
HAL Id: hal-02446202
https://hal.science/hal-02446202v1

Submitted on 22 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Referencing Source Code Artifacts: a Separate Concern
in Software Citation

Roberto Di Cosmo, Morane Gruenpeter, Stefano Zacchiroli

To cite this version:
Roberto Di Cosmo, Morane Gruenpeter, Stefano Zacchiroli. Referencing Source Code Artifacts: a
Separate Concern in Software Citation. Computing in Science and Engineering, inPress, pp.1-9.
�10.1109/MCSE.2019.2963148�. �hal-02446202�

https://hal.science/hal-02446202v1
https://hal.archives-ouvertes.fr

1

Referencing Source Code Artifacts:
a Separate Concern in Software Citation

Roberto Di Cosmo, Inria and University Paris Diderot, France
roberto@dicosmo.org

Morane Gruenpeter, University of L’Aquila and Inria, France
morane@softwareheritage.org

Stefano Zacchiroli, University Paris Diderot and Inria, France
zack@irif.fr

Abstract—Among the entities involved in software citation,
software source code requires special attention, due to the role
it plays in ensuring scientific reproducibility. To reference source
code we need identifiers that are not only unique and persistent,
but also support integrity checking intrinsically. Suitable iden-
tifiers must guarantee that denoted objects will always stay the
same, without relying on external third parties and administrative
processes.

We analyze the role of identifiers for digital objects (IDOs),
whose properties are different from, and complementary to, those
of the various digital identifiers of objects (DIOs) that are today
popular building blocks of software and data citation toolchains.

We argue that both kinds of identifiers are needed and
detail the syntax, semantics, and practical implementation of the
persistent identifiers (PIDs) adopted by the Software Heritage
project to reference billions of software source code artifacts
such as source code files, directories, and commits.

Index Terms—software citation, digital preservation, repro-
ducibility, open science, digital object identifier

I. INTRODUCTION

This article builds upon key findings on identifiers for
software source code artifacts from our previous work on
digital archives [1]. We focus on its relevance for scientific
reproducibility of experiments that rely on software, where one
needs to identify source code at various granularities, retrieve
byte-identical copies of source code artifacts described in a
paper, and verify their integrity as a prerequisite for attempting
to reproduce a given result.

We recall the schema of software source code identifiers that
has been developed and deployed in the context of Software
Heritage [2], a long term initiative aiming to collect, preserve,
and share the entire body of software source code and its
development history. We show that these identifiers are well-
suited for addressing the need of scientific reproducibility
when source code is involved.

The requirements that emerge from this particular setting,
where one needs to handle tens of billions of different digital
objects, cannot be fully satisfied by state-of-the-art identifier
schemas broadly adopted for digital publications. Fortunately,
we can leverage recursive data structures based on crypto-
graphic hashes, such as Merkle trees [3], to build identifiers
of digital objects that satisfy the overlapping requirements
of long-term software source code preservation and scientific
reproducibility.

II. REFERENCING SOURCE CODE FOR REPRODUCIBILITY

Software and software-based methods are now widely used
in research fields other than just computer science and en-
gineering [4]. Recognition of the role that software plays in
reproducing scientific results, and of the insufficient availabil-
ity of its source code is growing [5], [6].

In the journey towards open science, and reproducible
scientific results, open and unfettered access is needed to three
main kinds of research outputs [7]:

1) the scientific articles;
2) the data used or produced in the research;
3) the source code of the software embodying the exper-

iment logic.
Preserving software source code is as essential as preserv-

ing articles and datasets to promote both open science and
reproducibility. Unfettered access to an executable version
of the software is very valuable, but source code must be
available too: it embodies the scientific knowledge underlying
the computational calculation.

A. Software reference versus citation

A nice presentation of the many reasons why the research
community needs to take software into account can be found
in the Software Citation Principles [8].

When mentioning software in publications, though, we need
to distinguish the software project, which refers to an endeavor
to develop and maintain software artifacts, from the software
artifacts (source code, executable binaries, etc.) that are the
byproducts of that endeavor. The project is not a digital object;
the resulting artifacts are.

Following [9], we distinguish software artifact reference
from software project citation, that serve different purposes.

The main intention of a citation is to give credit to the
authors of a given software (as a project), whereas the function
of a reference is to precisely identify software artifacts, usually
for reuse purposes. The two activities are intertwined, and
sometimes citing the project without also referencing artifacts
is not satisfactory. But for the specific needs of reproducibility,
referencing software artifacts is often sufficient and may
be easily done without, e.g., having to track down credit
attribution, a vastly more difficult task that is worth a research
article on its own [9].

2

In this article we focus on references and do not address
citations further.

B. References for reuse and reproducibility

For reproducibility, software artifact references need to be
very fine-grained, down to specific versions. And they should
point to a persistent location, available over the long term.
As noticed in [8], the usual ways of referencing software
artifacts by just pointing to the project website or the current
development repository are largely unsatisfactory, as these
locations are ephemeral.

For reproducibility we also need a system of identifiers
with specific properties that current systems do not pro-
vide. Let’s consider ACM’s Artifact Review and Badging
policy, described at https://www.acm.org/publications/policies/
artifact-review-badging. It defines the following properties, in
order of increasing desirability:

• Repeatability: the ability to re-run an experiment by
the same team using the same experimental setup—
including all involved software artifacts. Results that are
not repeatable are rarely suitable for publication.

• Replicability: the ability to re-run an experiment by a
different team, reusing the described experimental setup,
software artifacts included.

• Reproducibility: the ability to re-run an experiment by a
different team, without relying on the experimental setup
and software artifacts developed by the original team.

Furthermore, the following “badges” can be associated to
software artifacts to capture their overall quality w.r.t. repro-
ducibility and reuse:

• Available: software artifacts that have been made avail-
able via publicly-accessible long-term archives.

• Functional: software artifacts that meets the specific
needs of an experiment and are documented, consistent,
complete, and exercisable [by third parties].

• Reusable: functional (as above) software artifacts that
are more generally useful than addressing the needs of a
specific experiment.

The focus of this system is enabling researchers to repro-
duce and verify results, and not giving credit to authors. Even
for the most bare requirement of repeatability, it is necessary
to have at hand a precise reference to the software source code
used for the experiment, as well as long-term archival of the
referenced artifact.

As it is now customary in modern software development,
we expect that the reference itself allows integrity checking
upon artifact retrieval, enabling researchers that are attempting
replication to rule out corruption or tampering with the digital
objects as a potential cause for non-reproducibility. To this
end, we need a system of identifiers that depends on no
middleman, like central registries, that could silently change
the association between identifiers and referenced objects.

In this paper we describe an already operational system
of identifiers that satisfies all these extra properties: high
granularity, integrity, and no middleman. We argue that, when
used in conjunction with the long-term archival provided by
Software Heritage [2], such a system provides a suitable

TABLE I: Mechanism implementation in common systems of
identifiers

Mech. / System Handle DOI Ark PURL VDOI
Generation Yes Yes Yes Yes Yes
Assignment Yes Yes Yes Yes Yes
Verification N.A. N.A. N.A. N.A. Yes
Retrieval Yes Yes Yes Yes Yes
Reverse Lookup N.A. N.A. N.A. N.A. N.A.
Description Yes Yes Yes N.A. Yes

mechanism for referencing source code artifacts in research
articles.

III. IDENTIFIER SYSTEMS AND THEIR PROPERTIES

This whole section recalls the key findings on identifier
systems that the authors published to the attention of the digital
preservation community in [1].

A. Identifier systems

A system of identifier is composed of a set of labels that
can be used as references for objects and a set of mechanisms
performing some or all of the following operations:

• Generation: create a new label
• Assignment: associate a label to an object
• Verification: given a label and an object, verify that they

correspond
• Retrieval: given a label, provide a means of getting a

copy of the corresponding object
• Reverse lookup: given a object, find the label that has

been assigned to it, if any
• Description: given a label, provide a means of getting

metadata describing the corresponding object
While these mechanisms can in principle be implemented

by totally independent entities, the most common systems of
identifiers conflate all these conceptually distinct mechanisms
into a single logical component usually called resolver.

Despite the fact that the verification mechanism is of
paramount importance in all the identification systems used
in the digital landscape, we could not find any widely used
system of identifiers that provides a reliable technical way
of supporting verification, even if proposals in this sense have
been around for quite a while [10], see Table I. For the specific
needs of scientific reproducibility this is a relevant limitation
of existing schemas.

B. General properties

The main properties of identifier systems that are relevant
for the research software reference use case are:

• Uniqueness: one object should have only one canonical
identifier.

• Non ambiguity: one identifier must denote only one
object.

• Integrity: in most cases, and in particular for scientific
reproducibility, one expects the object denoted by an
identifier not to be silently changed later on. An identifier
ensures integrity if a user can verify that the object

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

3

retrieved at any point in time is exactly the one that was
associated to it at the beginning.

• Persistence: an identifier should keep its relevant proper-
ties on the long term, potentially even after the object it
refers to has gone away. This term is used in the literature
to capture different ideas, sometimes it just covers the
requirement that an identifier should not disappear, while
in other places the concept covers even integrity and non
ambiguity.

• No middleman: to get the highest grade of resilience
to external threats such as data loss or corruption, one
should not rely on intermediaries for assigning identifiers
in the beginning or using them later on (e.g., for retrieval).
The name of this property is borrowed from security and
cryptography (see, e.g., [11, Chapter 3].

• Abstraction: (opacity) early adopters of the Web started
using URLs as persistent identifiers only to face dire
consequences when it became evident that they are not
persistent. As a consequence, recent identifier schemas,
like DOI, Ark, or Handle, pushed the idea of identifiers
that do not expose details that are subject to change, like
the exact location of a resource. Similar ideas can be
found in Cool URIs or PURLs. The intent is similar to
that of Abstract Data Types in computer science, hence
our preference for the term “abstract” over “opaque”.

• Gratis: many traditional identifier systems, like ISBN,
charge a fee for each identifier; several digital systems of
identifiers have similar provisions (e.g., DOI fees [12],
but also DNS [13]). In the case of digital resources that
need to be created or modified frequently, and especially
when their amount is very large, charging a per identifier
fee is problematic, because it creates a significant barrier
to adoption and engenders costs that can become greater
than the fixed cost of the infrastructure needed to maintain
them.

C. Discussion

Many systems of digital identifiers strive to provide unique-
ness, like URNs, ARK and DOI [14], [15], but they all rely
on administrative structures to ensure it [16] and none of them
provides technical guarantees. This fact leads to confusing
issues like conflicting DOIs, an official list of which is main-
tained at https://www.crossref.org/06members/59conflict.html.

For non ambiguity, most common systems of identifiers
rely on administrative care, leading to the risk that the same
identifier end up denoting different objects over time; this issue
is similar to what happens for URLs:

there is no general guarantee that a URL which at
one time points to a given object continues to do so

— RFC 1738, Uniform Resource Locators (URL)

and is quite real, which was already pointed out, for example,
by Arnab and Hutchison [10].

Despite the fact that the term “persistent identifier” is
now used almost everywhere, for most resolver-based systems
persistence is a property that is not technically guaranteed, as
one can see clearly stated for example in [17]:

The only operational connection between a handle
and the entity it names is maintained within the
Handle System. This of course does not guarantee
persistence, which is a function of administrative
care.

Two of the three remaining properties, integrity and no
middleman, are largely ignored (and not satisfied) by the most
common systems of identifiers:

the DOI (or any other similar system) does not have
any mechanism to prove that a downloaded version
of the document is the same as the document located
through the resolution process [10]

Abstraction seems now a generally appraised property, while
the requirement for gratuity seems much stronger in the
librarian community than in the scientific publishing one.

Finally, let us mention here the issues of versions and
granularity. An object may be used to create a new object
that is a modification of it, and one may want to keep track
of the fact that the second one is derived from the first one.
Some systems of identifiers allow to encode this versioning
information in the object label. Similarly, an object may
be composed of several other objects, and some systems of
identifiers may want to encode in the object label the relation
of containment.

D. DIOs versus IDOs

The reason why the stated requirements are so difficult to
satisfy was already contained in the following key remark by
Paskin [18]:

The term “Digital Object Identifier” is construed
as “digital identifier of an object,” rather than
“identifier of a digital object”: the objects identified
by DOI names may be of any form—digital, physical,
or abstract—as all these forms may be necessary
parts of a content management system. The DOI
system is an abstract framework which does not
specify a particular context of its application, but is
designed with the aim of working over the Internet.

Indeed, all the systems of identifiers that are commonplace
in the scholarly world are designed to provide digital
identifiers for any kind of object, including people, or
organizations, that have no canonical digital representation.
These Digital Identifiers of Objects (or DIOs) make no
assumptions on the nature of the object they represent,
and hence they inherit all the epistemic issues of the
traditional naming systems: the need of a central authority,
the complexity related to handling different manifestations of
the same conceptual object (like the PDF and the Postscript
version of the same book), and more. This fact also explains
why none of the systems of Table I supports reverse lookup.

On the other hand, for both scientific reproducibility and
software source code archival at large, it is possible to use a
system of identifiers for digital objects (or IDO). Such a sys-
tem can be built assuming that it will only manipulate digital
objects, which means giving up the ability to attach identifier
to any kind of objects (like persons, ideas or institutions), but

https://www.crossref.org/06members/59conflict.html

4

Origin

+ url: str

branches

Snapshot

*

*

Release

directory

Revision

*

**

*

Merkle DAG

branches 1
entries

parents

snapshots

+ id: sha1

Directory
entries

+ id: sha1+ id: sha1
+ author: str
+ name: str
+ message: str
+ timestamp: datetime

+ id: sha1
+ author: str
+ message: str
+ timestamp: datetime

Content

+ id: sha1

Fig. 1: Topology of the Software Heritage Merkle DAG, which captures software source code together with its full development
history.

in exchange all the properties that are difficult or impossible
to satisfy in traditional systems of identifiers become feasible.

The key insight is that to get all the nice properties above
one must build identifiers from the object itself, using for
example a hashing function, and this is why we call this kind
of identifiers intrinsic.

This approach only works well if the digital object has
a canonical representation, on which the hashing function
can be applied: it will not be very useful for identifying
documents like research articles, that can be represented in
various formats, but is perfectly suited for software artifacts.

IV. DATA MODEL

In order to develop an identifier system for billions of
source code artifacts archived for the long-term in Software
Heritage [2] we use a data model based on Merkle DAG
(Direct Acyclic Graph) [3]. Nodes and edges are connected
using hashing functions and represent the history of software
development as captured by modern version control systems.
We recall the key concepts, and refer the reader to [19] for
full details.

The topology of the Merkle DAG is shown in Figure 1.
Nodes represent: individual source code files (“content” in
the figure), source code directories, commits (“revisions”),
software releases, and entire snapshots of the state of a given
software development project. Origins are URLs and, strictly
speaking, not part of the Merkle DAG itself; but allows to
identify where source code artifacts have been encountered.

Edges between the various nodes serve different purposes
depending on the type of source/destination nodes. Edges
between directories and contents simply form on-disk source
code structures. Edges between revisions (and from each revi-
sion to the source code root directory at the time) represent the
evolution of software development over time and support both
code “forks” and “merges”. Releases just annotate interesting
commits at a given point in time.

Fig. 2: Intrinsic identifiers in the Merkle DAG: example of
how identifiers for directory nodes are computed.

In addition, various attributes (not shown in picture) are
attached to nodes and edges, depending to their types, e.g.,
revisions have metadata about who did the commit and when
it happened, directories attach local path names to successors,
and releases carry human-targeted labels such as “1.0”.

As a consequence of the graph being a Merkle DAG, the
identifier of each node is uniquely identified by a crypto-
graphic checksum (SHA1 in this case). For instance, identifiers
for directory nodes are computed as shown in Figure 2. First,
a textual serialization of the node (known as “manifest”) is
produced; in the manifest outbound edges are represented by
the identifiers of the target nodes and metadata such as path
names are included. Then, a SHA1 checksum of the manifest
is computed, returning the desired identifier.

As a result, deduplication is built-in: if the same file
appears in several software projects, it will be represented
(and hence stored) only once; its hash will be used as unique
identifier to link to its content from multiple directories. This

5

TABLE II: EBNF grammar of Software Heritage persistent identifiers

<identifier> ::= "swh" ":" <schema_version> ":" <object_type> ":" <object_id> ;
<schema_version> ::= "1" ;
<object_type> ::=

"snp" (* snapshot *)
| "rel" (* release *)
| "rev" (* revision *)
| "dir" (* directory *)
| "cnt" (* content *)
;

<object_id> ::= 40 * <hex_digit> ; (* intrinsic object id, as hex-encoded SHA1 *)
<hex_digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

| "a" | "b" | "c" | "d" | "e" | "f" ;

<identifier_with_context> ::= <identifier> [<lines_ctxt>] [<origin_ctxt>] ;
<lines_ctxt> ::= ";" "lines" "=" <line_number> ["-" <line_number>] ;
<origin_ctxt> ::= ";" "origin" "=" <url> ;
<line_number> ::= <dec_digit> + ;
<url> ::= (* RFC 3986 compliant URLs *) ;

process happens for directories appearing in multiple commits,
commits appearing in multiple projects, up to graph roots (i.e.,
snapshot nodes).

Since identifiers are cryptographic checksums, node identi-
fiers are tamper-proof and can be used to verify the integrity of
referenced software artifacts. If, say, a file is changed during
transfer or due to media bit rot, the receiver can independently
re-compute its identifier upon reception and verify it does not
match the identifier used to fetch it, immediately realizing that
the object got corrupted or has been wilfully altered.

V. SOFTWARE HERITAGE IDENTIFIERS

Different experiments might need to reference and archive
software source code at different granularities: a single source
code file, a tarball, a commit in a version control system
(VCS), etc. We now address the goal of how to identify source
code artifacts at all those granularities, also satisfying the
requirements of Section II. To that end we recall in this section
the full details of Software Heritage identifiers from [1].

To each source code artifact in the Software Heritage archive
we associate a persistent identifier (PID) computed through
cryptographic hashes. A PID can point to any node in the
graph described in the previous section: contents, directories,
revisions, releases, snapshots. Each PID embeds a strong
cryptographic checksum computed on the entire set of node
properties and successors, forming a Merkle structure where
each node is labeled with the identifier and provides a secure
and efficient integraty mechanism.

A. Syntax

Syntactically, PIDs are generated by the EBNF grammar
given in Table II.

B. Semantics

The swh prefix makes explicit that these identifiers are
related to Software Heritage, and the colon (:) is used as
separator between the logical parts of identifiers. The schema
version (currently 1) is the current version of this identifier

schema; future editions will use higher version numbers, pos-
sibly breaking backward compatibility (but without breaking
the resolvability of old identifiers).

A persistent identifier points to a single object, whose type
is given by <object_type>:

• snp identifiers points to snapshots,
• rel to releases,
• rev to revisions,
• dir to directories,
• cnt to contents.
The actual referenced object is identified by

<object_id>, which is a hex-encoded SHA1 cryptographic
checksum computed on the content and metadata of the object
itself (see https://docs.softwareheritage.org/devel/apidoc/swh.
model.html for details).

C. Examples

swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2

points to the content of a file containing the full text of the
GPL3 license.

swh:1:dir:d198bc9d7a6bcf6db04f476d29314f157507d505

points to a directory containing the source code of the
Darktable photography application as it was at some point
on 4 May 2017.

swh:1:rev:309cf2674ee7a0749978cf8265ab91a60aea0f7d

points to a commit in the development history of Darktable,
dated 16 January 2017, that added undo/redo supports for
masks.

swh:1:rel:22ece559cc7cc2364edc5e5593d63ae8bd229f9f

points to Darktable release 2.3.0, dated 24 December 2016.

swh:1:snp:c7c108084bc0bf3d81436bf980b46e98bd338453

https://docs.softwareheritage.org/devel/apidoc/swh.model.html
https://docs.softwareheritage.org/devel/apidoc/swh.model.html
https://archive.softwareheritage.org/swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2
https://archive.softwareheritage.org/swh:1:dir:d198bc9d7a6bcf6db04f476d29314f157507d505
https://archive.softwareheritage.org/swh:1:rev:309cf2674ee7a0749978cf8265ab91a60aea0f7d
https://archive.softwareheritage.org/swh:1:rel:22ece559cc7cc2364edc5e5593d63ae8bd229f9f
https://archive.softwareheritage.org/swh:1:snp:c7c108084bc0bf3d81436bf980b46e98bd338453

6

points to a snapshot of the entire Darktable Git repository
taken on 4 May 2017 from GitHub.

D. Contextual information

It is often useful to complement persistent identifiers with
contextual information about the object’s setting.

One can do so with Software Heritage identifiers, using the
semicolon (;) in the grammar as separator between PID and
contextual information. Each piece of contextual information
is specified as a key/value pair, using the equal sign (=) as a
separator. The following pieces are supported:

• Software origin: a URL where a given object has been
observed in the wild.

• Line numbers: a line number or range, pointing within
the given object.

For example, the following identifier

swh:1:dir:c6f07c2173a458d098de45d4c459a8f1916d900f;
origin=https://github.com/id-Software/Quake-III-Arena

points to the source code root directory of the computer game
Quake III Arena with the origin URL where it was found;
while

swh:1:cnt:41ddb23118f92d7218099a5e7a990cf58f1d07fa;
lines=64-72

points to a comment segment with the warning “NOLI SE
TANGERE” in a file in the Apollo-11 source code.

E. Resolution

Persistent identifiers are not directly browsable URLs, but
they can be resolved in various ways. Any identifier can be
given to the Software Heritage Web user interface via the
URL pattern https://archive.softwareheritage.org/〈identifier〉 to
reach the referenced object. Both in-browser and program-
matic use via a dedicated REST API endpoint is available.

The following third-party resolvers also support resolution
of Software Heritage persistent identifiers:

• Identifiers.org
• Name-to-Thing (N2T)

F. Verification

Software Heritage identifiers can be generated and ver-
ified independently by anyone using the open source
swh-identify tool, developed by Software Heritage and
distributed via PyPI as swh.model (Software Heritage iden-
tifier swh:1:rev:6cab1cc81118877e2105c32b08653509475f3eaa;
origin=https://pypi.org/project/swh.model/).

VI. VALIDATION

We recall in this section the findings of the self-assessment
exercise against the properties discussed in Section III that was
performed in [1, Section 6]: we refer the interested reader to
it for more details on hash collisions.

sw
archive

integrity
verifier

sw URL

DOI resolver
without
checksums

sw & checksum

DOIDOI

(a) using DOI resolver without checksum metadata
DOI
resolver
with
checksums

sw
archive

integrity
verifier

sw URL &
checksum

DOI DOI

(b) using DOI resolver with checksum metadata

5

sw
archive

integrity
verifier

SWH

SWH

(c) using Software Heritage identifiers

Fig. 3: Trusted third parties (shown as rounded red boxes) for
software artifact retrieval and verification in three different
scenarios.

Uniqueness: identifiers are computed using a cryptographic
hash. By construction and due to the Birthday paradox the
chances of giving the same identifier to different objects are
negligible.

Non ambiguity: at each granularity level, each identifier is
designating only one object, without ambiguity.

Persistence: the Software Heritage archive guarantees that
nothing will be deleted intentionally and will undertake the
task of perpetually maintain old version of the identifier
schema, even when new versions of it will be released.

Integrity: using a cryptographic hash as identifier ensures
that modifications to the denoted object, however minimal,
would yield a different identifier with an extremely high proba-
bility. Users can recompute identifiers on retrieved objects and
verify they match.

No middleman: the link between an object to its identifier
does not depend on the resolution of an online service. These
identifiers can be used and verified outside the system that
creates and maintains them.

Figure 3 compares the proposed approach with the state-of-
the-art in terms of third parties and communication channels
that should be trusted to verify the integrity of source code

https://archive.softwareheritage.org/swh:1:dir:c6f07c2173a458d098de45d4c459a8f1916d900f;\ origin=https://github.com/id-Software/Quake-III-Arena
https://archive.softwareheritage.org/swh:1:dir:c6f07c2173a458d098de45d4c459a8f1916d900f;\ origin=https://github.com/id-Software/Quake-III-Arena
https://archive.softwareheritage.org/swh:1:cnt:41ddb23118f92d7218099a5e7a990cf58f1d07fa;\lines=64-72
https://archive.softwareheritage.org/swh:1:cnt:41ddb23118f92d7218099a5e7a990cf58f1d07fa;\lines=64-72
https://archive.softwareheritage.org/<identifier>
https://archive.softwareheritage.org/swh:1:rev:6cab1cc81118877e2105c32b08653509475f3eaa;\ origin=https://pypi.org/project/swh.model/
https://archive.softwareheritage.org/swh:1:rev:6cab1cc81118877e2105c32b08653509475f3eaa;\ origin=https://pypi.org/project/swh.model/

7

(a) as archived in Software Heritage

(b) as presented in the original article [20]

Fig. 4: Code fragment from the published article compared to the content in the Software Heritage archive

artifacts. In the common case of DOI resolvers that do not
include artifact checksums as part of metadata (Figure 3a), one
has to trust the entire toolchain. Storing artifact checksums as
part of DOI metadata (Figure 3b) is a significant improvement,
in which the artifact archive is no longer trusted: tampering
there (or in the communication with it) can be detected; DOI
intermediaries still have to be trusted though. The proposed
approach (Figure 3c) minimizes the trusted parties and chan-
nels: only a reliable checksum verifiers is needed—and several
exist already.

Abstraction: the proposed identifier schema does not ex-
pose any piece of information that is subject to change over
time.

Gratis: the proposed identifiers are intrinsic, meaning they
can be independently computed by anyone, using freely avail-
able software, incurring no costs for identifier creation or
attribution. By construction the obtained identifiers will be the
same everywhere, allowing cross-referencing.

Hence, we argue that the Software Heritage identifier
schema provides a systems of identifiers for digital objects
(IDO) that satisfies the stated requirements for scientific re-
producibility and long-term source code preservation.

Note that the optional contextual information of Section V-D
are not strictly needed for reproducibility, but it is convenient
to store extra information, like the location from where the
archived source code has been obtained, to allow tracking
future evolution of referenced software artifacts.

VII. SHOWCASE

Software Heritage supports exact referencing of source code
artifacts in two unique ways: on the one hand, it provides
a universal archive that stores the source code, and its full

development history; on the other hand, it uses the same
intrinsic identifiers for all its 10 billion contents, no matter
where the source code comes from, or the version control
system used to develop it.

We now look at a real world example of how this can
significantly improve the workflow of referencing source code
in research articles for the purpose of scientific reproducibility.

In 2011, Marco Danelutto and the first author started work
on Parmap, a minimalist OCaml library that implements a
map-reduce framework for multicore architectures in a concise
and elegant way. The software project was developed using
git on the Gitorious forge, and described in the paper A
“minimal disruption” skeleton experiment: seamless map &
reduce embedding in OCaml [20]. In order to make the code
available to all and facilitate reuse the article, published in June
2012, pointed to the open source release of Parmap linking
to https://gitorious.org/parmap.

Alas, Gitorious was closed down in June 2015, and that
URL is now broken. Luckily, Software Heritage has archived
parmap along with all repositories from Gitorious: that repos-
itory, with all its development history, can now be recovered.
The same can be done for all other legacy articles referencing
code on that lost platform. The universal archive functionality
is essential, as the code can be salvaged without requiring
proactive actions by researchers.

The unique identifiers provided by Software Heritage allow
to go much further, and enable precise traceability of code
versions and fragments therein. In Figure 1 of the Parmap ar-
ticle, the authors show the core part of the code implementing
the parallel functionality, consisting of 29 lines. In 2012, we
had no way to reference these exact lines in the version of the
code associated to the published article.

https://gitorious.org/parmap

8

Fig. 5: Obtaining a Software Heritage identifier using the
permalink box on the archive Web user interface

Today, using the proposed identifiers, the same code frag-
ment can be precisely identified as:

swh:1:cnt:d5214ff9562a1fe78db51944506ba48c20de3379;
origin=https://gitorious.org/parmap/parmap.git;
lines=101-143

Figure 4a shows side-by-side the code as archived by Soft-
ware Heritage and as shown in the paper, allowing to notice
that the code in the article was slightly simplified w.r.t. the
actual implementation. Today, a corresponding clickable link
could be easily added in the caption of the figure (see page 5
of an updated version of the original article).

Software Heritage identifiers are easy to obtain using the
permalink box on the archive’s interface, as shown in Figure 5.

The authors should also reference in their article the exact
version of the software project containing the code, which is
also possible using a Software Heritage revision identifier:

swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;
origin=https://gitorious.org/parmap/parmap.git

VIII. CONCLUSION

Software is an important product of research, and needs
to be properly mentioned in research articles, both to give
academic credit to the persons involved and to support repro-
ducibility of research. We consider that these two concerns are
both important, but separate: while citations are essential for
giving credit, references are sufficient for reproducibility.

In this article, we have focused on the key properties
that references need to satisfy in the context of scientific
reproducibility, some of which traditional digital identifiers
of an object (DIOs) do not enjoy, in particular the ability to
independently verify object integrity.

Cryptographic hashes widely used in software development
can be used as identifiers of digital objects (IDOs) that satisfy
all the key requisites, and lie at the core of the Software
Heritage identifier schema that is used in production to identify
over 10 billion different objects in the project archive.

We look forward to wider adoption of these IDOs in the
research community for software artefacts, and all digital
objects that have a canonical representation.

REFERENCES

[1] R. Di Cosmo, M. Gruenpeter, and S. Zacchiroli, “Identifiers for
digital objects: the case of software source code preservation,”
in Proceedings of the 15th International Conference on Digital
Preservation, iPRES 2018, Boston, USA, Sep. 2018. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01865790

[2] J.-F. Abramatic, R. Di Cosmo, and S. Zacchiroli, “Building the universal
archive of source code,” Commun. ACM, vol. 61, no. 10, pp. 29–31,
Sep. 2018. [Online]. Available: http://doi.acm.org/10.1145/3183558

[3] R. C. Merkle, “A digital signature based on a conventional
encryption function,” in Advances in Cryptology - CRYPTO ’87,
A Conference on the Theory and Applications of Cryptographic
Techniques, Santa Barbara, California, USA, August 16-20, 1987,
Proceedings, ser. Lecture Notes in Computer Science, C. Pomerance,
Ed., vol. 293. Springer, 1987, pp. 369–378. [Online]. Available:
https://doi.org/10.1007/3-540-48184-2 32

[4] R. Van Noorden, B. Maher, and R. Nuzzo, “The top 100
papers,” Nature, pp. 550–553, Oct.4 2014. [Online]. Available:
http://doi.org/10.1038/514550a

[5] C. Collberg, T. Proebsting, G. Moraila, A. Shankaran, Z. Shi, and A. M.
Warren, “Measuring reproducibility in computer systems research,”
Department of Computer Science, University of Arizona, Tech. Rep,
vol. 37, 2014. [Online]. Available: http://reproducibility.cs.arizona.edu/
tr.pdf

[6] S. Krishnamurthi and J. Vitek, “The real software crisis: Repeatability
as a core value,” Commun. ACM, vol. 58, no. 3, pp. 34–36, Feb. 2015.
[Online]. Available: http://doi.org/10.1145/2658987

[7] R. Vicente-Sáez and C. Martı́nez-Fuentes, “Open Science now: A
systematic literature review for an integrated definition,” Journal of
business research, vol. 88, pp. 428–436, 2018. [Online]. Available:
https://doi.org/10.1016/j.jbusres.2017.12.043

[8] A. M. Smith, D. S. Katz, and K. E. Niemeyer, “Software citation
principles,” PeerJ Computer Science, vol. 2:e86, 2016. [Online].
Available: https://doi.org/10.7717/peerj-cs.86

[9] P. Alliez, R. Di Cosmo, B. Guedj, A. Girault, M.-S. Hacid, A. Legrand,
and N. P. Rougier, “Attributing and referencing (research) software: Best
practices and outlook from inria,” Computing in Science Engineering,
pp. 1–14, 2019, preprint available at https://hal.archives-ouvertes.fr/
hal-02135891.

[10] A. Arnab and A. Hutchison, “Verifiable digital object identity system,”
in Proceedings of the ACM Workshop on Digital Rights Management,
ser. DRM ’06. New York, NY, USA: ACM, 2006, pp. 19–26. [Online].
Available: http://doi.acm.org/10.1145/1179509.1179514

[11] B. Schneier, Applied cryptography: protocols, algorithms, and source
code in C 2nd edition. John Wiley & Sons, 2007.

[12] Crossref, “Doi fees,” 2017, online; retrieved 09 April 2018.
[Online]. Available: https://web.archive.org/web/20180129114723/https:
//www.crossref.org/fees/

[13] J. Charles, “Web interests tangle over dns proposal,” IEEE Software,
vol. 14, no. 4, pp. 100–105, July 1997. [Online]. Available:
https://doi.org/10.1109/MS.1997.595968

[14] I. D. Foundation, “Factsheet: Doi system and internet identifier
specifications,” 2015, online; retrieved 09 April 2018. [Online].
Available: https://www.doi.org/factsheets/DOIIdentifierSpecs.html

[15] T. C. D. Library, “Archival resource key,” 2001. [Online]. Available:
http://n2t.net/e/ark ids.html

[16] W. Y. Arms, “Uniform resource names: Handles, purls, and digital
object identifiers,” Commun. ACM, vol. 44, no. 5, pp. 68–, May 2001.
[Online]. Available: http://doi.acm.org/10.1145/374308.375358

[17] S. Sun, L. Lannom, and B. Boesch, “Handle system overview,” Internet
Requests for Comments, RFC Editor, RFC 3650, November 2003.

[18] N. Paskin, “Digital object identifier (doi) system,” Encyclopedia of
library and information sciences, vol. 3, pp. 1586–1592, 2010.

[19] R. Di Cosmo and S. Zacchiroli, “Software heritage: Why and how to
preserve software source code,” in Proceedings of the 14th International
Conference on Digital Preservation, iPRES 2017, Sep. 2017. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01590958/

[20] M. Danelutto and R. Di Cosmo, “A “Minimal Disruption” skeleton
experiment: Seamless map & reduce embedding in OCaml,” Procedia
CS, vol. 9, pp. 1837–1846, 2012. [Online]. Available: http://dx.doi.org/
10.1016/j.procs.2012.04.202

https://archive.softwareheritage.org/swh:1:cnt:d5214ff9562a1fe78db51944506ba48c20de3379;\ origin=https://gitorious.org/parmap/parmap.git;\ lines=101-143
https://archive.softwareheritage.org/swh:1:cnt:d5214ff9562a1fe78db51944506ba48c20de3379;\ origin=https://gitorious.org/parmap/parmap.git;\ lines=101-143
https://archive.softwareheritage.org/swh:1:cnt:d5214ff9562a1fe78db51944506ba48c20de3379;\ origin=https://gitorious.org/parmap/parmap.git;\ lines=101-143
http://www.dicosmo.org/share/parmap_swh.pdf
https://archive.softwareheritage.org/swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;\ origin=https://gitorious.org/parmap/parmap.git
https://archive.softwareheritage.org/swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;\ origin=https://gitorious.org/parmap/parmap.git
https://hal.archives-ouvertes.fr/hal-01865790
http://doi.acm.org/10.1145/3183558
https://doi.org/10.1007/3-540-48184-2_32
http://doi.org/10.1038/514550a
http://reproducibility.cs.arizona.edu/tr.pdf
http://reproducibility.cs.arizona.edu/tr.pdf
http://doi.org/10.1145/2658987
https://doi.org/10.1016/j.jbusres.2017.12.043
https://doi.org/10.7717/peerj-cs.86
https://hal.archives-ouvertes.fr/hal-02135891
https://hal.archives-ouvertes.fr/hal-02135891
http://doi.acm.org/10.1145/1179509.1179514
https://web.archive.org/web/20180129114723/https://www.crossref.org/fees/
https://web.archive.org/web/20180129114723/https://www.crossref.org/fees/
https://doi.org/10.1109/MS.1997.595968
https://www.doi.org/factsheets/DOIIdentifierSpecs.html
http://n2t.net/e/ark_ids.html
http://doi.acm.org/10.1145/374308.375358
https://hal.archives-ouvertes.fr/hal-01590958/
http://dx.doi.org/10.1016/j.procs.2012.04.202
http://dx.doi.org/10.1016/j.procs.2012.04.202

	Introduction
	Referencing Source Code for Reproducibility
	Software reference versus citation
	References for reuse and reproducibility

	Identifier systems and their properties
	Identifier systems
	General properties
	Discussion
	DIOs versus IDOs

	Data Model
	Software Heritage Identifiers
	Syntax
	Semantics
	Examples
	Contextual information
	Resolution
	Verification

	Validation
	Showcase
	Conclusion
	References

