)dt+ σ1

√
λitdW

i
t +

N∑
j 6=i

cNj dH
j
t + σ2λ

i
tdXt

where Xt is some common risk factor which affects all firms, W = (W i)i=1,...,N is an N -dimensional Brownian
motion independent of X, (cNj )1≤j≤N are positive constants,

τ i := inf{t :

∫ t

0

λisds > U i}, and Hi
t := 1{τ i≤t}

with the random variables (U i)1≤i≤N , being i.i.d. with exponential distribution.

The contagion effect is here modeled through the introduction of the sum
∑N
j 6=i cjdH

j
t which induces a change in

the default intensity of the i-th firm when other firms default. We believe that the mean-field dynamics presented and
analyzed in this work could be used to develop extensions of the model proposed in the aforementioned references by
introducing positive jumps, interaction in the default intensities between the firms not only at the time of defaults,
but also instantaneously in time through the drift term. Obviously this is not within the scope of the current paper.
We postpone to future works for a more specific discussion of the stylized features of such models.

To conclude, we provide here some sufficient conditions on the coefficients under which the McKean-Vlasov SDE
(1) is non-negative.

Assumption 3.1. For any fixed (t, µ) ∈ [0,∞) × P1(R) such that µ(R+) = 1, the coefficients b(t, ·, µ), σ(·) and
h(·) satisfy, σ(t, 0) = h(t, 0) = 0 and b(t, 0, µ) ≥ 0.

Proposition 3.2. Under the same assumptions as in Theorem 2.4 and assumption 3.1, for any initial condition
ξ such that P(ξ ≥ 0) = 1, the unique strong solution X = (Xt)t≥0 of the McKean-Vlasov SDE (1) satisfies
P(Xt ≥ 0, ∀t ≥ 0) = 1.

Proof. For the initial condition P (0)(t) = µ, t ≥ 0, we consider the sequence
{
X(m) = (X

(m)
t )t≥0,m ≥ 1

}
given

by the dynamics (36). Since each X(m) is given by the solution of a standard SDE with positive jumps and time

inhomogeneous drift coefficient b̃m(t, x) := b(t, x, [X
(m−1)
t ]), by induction on m ≥ 1, it follows from Proposition

2.1 of [10] that P(X
(m)
t ≥ 0, ∀t ≥ 0) = 1. Up to the extraction of a convergent subsequence, we may assume

that (X(m))m≥1 weakly converges to the unique strong solution X of the SDE (1). We thus deduce that P(Xt ≥
0) = limm P(X

(m)
t ≥ 0) = 1. Now, applying again Proposition 2.1 of [10] to the linearized SDE (1), with drift

b̃(t, x) := b(t, x, [Xt]), allows to conclude the proof. �

Example 1. As a toy model, the default intensities can interact through the average intensity, that is

dλit = κt(λt − ktλit)dt+ σ1
r

√
|λit|dW i

t + σ2sign(λis−) q

√
|λis−|dZis

where (W i, Zi)1≤i≤N are i.i.d. copies of (W,Z), W and Z being respectively a one-dimensional Brownian motion
and a spectrally-positive α-stable process with index α ∈ (1, 2) such that 1/q+ 1/α ≥ 1 and q ≥ 1, 1 ≤ r ≤ 2. Here,



WELL-POSEDNESS AND APPROXIMATION OF SOME ONE-DIMENSIONAL LÉVY-DRIVEN NON-LINEAR SDES. 17

λt = N−1
∑N
j=1 λ

j
t is the average intensity, σ1, σ2 are some non-negative constants and t 7→ κt, kt are deterministic

functions, t 7→ κt being non-negative, which measure the strength of the mean-reversion. As the number of entities
N goes to infinity, the N -interacting particle system will converge to the mean-field equation with dynamics

dλt = κt(E[λt]− ktλt)dt+ σ1
r
√
|λt|dWt + σ2sign(λs−) q

√
|λs−|dZs.

Combining Theorem 2.4 and Proposition 3.2, we deduce that for any non-negative initial condition ξ with law
µ such that M1(µ) =

∫
R+
xβµ(dx) < ∞, for some β > 1, the above mean-field SDE admits a unique non-negative

strong solution. Note that taking expectation on both hand side of the above equation, the mean can be written
explicitly namely

E[λt] = E[ξ] +

∫ t

0

E[λs]κs(1− ks)ds = E[ξ] exp
(∫ t

0

κs(1− ks)ds
)
.

Note that instead of h(x) = σ2sign(x) α
√
|x|, one can take h(x) = σ2

α
√
|x|+ in the particle system. In the limit, the

resulting mean-field equation will have the same dynamics.

4. Appendix

4.1. Weak existence and moment estimates for some jump-type non-linear SDE. We establish here the
weak existence as well as a moment estimate under mild assumptions on the coefficients for some general jump-type
non-linear SDE with dynamics

(30) Xt = ξ +

∫ t

0

b(s,Xs, [Xs]) ds+

∫ t

0

σ(s,Xs) dWs +

∫ t

0

h(s,Xs−) dZs

where W is a one-dimensional Brownian motion, Z is a compensated Poisson random measure independent of W
with intensity measure dsν(dz) satisfying

∫
R\{0}(|z| ∧ z

2)ν(dz) < ∞ and with starting point ξ independent of W

and Z. The following result seems to be quite standard but we were not able to find a proof.

Lemma 4.1. Assume that b, σ and h have at most linear growth in x and µ, locally uniformly in t, in the sense of
(4). Assume that

∫
|z|≥1

|z|β ν(dz) <∞ for some β ≥ 1 and that the initial distribution µ ∈ P(R) of the mean-field

SDE (30) has a finite β-moment, that is, Mβ(µ) =
∫
R |x|

βµ(dx) <∞. Then, the following statements hold:

(i) For any weak solution to (30) with starting distribution µ, for any T > 0, one has

(31) E[ sup
0≤t≤T

|Xt|β ] <∞.

(ii) Assume that the aforementioned assumptions hold with β > 1. If [0,∞) × R × P1(R) 3 (t, x, µ) 7→
b(t, x, µ), σ(t, x), h(t, x) are continuous functions, P1(R) being equipped with the Wasserstein metric W1,
then there exists a weak solution to (30).

Proof. Step 1: We first prove the moment estimate (31). We restrict ourself to the case β ∈ [1, 2]. The case β > 2
can be treated in a completely analogous manner. We adapt to our current mean-field setting the argument of
Proposition 2 of Fournier [7]. We introduce the auxiliary equation

(32) Yt = ξ +

∫ t

0

σ(s, Ys) dWs +

∫ t

0

∫
|z|≤1

h(s, Ys−)zÑ(ds, dz) +

∫ t

0

c(s, Ys, [Ys]) ds

with c(s, x, µ) = b(s, x, µ)− h(s, x)
∫
|z|≥1

zν(dz) and ξ is a real-valued random variable independent of (W,N) with

distribution µ satisfying Mβ(µ) =
∫
R |x|

βµ(dx) < ∞. Since b, σ, h have at most linear growth at infinity in x and

µ locally uniformly w.r.t. the time variable t and
∫
|z|≤1

z2 ν(dz) <∞, it is easily checked that for any T > 0, there

exists a constant CT such that

E
[

sup
0≤t≤T

Y 2
t

∣∣ξ] ≤ CT
1 + ξ2 +

∫ T

0

E[Y 2
s |ξ] ds+

(∫ T

0

W1([Ys], δ0) ds

)2


which in turn by Grönwall’s lemma yields

E
[

sup
0≤t≤T

Y 2
t

∣∣ξ] 1
2 ≤ CT

(
1 + |ξ|+

∫ T

0

E[|Ys|] ds
)
.

Hence, by Jensen’s inequality

(33) E
[

sup
0≤t≤T

Y 2
t

∣∣ξ] β2 ≤ CT(1 + |ξ|β +

∫ T

0

E[|Ys|β ] ds

)
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so that, by taking expectation and applying again Jensen’s inequality

(34) E[ sup
0≤t≤T

|Yt|β ] ≤ CT
(

1 +Mβ(µ) +

∫ T

0

E[|Ys|β ] ds

)
where we recall that Mβ(µ) =

∫
R |x|

βdµ(x). Observe now that the dynamics (30) can be rewritten as

Xt = ξ +

∫ t

0

σ(s,Xs) dWs +

∫ t

0

∫
|z|≤1

h(s,Xs−) zÑ(ds, dz)(35)

+

∫ t

0

c(s,Xs, [Xs]) ds+

∫ t

0

∫
|z|≥1

h(s,Xs−) zN(ds, dz).

The last integral of (35) generates jumps at discrete instants. More precisely, one may write the restriction of
N to [0,∞) × {|z| ≥ 1} as

∑
n≥1 δ(Tn,Zn) where the (Tn)n≥1 are the jump times of a Poisson process denoted in

what follows by J with parameter λ =
∫
|z|≥1

ν(dz) and where the random variables (Zn)n≥1 are i.i.d. with law

λ−11{|z|≥1}ν(dz). We thus see that conditioning w.r.t the σ-field G = σ(Tn, n ≥ 1) the dynamics (35) reduces to
(32) on each time interval (Tn, Tn+1). Namely, X solves (32) on [0, T1). Hence, by (34)

E
[

sup
0≤t<T1∧T

|Xt|β
∣∣G] ≤ CT(1 +Mβ(µ) +

∫ T1∧T

0

E[|Xs|β ] ds

)
.

The preceding upper-bound together with (34) yield

E
[

sup
0≤t≤T1∧T

|Xt|β
∣∣G] ≤ E

[
sup

0≤t≤T
|Xt|β

∣∣G]1{T1≥T} + E
[

sup
0≤t<T1

|Xt|β
∣∣G]1{T1<T} + E

[
|XT1

|β
∣∣G]1{T1<T}

≤ CT
(

1 +Mβ(µ) +

∫ T1∧T

0

E[|Xs|β ] ds

)
+ E

[
|XT1 |β

∣∣G]1{T1<T}.

Now, XT1
= XT1− + h(T1, XT1−)Z1 so that, using the linear growth assumption of the jump coefficient (uniformly

on [0, T ]), |XT1
|β ≤ CT (1+ |XT1−|β)(1+ |Z1|β) on the set {T1 < T}. Again by (34),E[|XT1−|β |G] ≤ CT (1+Mβ(µ)+∫ T1∧T

0
E[|Xs|β ] ds) which in turn clearly implies

E[|XT1
|β |G] ≤ CT (1 + E[|Z1|β ])

(
1 +Mβ(µ) +

∫ T1∧T

0

E[|Xs|β ] ds

)
on the set {T1 < T}. Hence, up to a change of the positive constant CT (which from now on depends on E[|Z1|β ] :=∫
|z|≥1

|z|βν(dz) <∞), we therefore deduce the following estimate

E
[

sup
0≤t≤T1∧T

|Xt|β
∣∣G] ≤ CT(1 +Mβ(µ) +

∫ T1∧T

0

E[|Xs|β ] ds

)
.

Similarly, on each time interval (Tk, Tk+1), k ≥ 1, one has

E
[

sup
Tk∧T≤t≤Tk+1∧T

|Xt|β
∣∣G] ≤ CT(1 + E[|XTk∧T |β |G] +

∫ Tk+1∧T

Tk∧T
E[|Xs|β ] ds

)
≤ CT

(
1 + E

[
sup

Tk−1∧T≤t≤Tk∧T
|Xt|β

∣∣G]+

∫ Tk+1∧T

Tk∧T
E[|Xs|β ] ds

)
where CT is a positive constant that does not depend on the index k. We thus deduce that there exists a constant
KT > 1 (which depends on Mβ(µ) and T ) such that

E
[

sup
Tk∧T≤t≤Tk+1∧T

|Xt|β
∣∣G] ≤ Kk+1

T

(
1 +

∫ Tk+1∧T

0

E[|Xs|β ] ds

)
which in turn implies

E
[

sup
0≤t≤Tk∧T

|Xt|β
∣∣G] ≤ E

[
max

1≤j≤k
sup

Tj−1∧T≤t≤Tj∧T
|Xt|β

∣∣G]
≤ (KT + · · ·+Kk

T )

(
1 +

∫ Tk∧T

0

E[|Xs|β ] ds

)

≤
Kk+1
T

KT − 1

(
1 +

∫ Tk∧T

0

E[|Xs|β ] ds

)
.
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Hence, using the fact that {JT = n} = {Tn ≤ T < Tn+1} together with the above estimate, we conclude

E[ sup
0≤t≤T

|Xt|β ] =
∑
n≥0

E[ sup
0≤t≤T

|Xt|β1{JT=n}]

=
∑
n≥0

E
[
1{Tn≤T<Tn+1}E

[
sup

0≤t≤Tn+1∧T
|Xt|β |G

]]
≤ 1

KT − 1

∑
n≥0

Kn+2
T E

[
1{Tn≤T<Tn+1}

(
1 +

∫ Tn+1∧T

0

E[|Xs|β ] ds

)]

≤ 1

KT − 1

∑
n≥0

Kn+2
T

(λT )n

n!
e−λT

(
1 +

∫ T

0

E[|Xs|β ] ds

)
.

Finally, one concludes the proof of the moment estimate (31) by using again Grönwall’s inequality.

Step 2: We now prove that weak existence holds for the SDE (30) under the additional assumptions that Mβ(µ) +∫
|z|≥1

|z|β ν(dz) < ∞, for some β > 1 and that the coefficients b, σ and h are continuous. We proceed using

a compactness argument on the space of probability on D([0,∞),R). We thus aim at constructing a sequence
of probability measures on D([0,∞),R) that will converge (up to the extraction of a subsequence) to a solution
of the corresponding martingale problem with associated infinitesimal generator (LPt )t≥0. A probability measure
P ∈ D([0,∞),R), with time marginals (P (t))t≥0 is a solution to the martingale problem starting from µ at time 0
if, denoting by y = (y(t))t≥0 the canonical process and F the canonical filtration, one has P (y(0) ∈ Γ) = µ(Γ), for
all Γ ∈ B(R) and for any ϕ ∈ C∞b (R)

f(y(t))−
∫ t

0

LPs ϕ(y(s)) ds

is an (F , P )-martingale where

LPt ϕ(x) = b(t, x, P (t))ϕ′(x) +
1

2
σ2(t, x, P (t))ϕ′′(x)

+

∫
R

{
ϕ(x+ h(t, x, P (t))z)− ϕ(x)− ϕ′(x)h(t, x, P (t))z1{|z|≤1}

}
ν(dz).

We consider the sequence of probability measures (P (m))m≥0 on D([0,∞),R), constructed as follows: for a given

probability measure P (0) on D([0,∞),R), such that lims→tW1(P (0)(t), P (0)(s)) = 0 and sups≥0W1(P (0)(s), δ0) <

∞, and for a given non-negative integer m, we let P (m+1) be the probability measure induced by a weak solution
to the following SDE with dynamics

(36) X
(m+1)
t = ξ +

∫ t

0

b(s,X(m+1)
s , P (m)(s)) ds+

∫ t

0

σ(s,X(m+1)
s ) dWs +

∫ t

0

h(s,X
(m+1)
s− ) dZms

where Zmt =
∫ t

0

∫
R\{0} zÑm(ds, dz), Ñm being a compensated Poisson random measure on [0,∞) × R\{0} with

intensity measure dt1|z|≤mν(dz). Following similar lines of reasoning as those employed in the first step, one may
prove that for any weak solution to (36) with starting distribution µ, for any T > 0, one has

(37) sup
m≥1

E[ sup
0≤t≤T

|X(m)
t |β ] <∞.

We deliberately omit the proof of the above estimate. Similarly, for any weak solution to (36), m ≥ 0, for any
0 ≤ s < t, there exists a positive constant C (possibly depending on m) such that

E[|X(m+1)
t −X(m+1)

s |] ≤ C(t− s)1/2.

The previous bound directly stems from (36) and some standard computations. Now, by induction on m ≥ 1, using

the fact that lims→tW1(P (m)(t), P (m)(s)) ≤ lims→t E[|X(m)
t −X(m)

s |] = 0, the continuity of the coefficients b, σ and
h, and

∫
|z|≤m |z|

2ν(dz) <∞, from Theorem 175 of Situ [32], weak existence holds for the SDE (36) for any m ≥ 0.

We now establish the tightness on D([0,∞),R) of the sequence (P (m))m≥0 by employing Aldou’s criterion. Let
(S, S′) be two stopping times satisfying a.s. 0 ≤ S ≤ S′ ≤ S + δ ≤ T , for some δ > 0. We also introduce for some
constant A > 0 (to be chosen later on) the stopping time τA = inf {t ≥ 0 : |y(t)| ≥ A}. For any ε, take φ ∈ C∞b (R)

so that 0 ≤ φ ≤ 1, φ(0) = 0 and φ ≡ 1 for |x| ≥ ε. Given an integer m and a stopping time τ , we let P
(m)
τ,w be the

regular conditional probability distribution of P (m) given Fτ . Then,

φ(y(t ∧ S′)− y((S ∧ τA)(w)))−
∫ t∧S′

(S∧τA)(w)

LP
(m)

r φ(y(r)− y(S(w))) dr
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is a P
(m)
S∧τA,w-martingale so that

P
(m)
S,w (|y(S′)− y(S(w))| > ε, τA ≥ T ) = P

(m)
S,w (|y(S′ ∧ τA)− y((S ∧ τA)(w))| > ε, τA ≥ T )

≤ EP
(m)
S,w [φ(y(S′ ∧ τA)− y(S(w) ∧ τA))]

≤ EP
(m)
S,w

[ ∫ (S(w)+δ)∧τA

S(w)

|LP
(m)

r φ(y(r)− y(S(w)))| dr
]

≤ C(1 +A2)δ

where we used the fact that P (m)-a.s., for all s ∈ [0, τA ∧ T ],

|b(s, y(s−), P (m−1)(s)|+ |σ(s, y(s−))|2 + |h(s, y(s−))|2 ≤ K(1 +A2 + sup
m≥1,t∈[0,T ]

W 2
1 (P (m−1)(t), δ0)),

and where the constant K depends only on the C2-norm of φ. Note that supm≥0,t∈[0,T ]W1(P (m)(t), δ0) is finite by

(37). Also, again from (37),

P (m)(τA ≤ T ) ≤ P (m)( sup
0≤t≤T

|y(s)| > A) ≤ CT
A
.

From the above computations, we thus derive

P (m)(|y(S′)− y(S)| ≥ ε) ≤ C(1 +A2)δ +
CT
A

so that by choosing A = δ−1/3, for all δ ∈ (0, 1), we get

P (m)(|y(S′)− y(S)| ≥ ε) ≤ CT δ
1
3 .

where the constant CT does not depend on m and δ. We thus conclude that for all T > 0, for all ε > 0

lim
δ↓0

lim sup
m

sup
S,S′:S≤S′≤S+δ≤T

P (m)(|y(S′)− y(S)| ≥ ε) = 0.

As a consequence, by Theorem 4.5 on page 356 of Jacod and Shiryaev [17], the sequence of probability measures
(P (m))m≥0 is tight. By the Prokhorov theorem the sequence (Zm)m≥0 is also tight since it converges weakly

in D([0,∞),R) to Z. Relabelling the indices if necessary, we may assert that (P (m))m≥0 converges weakly to a
probability measure P∞ and that (Xm, Zm)m≥1 converges in law to (X,Z) in D([0,∞),R2).

From (37) and the weak convergence of the sequence (P (m)(t))m≥1 towards P∞(t), by uniform integrability it

follows that E[|X(m)
t |]→ E[|Xt|], for any t ≥ 0, so that the convergence of (P (m)(t))m≥1 also holds with respect to

the W1 metric. Now, by continuity of b, σ and h, the continuous mapping theorem implies that the family

(X
(m+1)
t , b(t,X

(m+1)
t , P (m)(t)), σ(t,X

(m+1)
t ), h(t,X

(m+1)
t ),Wt, Z

m
t )t≥0, m ≥ 0

converges in law to (Xt, b(t,Xt, P
∞(t)), σ(t,Xt), h(t,Xt),Wt, Zt)t≥0 in D([0,∞),R6).

We now employ Corollary 6.30, page 385 of Jacod and Shiryaev [17] to deduce that the sequence (Zm)m≥0 is
Predictably Uniformly Tight (P-UT property) in the sense of Definition 6.1. page 377 of [17]. In order to do that
it suffices to check that supm≥0 E[sups∈[0,t] |∆Zms |] < ∞, for all t > 0. One may bound the previous quantity by

one (coming from the jumps which are smaller than one) plus the sum of jumps bigger than one. This yields

E[ sup
s∈[0,t]

|∆Zms |] ≤ 1 + E
[ ∫ t

0

∫
1≤|z|≤m

|z|Nm(dsdz)

]
≤ 1 + t

∫
1≤|z|≤m

|z|ν(dz)ds ≤ 1 + Ct

where C =
∫
|z|≥1

|z|ν(dz) <∞. From Theorem 6.22, page 383 of Jacod and Shiryaev [17], the sequence(
X

(m+1)
t ,

∫ t

0

b(s,X(m+1)
s , P (m)(s)) ds,

∫ t

0

σ(s,X(m+1)
s ) dWs,

∫ t

0

h(s,X
(m+1)
s− ) dZs,Wt, Z

m
t

)
t≥0

, m ≥ 0

converges in law to (
Xt,

∫ t

0

b(s,Xs, P
∞(s)) ds,

∫ t

0

σ(s,Xs) dWs,

∫ t

0

h(s,Xs−) dZs,Wt, Zt

)
t≥0

.

Hence, passing to the limit in the dynamics (36), we find that

Xt = ξ +

∫ t

0

b(s,Xs, P
∞(s)) ds+

∫ t

0

σ(s,Xs) dWs +

∫ t

0

h(s,Xs−) dZs

in distribution, so that P∞ is a weak solution to (30). �
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4.2. Yamada and Watanabe Approximation Technique. To deal with the Hölder continuity of the coefficients
σ and h, we introduce below the Yamada and Watanabe approximation technique (see for example [13, 27, 35]
for some applications of this technique). For each δ ∈ (1,∞) and ε ∈ (0, 1), we select a continuous function
ψδ,ε : R→ R+ with a support included in [ε/δ, ε] and such that∫ ε

ε/δ

ψδ,ε(z)dz = 1 and 0 ≤ ψδ,ε(z) ≤
2

z log δ
, z > 0.

Let us define the real-valued function φδ,ε ∈ C2(R)

φδ,ε(x) :=

∫ |x|
0

∫ y

0

ψδ,ε(z)dzdy.

It is straightforward to check that φδ,ε satisfies the following useful properties:

|x| ≤ ε+ φδ,ε(x), for any x ∈ R,(38)

0 ≤ |φ′δ,ε(x)| ≤ 1, for any x ∈ R,(39)

φ′δ,ε(x) ≥ 0, for x ≥ 0 and φ′δ,ε(x) < 0, for x < 0,(40)

φ′′δ,ε(±|x|) = ψδ,ε(|x|) ≤
2

|x| log δ
1[ε/δ,ε](|x|) ≤

2δ

ε log δ
, for any x ∈ R \ {0}.(41)

We present below two technical lemmas. Lemma 4.2 below is analoguous to Lemma 3.2 given in [27]. We provide
its proof for sake of completeness.

Lemma 4.2. Suppose that the Lévy measure ν satisfies
∫∞

0
{z∧z2}ν(dz) <∞. Let ε ∈ (0, 1) and δ ∈ (1,∞). Then

for any x ∈ R, y ∈ R \ {0} with xy ≥ 0 and u > 0, it holds that∫ ∞
0

{φδ,ε(y + xz)− φδ,ε(y)− xzφ′δ,ε(y)}ν(dz) ≤ 2 · 1(0,ε](|y|)
{
|x|2

log δ

(
1

|y|
∧ δ
ε

)∫ u

0

z2ν(dz) + |x|
∫ ∞
u

zν(dz)

}
.

Proof. Let x ∈ R, y ∈ R \ {0} with xy ≥ 0 and z > 0. By the second order Taylor’s expansion for φδ,ε, it follows
from (41) that

φδ,ε(y + xz)− φδ,ε(y)− xzφ′δ,ε(y) = |xz|2
∫ 1

0

θφ′′δ,ε(y + θxz)dθ ≤ 2|xz|2

log δ

∫ 1

0

θ1[ε/δ,ε](|y + θxz|)
|y + θxz|

dθ.

Since xy ≥ 0, we have |y| ≤ |y + θxz| and 1[ε/δ,ε](|y + θxz|) ≤ 1(0,ε](|y|). Hence we obtain

φδ,ε(y + xz)− φδ,ε(y)− xzφ′δ,ε(y) ≤
2|xz|21(0,ε](|y|)

log δ

(
1

|y|
∧ δ
ε

)
.(42)

Moreover, since xy ≥ 0, by (40) we have xφ′δ,ε(y) ≥ 0. This together with the fact that the right hand side of (42)

has 1(0,ε](|y|), we obtain

φδ,ε(y + xz)− φδ,ε(y)− xzφ′δ,ε(y) ≤ 1(0,ε](|y|){φδ,ε(y + xz)− φδ,ε(y)}

= 1(0,ε](|y|)xz
∫ 1

0

φ′δ,ε(y + θxz)dθ ≤ 1(0,ε](|y|)|xz|.(43)

The result then follows from (42) and (43). �

Lemma 4.3. Let ε ∈ (0, 1) and δ ∈ (1,∞). Then, for any α ∈ (αν , 2], there exists some constant C > 0 such that
for any u ∈ (0,∞], for any (x, x′, y) ∈ R3 satisfying −sign(y)x′ ≤ κ|y|, for some positive constant κ if yx′ < 0 it
holds∫ ∞

0

∣∣φδ,ε(y + xz)− φδ,ε(y + x′z)− (x− x′)zφ′δ,ε(y)
∣∣ ν(dz) ≤ C

[{
δ

ε log δ
+ 1

}
|x− x′|α + |x− x′|

+ 1{yx′<0}

{
κ

log(δ)
+ 1

}
|x− x′|+ 1{yx′≥0}

{
1(0,ε](|y|)

log δ

(
1

|y|
∧ δ
ε

)
|x′|
∫ u

0

z2ν(dz) +

∫ ∞
u

zν(dz)

}
|x− x′|

]
.

In addition, if αν = 2 then α = 2.

Proof. Note that for x = x′, the claimed inequality is trivially true. From now on we suppose that x 6= x′. To
obtain the required estimate, we consider∣∣φδ,ε(y + xz)− φδ,ε(y + x′z)− (x− x′)zφ′δ,ε(y)

∣∣
≤
∣∣φδ,ε(y + xz)− φδ,ε(y + x′z)− (x− x′)zφ′δ,ε(y + x′z)

∣∣+ |x− x′||z|
∣∣φ′δ,ε(y)− φ′δ,ε(y + x′z)

∣∣ =: Az +Bz.
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Let u ∈ (0,∞). To estimate Az for z ∈ (0, u), we apply a second order Taylor’s expansion for φδ,ε and use (41).
This gives

Az ≤ |x− x′|2|z|2
∫ 1

0

θφ′′δ,ε(y + θxz + (1− θ)x′z)dθ ≤ |x− x′|2|z|2 2δ

ε log δ

while for z ∈ (u,∞), by the mean value theorem and (39), we get

Az ≤ |x− x′||z|
∫ 1

0

∣∣φ′δ,ε(y + θxz + (1− θ)x′z)− φ′δ,ε(y)
∣∣ dθ ≤ 2|x− x′||z|.

To this end, for some positive k (which is chosen later) one considers the two cases |x− x′| ≤ k and |x− x′| ≥ k.
In the first case, take u = 1 so that∫ ∞

0

Azν(dz) ≤ C
{
|x− x′|2 2δ

ε log(δ)
+ |x− x′|

}
≤ Ck

{
|x− x′|α 2δ

ε log(δ)
+ |x− x′|

}
for any α ∈ [0, 2]. In the second case |x− x′| ≥ k, we select u = |x− x′|−1 ∈ (0, k−1) and remark that∫ |x−x′|−1

0

z2ν(dz) = |x− x′|α−2 1

|x− x′|α−2

∫ |x−x′|−1

0

z2ν(dz) ≤ |x− x′|α−2 sup
ε∈[0,k−1]

I1
ε

with I1
ε := εα−2

∫ ε
0
z2ν(dz). Note that limε↓0 I

1
ε = 0 for any α > αν by (3). Similarly,∫ ∞

|x−x′|−1

zν(dz) = |x− x′|α−1 1

|x− x′|α−1

∫ ∞
|x−x′|−1

zν(dz) ≤ |x− x′|α−1 sup
ε∈[0,k−1]

I2
ε

with I2
ε := εα−1

∫∞
ε
zν(dz). Again we note that limε↓0 I

2
ε = 0 for any α > αν by definition of αν . We thus conclude

that for any positive constant C, one can pick k sufficiently large, such that

∀α ∈ (αν , 2],

∫ ∞
0

Az ν(dz) ≤ C
{
|x− x′|α 2δ

ε log δ
+ |x− x′|

}
.

We now deal with the term Bz. Let us first assume that yx′ ≥ 0. We perform a second order Taylor’s expansion
and employ (41) to obtain

Bz ≤ |x′||x− x′||z|2
∫ 1

0

φ′′δ,ε(y + θx′z)θdθ

≤ 2
|x′||x− x′|z2

log(δ)

∫ 1

0

1[ε/δ,ε](|y + θx′z|)
|y + θx′z|

θdθ

≤ 2
|x′||x− x′|z21[0,ε)(|y|)

log δ

(
1

|y|
∧ δ
ε

)
where for the last inequality we used the fact that |y| ≤ |y + θx′z| since yx′ ≥ 0 and z ≥ 0. Also, it is readily seen
that Bz ≤ 2|x− x′||z|. We thus conclude that if yx′ ≥ 0, for any u ∈ (0,∞)∫ ∞

0

Bzν(dz) ≤ |x′||x− x′|
1[0,ε)(|y|)

log δ

(
1

|y|
∧ δ
ε

)∫ u

0

z2ν(dz) + 2|x− x′|
∫ ∞
u

zν(dz).

We now treat the case yx′ < 0. We split the ν(dz)-integral into the two disjoint sets |y|
2|x′| ∧ 1 < z and |y|

2|x′| ∧ 1 ≥ z.
In the case of small jumps, i.e. on the set |y|

2|x′| ∧ 1 ≥ z, from the mean-value theorem and (41), we obtain

Bz = |x′||x− x′|z2

∫ 1

0

φ′′δ,ε(y + θx′z)dθ

≤ 2|x′||x− x′|z2

∫ 1

0

1[ε/δ,ε)(|y + θx′z|)
|y + θx′z| log(δ)

dθ

≤ 2|x′||x− x′|z2 1[0,2ε)(|y|)
|y| log(δ)

where, for the last inequality, we used the fact that yx′ < 0 and |y|
2|x′| ∧ 1 ≥ z imply

|y + θzx′| = |y(1− θz|x′||y|−1|)| ≥ |y|
2
.
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Now, observe that since yx′ < 0, one has 0 ≤ −sign(y)x′ = |x′| ≤ κ|y|, which combined with the previous
computations yield ∫ |y|

2|x′|∧1

0

Bzν(dz) ≤ 2κ
|x− x′|
log(δ)

∫ 1

0

z2ν(dz).

For large jumps, i.e. one the set |y|
2|x′| ∧ 1 < z, from (39), we simply note that Bz ≤ 2|x− x′||z| so that∫ ∞
|y|

2|x′|∧1

Bzν(dz) ≤ 2|x− x′|
∫ ∞
|y|

2|x′|∧1

zν(dz) ≤ C|x− x′|

where we used the facts that |x′| ≤ κ|y| and
∫∞

1
zν(dz) for the last inequality. The proof is now complete. �
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[12] J. Gärtner, On the McKean-Vlasov Limit for Interacting Diffusions, Mathematische Nachrichten, Vol. 137, 1, 197-248, 1988.
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