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VANET distributed data fusion for traffic
management

Romain Guyard!, Véronique Cherfaoui!

Abstract—In this article, we propose a distributed fusion
algorithm to detect traffic congestion through the exchange
of messages in vehicle network. This algorithm is based on
the Dempster-Shafer theory that manages the uncertainties
on data and sources of information. Each vehicle updates its
database with local measurements (speed and interdistance)
and information received from other vehicles and can calculate
its route. Thanks to the collaboration, smart cars can avoid
congested roads and take a better path to their destination.
Several variants of the algorithm are studied and compared to
a centralized approach through experiments carried out on the
SUMO simulator using real urban road networks.

I. INTRODUCTION

In the domain of traffic management, most algorithms use a
centralized server (eg. Waze, Google map...) that collects data
(position, speed...) sent by connected vehicles. The server
computes a map of congested roads. This map is then sent
back to the vehicles that can use it to find the fastest path.
In some cases the path is directly computed by the central
server.

In this paper we study an other method of collaboration
based on direct connection between cars in the Vehicular
Ad-Hoc Network (VANET) context. The VANET has some
characteristics radically different from regular computer net-
works. Nodes are dynamical and connections between nodes
are only temporary since their relative positions change all
the time. A WiFi norm called 802.11p has been proposed
for VANET. Messages can only be sent in a broadcast mode
since there is no possible durable connection between nodes.

Traffic management has been heavily studied and different
methods has been used to detect traffic jams in VANET.
A common solution is to analyze a local map of cars like
proposed in [1] with the application Trafficview. Trafficview
generates an instantaneous snapshot of the traffic and not an
average over time. Moreover it is sensitive to Sybil attacks”
and needs trust between nodes which can not be accepted in
real conditions. [2] proposes an efficient traffic congestion
detection protocol (ECODE) for intelligent transportation
systems. This method, as in [3], sends the position of cars
in the network which can be a privacy concern. [4] proposed
to count the number of messages exchanged to determine
the traffic level. This mechanism can be easily implemented

1 The authors are with Sorbonne Universités, Université de Technologie
de Compiégne, CNRS Heudiasyc UMR 7253, France

2 The Sybil attack is an attack wherein a reputation system is subverted
by forging identities in peer-to-peer networks.

in complement of other VANET applications but it can be
inaccurate and can be modified artificially by a dysfunction or
by an attacker. In [5], an adaptation of K-mean to V2V is used
as well as a distributed hierarchical agglomerative clustering
system. The method can detect the status of roads by fusing
position of cars in the network. Traffic patterns recognition
can be used to detect traffic congestion as shown in [6]. The
author of [7] introduces the concept of vehicle to vehicle to
infrastructure (V2V2I). With this method average speed are
computed using V2V and then the results are centralized to
an infrastructure.

In this paper, we propose an adaptation of a distributed
algorithm originally proposed in [8] to perform traffic man-
agement using V2V communications. This auto-stabilizing
algorithm use distributed data fusion to improve the knowl-
edge of each vehicle. Since this method doesn’t send data
to a third part organization, it keeps personal data private.
A centralized algorithm becomes unusable when the central
server fail; whereas a decentralized algorithm is more robust
in this case. Finally, our method doesn’t require internet con-
nection. In a crowdy road, mobile network can be saturated
and thus unusable. This algorithm is auto-stabilizing and is
resistant to transient errors due to broken or dirty sensors as
proven in [9]. The algorithm is also resilient to deliberately
modification of local data.

In the first section, we present the distributed data fusion
algorithm and its variants based on Dempster Shafer theory
(or belief functions theory) to model uncertainties in traffic
management scenarii. The next section describes the imple-
mentation of the algorithm in the SUMO simulator. Finally,
results of the simulations are presented and discussed.

II. DISTRIBUTED DATA FUSION ALGORITHM

The method described in this paper is based on the
algorithm presented in [8]. The objective is to fuse data
coming from other vehicles with local data to determine the
level of congestion of roads. Using this information, each car
can find the fastest path to its destination.This algorithm has
multiple steps:

1) Modeling of local data: each vehicle observes its
environment, generates local data and models a rep-
resentation using belief functions. Local values are
independent of each others.



1) Data reception: each vehicle receives data coming from
all other vehicles in neighborhood.

2) Data fusion: information from other vehicles and the
local representation are fused.

3) Data sending: each vehicle sends the fused data to other
vehicles.

The algorithm updates estimations of lane average speed on a
road map. Each lane of each road has a unique ID that every
cars knows. The average speed can be used to determine the
shortest path using for example a Disjktra algorithm.

A. Representation of road congestion status

Car sensors are imperfect. Data generated with imperfect
sensors give imperfect results. Moreover in VANET, it is not
possible to fully trust other vehicles. Cars can have broken
or dirty sensors or an attacker can try to benefit from sending
false information in order to have a better driving experience.
Thus, we propose to use Dempster Shafer theory that is able
to deal with uncertainties.

1) Belief functions: Dempster-Shafer theory introduced in
[10] is often used to model both imprecision and uncertainties
of an agent. The Dempster-Shafer framework models confi-
dence in events using belief functions. Belief functions can
be expressed by different representation. The most common
representation is the mass function. If we consider a frame
of discernment () the finite set of all possible events, then
the mass function are values attached to the power set of )
following the equation 1. Let be a variable w € Q2 and A C Q
a element of 2. The quantity m(A) is interpreted as the part
of the belief allocated to the hypothesis “the answer w is in
the subset A of Q7.

0<m(Ad) <1, Y m(Ad)=1 (1)
ACQ

The mass m(Q) represents the ignorance and m(f) the
inner conflict. A “focal element” of m is an element A of
such that m(A) > 0. A “simple mass function” has one or
two focal element including 2. If 2 is the only focal element
then the mass function is called “vacuous” and represents
total ignorance. If 2 is not a focal element, then the mass
function is called “dogmatic”. With imperfect sensors, most
of mass functions are non-dogmatic and we will thus assume
it is the case in this paper. Mass functions can be combined to
improve the knowledge and reduce uncertainties. The well-
known Dempster conjunctive rule is shown in equation 2.

(m1 @ ma)(0) =0

A#D (miema)(A) = =25 X pnoa mi(B)ma(C)

where K =3 pro_gmi(B)mz(C)
@)
This rule requires the independence of sources. When a
source uses multiple times the same information to generate
data, data incest can occur. To avoid data incest, the fusion
operator has to be idempotent. An idempotent fusion operator
called cautious has been proposed in [11]. This operator is

Sy
State FluidFree: maximal speed, no car
State FluidSparse: maximal speed, few cars
State SlowSparse: slow, few cars
i
<«

State Congested Dense: stop, full of cars
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Figure 1. Road states in 2

applied on the conjunctive decomposition presented by [12]
using the operator minimum. This operator is idempotent,
associative and commutative and noted ®.

2) Modeling road congestion status: The congestion of
a road is represented by the following frame of dis-
cernment: Q = {FluidFree, FluidSparse, SlowSparse,
CongestedDense}. A FluidFree state represents a road
without any cars or with cars that can drive at the maximal
speed without any cars near. The FluidSparse state is also
a state where cars can drive at maximal speed but the road
contains cars close to the vehicle, which is a risk of traffic
jam. Adding more cars to the road will make all the cars
to slow down. In the SlowSparse state cars are to many to
keep maximum speed. Finally, the Congested Dense state is
the state where cars are too many and thus a traffic jam is
formed. The states of ) is summarized on the figure 1.

Two sensors are used to evaluate the congestion of the road
: the speed sensor LIDARs that detect the distance between
cars. A basic belief assignment function is used to transform
the measurement to a belief function m!°“®. Each sensors
measurement is converted to belief function separately and
are then fused together.

3) Representation of the average speed on a road: The car
average speed is represented by the frame of discernment
Qs = {Fluid, Slow,Congested}The speed value has a
range of [0, Vi,,4z], With V.4, the speed limit of the road. Let
V' the proportion of V4. Sigmoids are used to represent the
average speed of a road. These functions change the speed
value to a belief function m.°°*. The sigmoid function S;()
is shown on the figure 2. The sensors are imperfect thus the
sigmoid function does not generate a dogmatic belief func-
tion. The uncertainty is represented by mass m(£2s) = 0.3.
The parameters of the sigmoids are chosen to make the curves
smooth with empiric values. In a real scenario, they should
be chosen by experts of the domain or by learning methods
approach.

4) Representation of the congestion of the road: The
road congestion is represented by an other frame of dis-
cernment Qg = {Free, Sparse, Dense}. The congestion



‘m({congested‘}) D —
m({congested, slow)}
m({slow}

)
m({slow, ﬂuid};
)

0.8
m({fuid}
m(Q,

0.6

mass

0.4

\
0 0.2 0.4

0

0.6 0.8 1
speed

Figure 2. Speed basic belief assignment

of the road is detected using LIDARSs that give the inter-
distance between cars. Those inter-distances are values with
a range of [dsqfety; dmaz] With dsqfery the safety distance
that depends on the speed of the car and d,,4, the maximal
distance detected by the LIDAR. d,,4; also represents the
absence of detection. Let d be the rescaling of [dsq fety, dmaz)
to [0,1]. Each inter-distance is changed to belief function
mlee@lusing the sigmoid functions S4(), similarly to the
speed representation. The uncertainty is represented by mass
m({q) = 0.3. The parameters of the sigmoids are chosen
to make the curves smooth with empiric values. In a real
scenario, they should be chosen by experts of the domain or
by learning methods approach.

5) Generalization of speed and inter-distance sets of dis-
cernment: Both speed and inter-distance are represented by
their own set of discernment €2, and 2,. Since we want to use
them to describe the status of roads, we have to generalize
them to the global set of discernment (2. The generalization
operation is noted 1 as shown in equation 3.

mlocal — (mlsocal)QSTQ D (mfiocal)QdTQ (3)

The speed sensor gives information about the states
{DenseCongested} and {SlowSparse} and also the union
of the states {FluidFree, FluidSparse} since the speed
data can not distinguish the difference between a road where
cars drive at maximum speed with a “empty” road.

The inter-distance can give information about the states
{FluidFree} and {CongestedDense} and the union of the
state { FluidSparse, SlowSparse} since cars inter-distance
can not distinguish the difference between a road with some
cars but driving at normal speed and a road with some cars
but slowed. To have an information about the full frame of
discernment, the two belief functions generated from speed
sensor and the inter-distance are then combined using the
Dempster’s rule.

B. Data reception

The transmission of data is done using a WiFi norm called
WiFi 802.11p for VANET. Data are broadcasted to other cars.
Every car sends the fused data mP"*“ to other cars in the
neighborhood. A message is constituted of a collection of
belief function representing an estimation of the status of

roads. This collection, noted [mp“b”C], contains only non
vacuous belief functions. The car collects all the messages
received and saves them until the next step. When a new step
starts, the saved data is fused and the database is cleared to
be able to receive new messages for the following step.

We consider in the following that the messages are always
received by every cars in range.

C. Data fusion

Fusion of data is done by an idempotent operator since
every car uses information that have been already fused.
Therefore, the algorithm uses the cautious operator.

Belief functions coming from other vehicles are represen-
tation of a distant measurement. in space and in time. Since
some time has passed since the data has been generated,
data received are less representative of the current situation
and thus, they should be discounted before the fusion. The
discounting operation reduces the importance of sources
that are not precise or can not be trusted. The discounting
proposed by Shafer in [10] is given by the equation 4. m®(A)
is the mass discounted with a factor of « € [0, 1]. The value
of o depends on the reliability of the source.

*m(A) = am(A)

*m(Q) = (1 —a) +am(Q)
The discounting in the proposed algorithm has been studied
in a previous paper [13]. The time between each step is

considered as the same and thus we use a fixed discounting.
The equation 5 shows the general fusion formula.

{A?m )

Mpublic = fuse(mlocalva [,rnpublic] [0] 0% [mpublic} [1] ® )
5)
In [14] we proposed 4 different ways of data fusion, shown
in figures 3, 4, 5 and 6 that are going to be tested in this
scenario. The idea of these scenarios is to use Dempster’s
rule that increases the knowledge when data comes from two
independent sources or the cautious operator when sources
are dependent. Local value is always independent of values
coming from the network. It is then possible to combine it
with Dempster’s rule the local value and the result of the
cautious operator applied to all values sent by other cars
(distributed values). Figure 4 (where & represents Dempster’s
rule and ® the cautious rule) shows the fusion diagram of
this proposition. As proposed in [15], since local data is
timely independent, we can add a temporal fusion of the local
value with Dempster’s rule. This operation is done before the
network data fusion as shown in Figure 5. Finally, we propose
a fourth fusion diagram in Figure 6 that assumes that nodes
send both distributed and local values. Dempster’s rule can
be used to combine neighbor local values since independent
local data is fused only once.

D. Data sending

Fused data mP“?"*¢ are broadcasted to other vehicles. Since
we fuse data for all roads of the map we have to send a belief
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function for each lanes of each roads. The WiFi 802.11p
doesn’t allow packaging and thus data has to be sent at once.
Therefore, we must limit the size of message at 1500 bytes
WiFi 802.11p packet. A mass can be encoded using only
one byte since a precision of ﬁ is enough. If we consider
the conflict normalized and the sum of all masses equal to
1, a belief function can be represented using 14 bytes. We
also need to add a lane identifier which can be represented
using 4 bytes, assuming each car having the same map.
Thus, we can send 107 belief functions. In order to choose
which road information should be sent, the algorithm sorts
the belief function based on the mass on the ignorance. The
more commit the belief function are the more likely they are
going to be sent.

III. SIMULATION

We have developed a simulated scenario with SUMO
simulator [16], [17] to test each variation of the algorithm.

A. Scenario

The scenario must test the different characteristics of the
variants of the algorithm. The traffic is simulated in multiple
real cities in order to have realistic results. A constant heavy
traffic is kept in order to cause traffic congestion. To do this,
we set a fixed number of cars that drive in the city. Each
car starts at a random location and travel to another random
location in the city. Each time a car arrives at destination, it
is removed from the simulation and a new car with a new
path is generated.

The algorithms are compared by counting the number of
cars that have reached destination after a fixed time.

To obtain realistic results, we have tested on two scenarios:
one in a district of Paris and in the city of Compiegne

(average french city) The two cities have a very different
topology.

B. Pathfinding algorithm

The generated distributed belief function should be used
to found the fastest path to a destination. The decision of
the shortest path can be done using Disjktra’s algorithm. The
weight on each edge is the travel time computed using the
maximum speed and the length of a lane. The result of the
data fusion algorithm should be used instead of using the
maximum speed. In order to use a belief function in Disjktra’s
algorithm, the average speed s, should be estimated. We use
the plausibility functions as proposed by [18].

The plausibility of a set of a mass function is an alter-
native representations of mass functions. The plausibility is
noted Pl and it is described by the equation 6. The set of
plausibility on the bayesian elements is called the contour
function and it is noted pl.

> m(B) ©6)

BNA#D

A transformation function is used to change the plausi-
bilities back to values and thus estimate the original speed
modelized by the belief function. To determine our transfor-
mation function we have used the special case where the
local speed values s are transformed into belief function
mlocal ysing the sigmoid functions. Our goal is to inverse
the sigmoid function to find an estimation of the speed.
The transformation function should return the original value
s when applied on the particular case m!l°c? = S,(s).
The belief functions has to be transformed from €2 to the
original speed set set of discernment 2 using a method

called minimization and noted | as shown in equation 7.

mg = mSes (N
The plausibilities of the belief function generated
with the speed sensor and discounted is used
to make the estimation. In order to have a
bijective  function, the function  Plgy;,(m) =
Pi(m({Slow, Fluid})) —  Pl(m({Congested})) +
Pl(m({Fiuid})) — Pl(m({Congested, Slow})) is
considered. The function PID 1is then defined by
PID(s) = Plgum(Ss(s)) with Sy(s) = mlocd the

speed sigmoid function. To find the speed using the
plausibilities functions, we must invert the function PID.
This inverse is plotted in figure 7. It is then possible to find
the estimate speed s. with the equation 8.

Se = PZD_l(PZSUm(mpubliC)Qiﬂs)) ®)

C. Implementation

A C++ program has been implemented using SUMO sim-
ulator to test the scenario. To simulate the WiFi-P connection
we have made our own implementation of a communication
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Figure 8. Map of a portion of Paris (Montmartre) in SUMO simulator

system. The theoretical range of the WiFi 802.11p is 2 km
which is unrealistic in urban driving. The study in [19]
showed that in ideal conditions the range can be up to
500m thus we have chosen to limit the range to 200m. The
message length is limited to 1500 bytes, headers included.
We suppose that our application will not be the only one that
need car communications capabilities thus the data size has
been limited to 20% of the maximum defined by the norm.
The cities road networks are imported to SUMO simulator
from OpenStreetMap.

IV. RESULTS

In the figure 8 we can see a part of the city of Paris
simulated in SUMO and the figure 9 is Compiegne. Roads
are displayed in red when its occupancy is unknown, green
is the road is free and yellow when it’s congested.

Figure 9. Crop of Compiégne’s map in SUMO simulator
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simulation time with 50 vehicles in a part of Paris

5000

10 fUSION e
centralized —
cautious only
Dempster local value ———
Dempster after cautious
Dempster at one hop ———m
4000 |

3000 - "

2000 -

Number of cars that arrived at destination

1000 |

0 50 100 150 200 250 300 350
time

Figure 11. Number of cars that have reach their destination after a given
simulation time with 500 vehicles in Compiegne

A. Performance of path finding

The figures 10 and 11 show the number of cars that have
reached their destination after a certain simulation time for
each algorithm. During the first seconds of simulation, no
cars have arrived to its destination thus the curve stays at
0. After few minutes, all algorithms have the same efficacy
because the estimations of occupancy are not yet known.
Then, the performance of each algorithm grows at their own
rates. In Compiegne, there is a significant difference between
scenarios when about 500 cars are simulated at a given time.
In Paris, only 50 cars are enough but the deviation is smaller.
After an hour, the centralized average out performs the other
algorithms. The second best is the Dempster at one hop,
followed by the two other algorithms that mix cautious rule
and Dempster’s rule. Finally the “cautious only” algorithm is
the worse, but still better than no fusion. We can see in the
Compiegne scenario, with this particular random seed, that
the “Dempster at one hop” has the same performance than the
“no fusion” scenario. The “Dempster at one hop” algorithm
have a bigger standard deviation than the other algorithms. It
stays the better distributed algorithm in average but in some
cases it can be the worst.
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B. Summary

The SUMO simulator also generates pollution emission
information. The car average C'Oy pollution emission is
computed for each algorithm. We can observe the link
between pollution and time time spent in traffic jams. The
performance of each algorithm are summarized in the table 1.
We added a “no fusion” algorithm where every cars choose
the shortest path without taking in account the occupancy
of the roads. The performance metric M is the percentage
of cars that have arrived to their destinations (nbArrived)
in comparison with method without fusion (nbNoF'usion):
M = %% x 100. In this table, the result is an average
value of 10 iterations of the scenario.

The centralized method has the best performance but there
are drawbacks. If a central server fails, the whole system
stops working. It also needs internet connectivity to operate
since the private data of the users are sent to a third party. The
“cautious only” algorithm gives better results than doing no
fusion but both “Dempster local value” and “Dempster after
cautious” are better. Finally, the best distributed algorithm is
the “Dempster at one hop” but it needs to send car’s local
values to neighbors. The privacy of this last algorithm is
better than the centralized version since only neighbors have
access to private data and not a central server that aggregate
everyone’s positions in the network.

V. CONCLUSION

In the paper we have shown an new application for a
distributed data fusion algorithm based on the Dempster
Shafer theory. We have demonstrated the utility of distributed
data fusion to regulate traffic. We have shown the difference
between the different variants in different realistic scenario.
Despite slightly worse results than with centralized fusion,
distributed data fusion shows promising results since it pre-
serves users’ private data by not sending personal information
to a third party and are more resilient to malfunctions. in the
absence of a single point of failure. We have also shown that
data fusion reduces the amount of emissions. Future work
concerns the improvement of the mass building model and
the validation from real data acquired on the platforms of the
Heudiasyc laboratory.
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