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Abstract

The evidential K nearest neighbor classifier is based on discounting evidence from learning
instances in a neighborhood of the pattern to be classified. To adapt the method to partially
supervised data, we propose to replace the classical discounting operation by contextual
discounting, a more complex operation based on as many discount rates as classes. The
parameters of the method are tuned by maximizing the evidential likelihood, an extension
of the likelihood function based on uncertain data. The resulting classifier is shown to
outperform alternative methods in partially supervised learning tasks.

Keywords: Belief functions, Dempster-Shafer theory, classification, machine learning, soft
labels, uncertain data.

1. Introduction

The evidential K-nearest neighbor (EKNN) classifier [6] is a distance-based classification
algorithm based on the Dempster-Shafer (DS) theory of evidence [5, 30, 10]. Since its
introduction in 1995, it has been used extensively (see, e.g., [3], [15], [31], [37]) and several
variants have been developed [1], [18], [17], [20], [21], [22], [26], [36], [38]. The EKNN
classifier is based on the following simple ideas: (1) each neighbor of the pattern x to be
classified is considered as a piece of evidence about the class of x, represented by a DS mass
function; (2) each mass function is discounted (weakened) based on its distance to x; and
(3) the discounted mass functions induced by the K nearest neighbors of x are combined by
Dempster’s rule, the fundamental mechanism for pooling evidence in DS theory.

In [6], the parameters used to define the discount rate as a function of distance were fixed
heuristically, and the method was shown to outperform other K-nearest neighbor rules. In
[39], the authors showed that the performances of the method could be further improved
by learning the parameters through minimizing the mean squared error (MSE) between
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pignistic probabilities and class indicator variables. In [11], the EKNN rule was extended
to the case where the class label of training patterns is only partially known, and described
by a possibility distribution. However, the learning procedure defined in [39] cannot be
straightforwardly extended to the partially labeled setting because (1) the discount rate
defined in the procedure depends on the class of the neighboring pattern that is assumed to
be known, and (2) combining arbitrary mass functions and computing pignistic probabilities
has exponential complexity in the worst case.

In this paper1, we revisit the EKNN classifier by exploiting some recent developments
in the theory of belief functions: (1) The discounting operation is replaced by contextual
discounting [25], allowing us to define one discount rate parameter per class even in the
partially labeled case; and (2) instead of the MSE and pignistic probabilities, we propose
to use the conditional evidential likelihood criterion [8, 29], which allows us to account for
partial class labels in a natural way, and can be computed in linear time as a function of
the number of classes.

The rest of this paper is organized as follows. Background definitions and results are first
recalled in Section 2. The Contextual-Discounting Evidential K-NN (CD-EKNN) classifier
is then introduced in Section 3, and experimental results are reported in Section 4. Section
5 concludes the paper.

2. Background

In this section, we provide a reminder of the main notions needed in the rest of the
paper. Basic concepts of DS theory are first recalled in Section 2.1. The classical and con-
textual discounting operations are then reviewed in Section 2.2, and the notion of evidential
likelihood criterion is briefly introduced in Section 2.3.

2.1. Basic concepts

Let Ω be a finite set. A mass function [30] is a mapping m from the power set of Ω,
denoted as 2Ω, to the interval [0, 1], such that∑

A⊆Ω

m(A) = 1 (1)

and m(∅) = 0. The subsets A of Ω such that m(A) > 0 are called the focal sets of m.
Typically, Ω is a set of possible answers to some question, and m(A) is interpreted as a
share of a unit mass of belief allocated to the hypothesis that the truth is in A, and which
cannot be allocated to any strict subset of A based on the available evidence. A mass
function with only one focal set is said to be logical.

1This paper is a revised and extended version of a short paper presented at the BELIEF 2018 conference
[19].
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Given a mass function m, belief and plausibility functions are defined as follows:

Bel(A) =
∑
B⊆A

m(B) (2a)

Pl(A) =
∑

B∩A 6=∅

m(B), (2b)

for all A ⊆ Ω. The quantity Bel(A) can be interpreted as a degree of support in A, while
Pl(A) can be seen as a degree to which hypothesis A is consistent with the evidence [30].
The contour function pl : Ω → [0, 1] is the restriction of the plausibility function Pl to
singletons, i.e., pl(ω) = Pl({ω}), for all ω ∈ Ω.

Two mass functions m1 and m2 representing independent items of evidence can be com-
bined using Dempster’s rule [30] as follows,

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C), (3)

for all A ⊆ Ω such that A 6= ∅, where the quantity

κ =
∑

B∩C=∅

m1(B)m2(C) (4)

is called the degree of conflict between m1 and m2. The combined mass function m1⊕m2 is
called the orthogonal sum of m1 and m2. Dempster’s rule is commutative and associative.
The contour function pl of m = m1 ⊕m2 is given by

pl(ω) =
pl1(ω)pl2(ω)

1− κ
, (5)

for all ω ∈ Ω, where pl1 and pl2 are, respectively, the contour functions of m1 and m2.
Given a mass function m and a nonempty subset A of Ω such that Pl(A) > 0, the

conditional mass function m(·|A) is defined as the orthogonal sum of m and the logical
mass function with focal set A. Conversely, given a conditional mass function m0 given
A, its conditional embedding [32] is the (unconditional) mass function on Ω obtained by
transferring each mass m0(C) to C ∪A, for all C ⊆ A. Conditional embedding is a form of
“deconditioning”, i.e., it performs the inverse of conditioning.

Dempster’s rule is essentially a conjunctive operation (it boils down to set intersection
when combining two logical mass functions mA and mB with overlapping focal sets). A
disjunctive counterpart of Dempster’s rule is obtained by replacing intersection by union in
the right-hand side of (3). The resulting operation, called the disjunctive rule of combination
[12], is defined as

(m1 ∪m2)(A) =
∑

B∪C=A

m1(B)m2(C), (6)

for all A ⊆ Ω. The disjunctive rule is relevant for combining pieces of evidence, when we
only know that at least one piece of evidence is reliable [33].
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Given a mass function m, the associated pignistic probability distribution [35] is defined
as

BetP (ω) =
∑

{A⊆Ω|ω∈A}

m(A)

|A|
, (7)

for all ω ∈ Ω. The pignistic mass-probability transformation (7) was advocated by Smets
for decision-making [34],[35]. A recent review of methods for decision-making in the belief
function framework can be found in [9].

2.2. Discounting

Letm be a mass function on Ω = {ω1, . . . , ωc} and β a coefficient in [0, 1]. The discounting
operation [30] with discount rate 1− β transforms m into the following mass function:

βm = β m+ (1− β)m?, (8)

where m? is the vacuous mass function defined by m?(Ω) = 1. Mass function βm is, thus, a
mixture of m and m?, and the discount rate is the weight of m? in the mixture. The contour
function of βm is

βpl(ωk) = 1− β + βpl(ωk), k = 1, . . . , c, (9)

where pl is the contour function of m.
The discounting operation can be justified as follows [35]. Assume that m is provided

by a source that may be reliable (R) or not (¬R). If the source is reliable, we adopt its
opinion as ours, i.e., we set m(·|R) = m. If it is not reliable, then it leaves us in a state of
total ignorance, i.e., m(·|¬R) = m?. Furthermore, assume that we have the following mass
function on R = {R,¬R}: mR({R}) = β and mR(R) = 1− β, i.e., our degree of belief that
the source is reliable is equal to β. Then, combining the conditional embedding of m(·|R)
with mR yields precisely βm in (8), after marginalizing on Ω.

In [25], the authors generalized the discounting operation using the notion of contextual
discounting. In the corresponding refined model, m(·|R) and m(·|¬R) are defined as before,
but our beliefs about the reliability of the source are now defined given each state2 in Ω, i.e.,
we have c conditional mass functions defined by mR({R}|ωk) = βk and mR(R|ωk) = 1−βk,
for k = 1, . . . , c. In this model, βk is the degree of belief that the source of information is
reliable, given that the true state is ωk. Combining the conditional embeddings of m(·|R)
and mR(·|ωk) for k = 1, . . . , c yields the following discounted mass function,

βm(A) =
∑
B⊆A

m(B)

 ∏
ωk∈A\B

(1− βk)
∏
ωl∈A

βl

 (10)

2Actually, the contextual discounting operation can be defined in a more general setting, where the
reliability of the source is defined given each element of a partition of Ω. Only the simplest case is considered
here.
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for all A ⊆ Ω, where β = (β1, . . . , βc), and a product of terms is equal to 1 if the index set
is empty. It can also be shown [25] that βm(A) is the result of the disjunctive combination
of m with an unnormalized mass function m0 defined as

m0(C) =
∏
ωk∈C

(1− βk)
∏
ω`∈C

β`, ∀C ⊆ Ω .

The pignistic probability distribution associated to βm does not have a simple expression
but, as shown in [25], its contour function is

βpl(ωk) = 1− βk + βkpl(ωk), k = 1, . . . , c, (11)

which has the same form as (9). Also, comparing Eqs (9) and (11), we can see that contextual
discounting yields the same contour function as classical discounting when the coefficients
βk are equal, although the discounted mass functions are different.

Example 1. As in [25], let us consider a simplified aerial target recognition problem, in
which we have three classes: airplane (ω1 ≡ a), helicopter (ω2 ≡ h) and rocket (ω3 ≡ r). Let
Ω = {a, h, r}. Assume that a sensor has provided the following mass function for a given
target: m({a}) = 0.5, m({r}) = 0.5, meaning that the sensor hesitates between classifying
the target as an airplane or a rocket. The degree of belief β1 that the sensor is reliable when
the source is an airplane is equal to 0.6, whereas the sensor is known to be fully reliable
(β2 = β3 = 1) when the target is a helicopter or a rocket. Mass function m0 is then

m0(∅) = 0.6, m0({a}) = 0.4,

and the discounted mass function βm = m ∪m0 is

βm({a}) = 0.5, βm({r}) = 0.3, βm({a, r}) = 0.2.

We can see that 40% of the mass initially assigned to {r} has been transferred to {a, r},
which can be interpreted as follows [25]: “if the target is an airplane, then the source is not
reliable, and we may erroneously declare it as a rocket; consequently, when the source reports
a rocket, it may actually be a rocket or an airplane”. �

2.3. Evidential likelihood

The notion of evidential likelihood, introduced in [8], extends the classical notion of
likelihood to the case where statistical data are only partially observed and described by a
belief function in sample space.

Let Y be a discrete random vector with finite sample space Y and probability mass
function pY (y; θ) assumed to be known up to a parameter θ ∈ Θ. After a realization y of Y
has been observed, the likelihood function is the mapping from Θ to [0, 1] defined by

L(θ) = pY (y; θ), ∀θ ∈ Θ. (12)
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Let us now assume that y is not observed precisely, but we collect some evidence about y
that we represent by a mass function m on Y . The likelihood function (12) can then be
generalized [8] to

Le(θ) =
∑
A⊆Y

m(A)
∑
y∈A

pY (y; θ), ∀θ ∈ Θ, (13)

Function Le(θ) defined by (13) is called the evidential likelihood function induced by the
uncertain data m. Whenever mass function m in (13) is certain, i.e., when m({y}) = 1, the
evidential likelihood (13) coincides with the classical likelihood (12), which only depends on
the pdf pY modeling the random data generating process.

By permuting the two summations in (13), we get another expression for Le(θ) as

Le(θ) =
∑
y∈Y

pY (y; θ)
∑
A3y

m(A) =
∑
y∈Y

pY (y; θ)pl(y), (14)

where pl is the contour function associated to m. From the right-hand side of (14), we
can see that 1 − Le(θ) equals the degree of conflict between the uncertain data m and the
probability mass function p(y; θ). Maximizing Le(θ) thus amounts to minimizing the conflict
between the data and the model.

Equation (14) also reveals that Le(θ) can, alternatively, be viewed as the expectation of
pl(Y ) with respect to pY (·; θ):

Le(θ) = Eθ[pl(Y )]. (15)

In the special case where Y = (Y1, . . . , Yn) is an independent sample, and assuming that the
contour function pl can be decomposed as

pl(y) = pl1(y1) . . . pln(yn), (16)

a property called cognitive independence by Shafer [30], (15) simplifies to

Le(θ) =
n∏
i=1

Eθ[pli(Yi)]. (17)

3. Contextual-discounting Evidential K-NN classifier

In this section, we start by recalling the EKNN classifier in Section 3.1. The new variant
based on contextual discounting is then introduced in Section 3.2, and partially supervised
parameter optimization in this model is addressed in Section 3.3.

3.1. Evidential K-NN classifier

Consider a classification problem with c classes in Ω = {ω1, . . . , ωc}, and a learning set
L = {(xi, yi)}ni=1 of n examples (xi, yi), where xi is a p-dimensional feature vector describing
example i, and yi ∈ Ω is the class of that example. Let x be a new pattern to be classified,
and NK(x) the set of its K nearest neighbors in L, according to some distance d (usually,

6



the Euclidean distance when the p features are numerical). In [6] and [39], it was assumed
that each neighbor xj ∈ NK(x) induces a mass function m̂j defined as

m̂j({ωk}) = βk(dj)yjk, k = 1, . . . , c (18a)

m̂j(Ω) = 1−
c∑

k=1

βk(dj)yjk, (18b)

where yjk = 1 if yj = ωk and yjk = 0 otherwise, dj = d(x, xj) is the distance between x
and xj, and βk is a decreasing function, usually taken as βk(dj) = α exp(−γkd2

j), where α
is a coefficient in [0, 1] and the γk’s are strictly positive scale parameters. Mass function
m̂j defined by (18) can be seen as a discounted version (using the classical discounting
operation recalled in Section 2.2) of the certain mass function mj such that mj({ωk}) = yjk,
k = 1, . . . , c, with discount rate 1− βk(dj). Its contour function is

p̂lj(ωk) = 1−
c∑
l=1

βl(dj)yjl + βk(dj)yjk = 1−
∑
l 6=k

βl(dj)yjl, (19)

for k = 1, . . . , c.
By pooling mass functions m̂j induced by the K nearest neighbors of x using Dempster’s

rule (3), we get the combined mass function

m̂ =
⊕

xj∈NK(x)

m̂j, (20)

which summarizes the evidence about the class of x based on its K nearest neighbors. The
focal sets of m̂ are the singletons {ωk}, k = 1, . . . , c, and Ω. The class with maximum
pignistic probability or, equivalently, with maximum plausibility can then be selected [7].

In [39], it was proposed to leave parameter α fixed and to learn parameter vector γ =
(γ1, . . . , γc) by minimizing the following error function,

C(γ) =
n∑
i=1

c∑
k=1

(B̂etpi(ωk)− yik)2, (21)

where B̂etpi is the pignistic probability distribution computed from mass function m̂i ob-
tained from the K nearest neighbors of xi:

B̂etpi(ωk) = m̂i({ωk}) +
m̂i(Ω)

c
. (22)

Because this classifier is based on c learnable parameters γk, k = 1, . . . , c, it will be later
referred to as the γk-EKNN classifier.
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Extension to partially supervised data

In [6] and [11], it was proposed to apply the EKNN procedure to partially labeled data
L = {(xi,mi)}ni=1, where mi is an arbitrary mass function (called a soft label [4, 29]) that
represents partial knowledge about the class of example xi. Such knowledge may be provided
by an expert (for instance, in diagnosis problems), or by any other source of information
about the class membership of training instances. The fully supervised case is recovered
when all mass functions mi are certain, while semi-supervised learning [2] is recovered when
some mi’s are vacuous, and some are certain.

As noted in [6], since mass function m̂j defined by (18) is the discounted version of the
certain mass function mj({yj}) = 1, the same discounting operation can be applied whatever
the form of mj. More precisely, let x be a pattern to be classified, and xj one of its K nearest
neighbors. In [11], it was proposed to generalize (18) by discounting each neighbor mass
function mj with discount rate 1−β(dj) = 1−α exp(−γd2

j) depending only on the distance
dj between x and xj. The evidence from the j-th nearest neighbor is then represented by
the following mass function:

m̂j(A) = β(dj)mj(A), for all A ⊂ Ω (23a)

m̂j(Ω) = 1− β(dj) + β(dj)mj(Ω), (23b)

and the contour function corresponding to m̂j in (23) is

p̂lj(ωk) = 1− β(dj) + β(dj)pljk, (24)

where pljk is the plausibility that instance j belongs to class ωk:

pljk =
∑

{A⊆Ω|ωk∈A}

mj(A).

It can be checked that (24) becomes identical to (19) when βk(dj) = β(dj) and pljk = yjk
for all k. The combined mass function m̂ is defined by (20) as in the fully supervised case.
The rule defined by (23) has two parameters: α and γ. In [11], it was proposed to optimize
these two parameters by minimizing an error function depending on the pignistic probability
induced by m̂. This classifier will hereafter be referred to as the (α, γ)-EKNN classifier.

The (α, γ)-EKNN classifier yields good results in some cases, but it depends on only
two parameters, against c + 1 for the γk-EKNN classifier. This lack of flexibility hampers
the performance of the method for some datasets, as we will see in Section 4. Another
issue with this extension of the EKNN procedure to partially labeled data is computational
complexity. To compute the MSE criterion (21) or any error function depending on pignistic
probabilities (as proposed in [11]), we need to compute the whole combined mass functions
m̂i, which, in the worst case of arbitrary mass functions mi, has exponential complexity and
may be problematic for classification tasks with a large number of classes. In contrast, the
evidential likelihood recalled in Section 2.3 requires to compute only the contour function
of the combined mass functions m̂i, which can be done in time proportional to the number
of classes.
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In Section 3.2 below, we will solve these two issues by introducing a new version of the
EKNN classifier suitable for partially supervised data, based on the combination of two
ideas: using contextual discounting instead of classical discounting, and using the evidential
likelihood instead of the MSE criterion.

3.2. Contextual discounting EKNN classifier

As the EKNN classifier recalled in the previous section is based on classical discounting,
it can be readily generalized using the contextual discounting operation recalled in Section
2.2. In the general partially supervised case, the discounting operation (23) can be replaced
by contextual discounting. Using (10), the evidence from the j-th neighbor with label mj

and situated at distance dj then becomes

m̂j(A) =
∑
B⊆A

mj(B)

 ∏
ωk∈A\B

[1− βk(dj)]
∏
ωl∈A

βl(dj)

 , (25)

where the coefficients βk(dj) can be defined as

βk(dj) = α exp(−γkd2
j), k = 1, . . . , c. (26)

This new rule, called Contextual Discounting Evidential K-nearest neighbor (CD-EKNN),
has c+ 1 learnable parameters: α ∈ [0, 1] and γk ≥ 0, k = 1, . . . , c.

Whereas the discounted mass function m̂j given by (25) has a complicated expression in
general, its contour function can be obtained from (11) as

p̂lj(ωk) = 1− βk(dj) + βk(dj)pljk, k = 1, . . . , c, (27)

where, as before, pljk is the plausibility that instance j belongs to class ωk. The combined
contour function after pooling the evidence of the K nearest neighbors can then be computed
up to a multiplicative constant as

p̂l(ωk) ∝
∏

xj∈NK(x)

[1− βk(dj) + βk(dj)pljk] , k = 1, . . . , c. (28)

We note that the term in the right-hand side of (28) can be computed in time proportional
to the number K of neighbors and the number c of classes, after the K nearest neighbors
of x have been found. The contour function is all we need to make decisions using the
maximum-plausibility rule and, as we will see in the next section, to train the classifier by
maximizing the evidential likelihood criterion.

Comparison with the γk-EKNN rule

In the case of fully supervised data, mass functions mj are certain (they have only one
focal set and it is a singleton). We then have pljk = yjk ∈ {0, 1}, and (27) becomes

p̂lj(ωk) = 1− βk(dj) + βk(dj)yjk, k = 1, . . . , c. (29)
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Comparing Eqs (19) and (29), we can see that the contour functions p̂lj computed by the
γk-EKNN and CD-EKNN classifiers are different, except when β1 = β2 = . . . = βc, in which
case Eq. (19) becomes

p̂lj(ωk) = 1− β(dj)
c∑
l=1

yjl + β(dj)yjk = 1− β(dj) + β(dj)yjk,

which is identical to (29). Consequently, with fully supervised data, the two classifiers yield
different decisions in general. To explain this difference, we need to understand the different
interpretations of coefficients βk(dj) in both rules. In the γk-EKNN model, βk(dj) is the
degree of belief that a neighbor situated at distance dj and belonging to class ωk provides
reliable information. In contrast, in the CD-EKNN model, βk(dj) is the degree of belief that
a neighbor situated at distance dj provides reliable information, given that the true class of
the instance under consideration is ωk.

To illustrate this difference between the two models, let us consider the three-class data
shown in Figures 1 and 2, which display the contour lines in feature space of output masses
computed by, respectively, the CD-EKNN and γk-EKNN classifiers with parameters K = 10,
α = 0.5 and γ1 = γ2 = γ3 = 1. We can see that the γk-EKNN classifier assigns masses only
to singletons and the whole frame Ω, whereas the CD-EKNN assigns masses to all non empty
subsets of Ω.

As far as computational complexity is concerned, the γk-EKNN and CD-EKNN classifiers
require exactly the same number of operations to make a decision: after the K nearest
neighbors of input vector x have been found, computing the c combined plausibilities p̂l(ωk)
up to a multiplicative constant can be done in time proportional to K and c.

Comparison with the (α, γ)-EKNN rule

In the case of partially supervised data, the reference method is the (α, γ)-EKNN rule
defined by Eqs (23)-(24). This method depends on only two parameters, whereas the CD-
EKNN rule has c + 1 parameters. By comparing Eqs (24) and (27), we can see that the
two methods yield the same contour functions (but not the same combined mass functions)
when β1 = β2 = . . . = βc. In the general case, the two methods lead to different decisions,
but have the same complexity when using the maximum-plausibility decision rule.

3.3. Learning

To learn the parameters θ = (α, γ1, . . . , γc) of the CD-EKNN classifier defined in Section
3.2, we propose to maximize the evidential likelihood function recalled in Section 2.3. Before
we introduce the evidential likelihood for this model, let us recall the expression of the
classical likelihood in the case of fully supervised data L = {(xi, yi)}ni=1. Let p̂li the contour

function computed for instance i based on its K nearest neighbors using (28), p̂lik = p̂li(ωk),

and p̂ik the probability of class ωk obtained from p̂li after normalization:

p̂ik =
p̂lik∑c
l=1 p̂lil

. (30)
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Figure 1: Contour plots of output masses computed by the CD-EKNN classifier for a three-class dataset.
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Figure 2: Contour plots of output masses computed by the γk-EKNN classifier for a three-class dataset..
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Viewing p̂ik as a model of the conditional probability that instance i belongs to class ωk given
xi, the conditional likelihood (given feature vectors x1, . . . , xn) after observing the true class
labels y1, . . . , yn is

Lc(θ) =
n∏
i=1

c∏
k=1

p̂ yikik . (31)

This criterion can be used instead of the MSE criterion (21) in the case of fully supervised
data. However, a distinctive advantage of the likelihood criterion as compared to MSE is
that the former can be more easily extended to partially supervised learning, thanks to the
notion of evidential likelihood recalled in Section 2.3.

Let us assume that the learning set is of the form L = {(xi,mi)}ni=1, where mi is a mass
function that represents our partial knowledge of the class of xi. The expected plausibility
Eθ[pli(Yi)] in (17) can be written as

Eθ[pli(Yi)] =
c∑

k=1

p̂ikplik.

The evidential likelihood (17) is then

Le(θ) =
n∏
i=1

c∑
k=1

p̂ikplik, (32)

and its logarithm is

`e(θ) =
n∑
i=1

log

(
c∑

k=1

p̂ikplik

)
. (33)

We can check that the evidential likelihood (32) boils down to the classical likelihood (31)
when all mass functions mi are certain, i.e., when pli(ωk) = yik for all i and k.

The evidential log-likelihood `e(θ) can be maximized using an iterative optimization
procedure such as the Nelder-Mead or BFGS algorithms [13]. To handle the constraints
0 ≤ α ≤ 1 and γk ≥ 0, we can reparameterize the problem by introducing new parameters
ξ ∈ R and ηk ∈ R such that α = [1 + exp(ξ)]−1 and γk = η2

k. Pseudo-code for the calculation
of the evidential likelihood is given in Algorithm 1 and the learning procedure is sketched in
Algorithm 2. We note that the nearest neighbors are computed only once at the beginning
of the procedure, and heuristics for the initialization of ξ and ηk, k = 1, . . . , c are given in
Algorithm 2. The expression of the gradient of `e(θ

′), with θ′ = (ξ, η1, . . . , ηc), is given in
Appendix A.

4. Numerical Experiments

In this section, we present some results with simulated and real datasets. In Section 4.1,
we first consider the fully supervised case, in which the true class labels are provided to the
learning algorithms. In Section 4.2, we then simulate label uncertainty by corrupting labels
with noise and representing uncertainty using suitable mass functions.
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Algorithm 1 Calculation of the evidential likelihood.

Require: K, θ′ = (ξ, η1, . . . , ηc)
Require: Matrix D = (dij) (of size n× n) of distances between the n training vectors
Require: Matrix I = (Iij) (of size n×K), where Iij is the index of the j-th neighbor of xi

in the learning set
Require: Matrix PL = (plik) (of size n× c) of soft labels
α := [1 + exp(ξ)]−1

for k = 1 to c do
γk := η2

k

end for
for i = 1 to n do

for k = 1 to c do
for j = 1 to K do
j′ := Iij
βijk := α exp(−γkd2

ij′)

p̂lijk := 1− βijk + βijkplj′k
end for
p̂lik :=

∏K
j=1 p̂lijk

end for
p̂ik := p̂lik/

∑c
l=1 p̂lil

end for
`e(θ

′) :=
∑n

i=1 log (
∑c

k=1 p̂ikplik)
Ensure: `e(θ

′)

Algorithm 2 Learning algorithm.

Require: Learning set L = {xi,mi}, number K of neighbors
Compute the distance matrix D = (dij)
for i = 1 to n do

Find the K nearest neighbors of xi in the learning set. Let Iij denote the index of the
j-th neighbor of xi.

end for
ξ0 := 0

ηk0 :=
(

2
n(n−1)

∑n
i=1

∑
j<i d

2
ij

)−1/2

, k = 1, . . . , c

θ′0 := (ξ0, η10, . . . , ηc0)
Maximize `e(θ

′) w.r.t. θ′, starting from θ′0
Ensure: θ̂′ := arg maxθ′ `e(θ

′)
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4.1. Fully supervised data

In the experiments reported in this and the following section, we considered one simulated
data distribution and five real data sets. The simulated data were generated from c = 2
Gaussian distributions with densities N (µk, σ

2
kI), where µ1 = (0, 0, 0)T , µ2 = (1, 0, 0)T ,

σ2
1 = 0.1I, σ2

2 = 2I, and I is the 3 × 3 identity matrix. Each simulated dataset had 50
vectors in each class. The real datasets3 were the following:

• The Wine data are the results of a chemical analysis of wines grown in the same region
in Italy but derived from three different cultivars. There are n = 178 instances, p = 13
features corresponding to 13 constituents, and c = 3 classes corresponding to three
types of wines.

• The Ionosphere dataset was collected by a radar system and consists of phased array
of 16 high-frequency antennas with a total transmitted power of the order of 6.4
kilowatts. The targets were free electrons in the ionosphere. “Good” radar returns are
those showing evidence of some type of structure in the ionosphere. “Bad” returns are
those that do not. The Ionosphere dataset has n = 351 instances, p = 34 features and
c = 2 classes.

• The Ecoli dataset contains data about protein localization sites in E. coli bacteria. We
used only the quantitative attributes (2, 3, 6, 7, and 8) and the four most frequent
classes: ‘im’, ‘pp’, ‘imU’ and ‘cp’, resulting in a dataset with n=307 objects, p = 5
attributes and c = 4 classes.

• The Sonar data were used by Gorman and Sejnowski [14] in a study of the classification
of sonar signals using a neural network. The task is to discriminate between sonar
signals bounced off a metal cylinder and those bounced off a roughly cylindrical rock.
The dataset has n = 204 instances, p = 60 attributes and c = 2 classes.

• The Heart data [16] were collected as part of a study aiming to establish the intensity
of ischemic heart disease risk factors in a high-incidence region in South Africa. There
are p = 8 numeric attributes, and the response variable is the presence or absence of
myocardial infarction (MI). There are 160 positive cases in this data, and a sample of
302 negative cases (controls).

For each dataset, we considered six classifiers:

1. The CD-EKNN rule with c scale parameters γ1, . . . , γc trained with the likelihood
criterion (32);

2. The CD-EKNN rule trained with the MSE criterion (21);

3. The γk-EKNN rule recalled in Section 3.1, trained with the MSE criterion (21);

3The Ionosphere, Sonar, Ecoli and Wine data can be retrieved from the UCI Machine Learning Repository
at http://archive.ics.uci.edu/ml. The Heart data can be downloaded from https://web.stanford.

edu/~hastie/ElemStatLearn/.
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4. The γk-EKNN rule trained with the likelihood criterion (32);

5. The (α, γ)-EKNN rule based on classical discounting and the likelihood criterion (32);

6. The voting K-NN rule.

Figure 3 shows the contours of the negative log-likelihood function as a function of
parameters γ1 and γ2 for the CD-EKNN and γk-EKNN classifiers, for two-class datasets
Ionosphere (Figures 3a and 3b) and Sonar (Figures 3c and 3d). Parameter α was fixed at
its maximum-likelihood value for the CD-EKNN classifier, and at 0.5 for the γk-EKNN
classifier. As we can see, the optimum values of parameters γk are very different for the
two classifiers. For instance, for the Ionosphere dataset, we have (γ̂1, γ̂2) ≈ (0, 0.11) for the
CD-EKNN classifier, and (γ̂1, γ̂2) ≈ (0.15, 0) for the γk-EKNN classifier. This difference
comes as no surprise given that these parameters have different interpretations in the two
models, as discussed in Section 3.2.

The leave-one-out error rates achieved by the six considered classifiers are displayed in
Figure 4 as functions of the number K of neighbors. For the simulated data (Figure 4a),
the reported error rates are averages over 10 datasets. The error curves of classifiers trained
with the MSE and likelihood criteria are drawn, respectively, as black and red lines. The
main findings from these results are the following:

• The CD-EKNN and γk-EKNN classifiers basically have similar performances with fully
supervised data regardless of the learning criterion. However, the γk-EKNN classifier
yielded slightly higher error rates with the likelihood criterion for K ≥ 15 on the
simulated and Heart data (Figures 4a and 4f).

• The (α, γ)-EKNN classifier based on classical discounting performed significantly worse
than the CD-EKNN and γk-EKNN classifiers, especially on the simulated, Ionosphere
and Ecoli datasets (Figures 4a, 4c and 4d).

• The voting K-NN rule generally has the worst performances, except on the Heart data
(Figure 4f). This result confirms previous findings [6] [39].

From this first experiment, we may conclude that the CD-EKNN rule performs neither
better nor worse than the γk-EKNN rule, while both rules generally perform better than the
(α, γ)-EKNN and voting K-NN rules. The CD-EKNN performs equally well when trained
with the likelihood and MSE criteria, while the γk-EKNN rule seems to perform a little
better with the original MSE criterion for large K. The case of partially supervised data
will be addressed in the next section.

4.2. Partially supervised datasets

To study the performances of the CD-EKNN classifier with partially supervised data,
we simulated soft labels for the six datasets used in the previous section, using the method
described in [4] and [29]. For each instance i, a probability pi was generated from a beta
distribution with mean µ = 0.5 and variance 0.04. Then, with probability pi, the class label
yi of instance i was replaced by y′i picked randomly from Ω. Otherwise, we set y′i = yi. The
class information for instance i then consists of the “noisy” label y′i and the probability pi
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Figure 3: Contours of the negative log-likelihood as a function of parameters γ1 and γ2 for the CD-EKNN
(a)-(c) and γk-EKNN (b)-(d) classifiers, for the Ionosphere (a)-(b) and Sonar (c)-(d) datasets.
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Figure 4: Leave-one-out error rates vs. number K of neighbors for fully supervised datasets. The methods
are: the CD-EKNN classifier (solid lines), the (α, γ)-EKNN classifier (dashed lines), the γk-EKNN classifier
(dotted lines) and the voting K-NN rule (dash-dotted lines). Black and red curves correspond, respectively,
to classifiers trained with the MSE and likelihood criteria. This figure is better viewed in color.

18



that this label was generated at random. A labeling contour function pli was then defined
as pli(y

′
i) = 1 and pli(ω) = pi for all ω 6= y′i. This procedure ensures that the soft label

pli is all the more uncertain that the label with maximum plausibility has the more chance
of being incorrect. In particular, if pi = 1, the noisy label is completely random and the
soft label is vacuous (it verifies pl(ωk) = 1 for all k). If pi = 0, then the noisy label y′i is
fully reliable (it is equal for sure to the true label), and the soft label is certain (it verifies
pli(y

′
i) = 1 and pli(ω) = 0 for all ω 6= y′i). This procedure simulates real situations in which

labels are provided, e.g., by an expert or by some indirect method, and the uncertainty of
the labeling process can be effectively quantified [4], [29].

Example 2. For instance, assume that Ω = {ω1, ω2, ω3} and the true label is yi = ω1 and
pi = 0.7. With probability 0.7, ω1 is replaced by a label randomly picked in Ω. Assume that
ω1 is replaced by ω2, so the noisy label is y′i = ω2. The soft label is finally pli(ω1) = 0.7,
pli(ω2) = 1 and pli(ω3) = 0.7.

For each real dataset, we generated 10 learning sets with different randomly generated
soft labels. We compared the performances of the following four classifiers:

1. The CD-EKNN rule trained with partial labels and the evidential likelihood criterion
(32);

2. The (α, γ)-EKNN rule trained with partial labels and the evidential likelihood criterion
(32);

3. The γk-EKNN rule trained with noisy labels y′i and the MSE criterion (21);
4. The voting K-NN rule with noisy labels y′i.

We note that noisy labels were used with the γk-EKNN and voting K-NN rules because
these classifiers can only handle fully supervised data and there is no obvious way to use
them with partially supervised data.

The results of this experiment are reported in Figure 5. We can see that there is consid-
erable variability of the results across the datasets, but the main findings from these results
can be summarized as follows:

• The CD-EKNN classifier performs as well as the (α, γ)-EKNN rule on the Sonar data
(Figure 5e), and strictly better on all other datasets. The performance gain is partic-
ularly large with the simulated and Ionosphere datasets (Figures 5a and 5c).

• The (α, γ)-EKNN rule performs poorly on some datasets, namely, the simulated, Iono-
sphere and Heart datasets (Figures 5a, 5c and 5f). This confirms the interest of using
contextual discounting instead of classical discounting with the EKNN rule in the case
of partially supervised data.

• The γk-EKNN and voting K-NN rules using noisy labels, generally perform poorly.
This is not surprising, as they are not able to use the information about label uncer-
tainty contained in soft labels. This result confirms similar findings reported in [4],
[8] and [29] for parametric classifiers. The γk-EKNN rule proved even less robust that
the simpler voting K-NN rule, which yielded lower error rates for the Wine, Ionosphere
and Ecoli datasets (Figures 5b, 5c and 5d).
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Figure 5: Leave-one-out error rates vs. number K of neighbors for partially supervised datasets. The
methods are: the CD-EKNN classifier trained with the likelihood criterion (solid lines), the (α, γ)-EKNN
classifier trained with the likelihood criterion (dashed lines), the γk-EKNN classifier trained with the MSE
criterion and noisy labels (dotted lines) and the voting K-NN rule with noisy labels (dash-dotted lines).

20



5. Conclusions

The EKNN classifier introduced in [6] and perfected in [39] has proved very efficient for
fully supervised classification. However, because it uses different discount rates for neighbors
from different classes, the method cannot be readily extended to the partially supervised
learning situation, in which we only have uncertain information about the class of learning
instances. The simple approach outlined in [11] lacks flexibility as it relies on a single
discount rate parameter; it also suffers from high computational complexity as it requires
to combine the full mass functions.

In this paper, we have proposed a new variant of the EKNN classifier suitable for partially
supervised classification, by replacing classical discounting with the contextual discounting
operation introduced in [25]. The underlying model is based on the assumption that the
reliability of the information from different neighbors depends on the class of the pattern
to be classified. We also replaced the MSE criterion by the conditional evidential likelihood
introduced in [8] and already used for partially supervised logistic regression in [29]. The
resulting CD-EKNN classifier was shown to perform very well with partially supervised
data, while performing as well as the original EKNN classifier with fully supervised data.
Its computational complexity is identical to that of the original EKNN classifier, and it is
not increased when learning from partially supervised data.

In contrast with the original EKNN classifier, which assigns masses only to singletons
and the whole frame of discernment, the CD-EKNN classifier generates more general mass
functions, as a result of applying the contextual discounting operation. In future work, it
will be interesting to find out whether this richer information can be exploited for, e.g.,
classifier combination. Beyond contextual discounting, other mass correction mechanisms
such as introduced in [27], [23]-[24] and [28] could also be investigated.
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Appendix A. Gradient calculation

Let dij denote the distance between xi and xj and let βijk = α exp(−γkd2
ij). The evidential

log-likelihood (33) can be written as

`e(θ) =
n∑
i=1

`e,i(θ),

with

`e,i(θ) = log

(
c∑

k=1

p̂ikplik

)
,
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p̂ik =
p̂lik∑c
l=1 p̂lil

,

and
p̂lik ∝

∏
xj∈NK(xi)

[1− βijk(1− pljk)] .

Finally, we introduce new parameters ξ and ηk, k = 1, . . . , c such that α = [1 + exp(ξ)]−1,
γk = η2

k and θ′ = (ξ, η1, . . . , ηc). With these notations, we have

∂`e(θ
′)

∂ηk
=

n∑
i=1

∂`e,i(θ
′)

∂ηk
(A.1)

and
∂`e(θ

′)

∂ξ
=

n∑
i=1

∂`e,i(θ
′)

∂ξ
. (A.2)

Calculation of
∂`e,i(θ

′)
∂ηk

. We have

∂`e,i(θ
′)

∂ηk
=
∂`e,i(θ

′)

∂γk

∂γk
∂ηk

= 2ηk

c∑
q=1

∂`e,i(θ
′)

∂p̂iq

∂p̂iq
∂γk

, (A.3)

with
∂`e,i(θ

′)

∂p̂iq
=

pliq∑c
k=1 p̂ikplik

(A.4)

and
∂p̂iq
∂γk

=
∂p̂iq

∂p̂lik

∂p̂lik
∂γk

. (A.5)

Now,

∂p̂iq

∂p̂lik
=



∑c
r=1 p̂lir − p̂lik(∑c

r=1 p̂lir

)2 =
1− p̂ik∑c
r=1 p̂lir

if q = k

−p̂liq(∑c
r=1 p̂lir

)2 if q 6= k,

(A.6)

and
∂p̂lik
∂γk

=
K∑
j=1

∂p̂lik
∂βijk

∂βijk
∂γk

, (A.7)

with
∂p̂lik
∂βijk

= −(1− pljk)
∏
j′ 6=j

[1− βij′k(1− plj′k)] =
−p̂lik(1− pljk)

1− βijk(1− pljk)
, (A.8)

and
∂βijk
∂γk

= −αd2
ij exp

(
−γkd2

ij

)
= −βijkd2

ij. (A.9)
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Calculation of
∂`e,i(θ

′)
∂ξ

. We have

∂`e,i(θ
′)

∂ξ
=
∂`e,i(θ

′)

∂α

∂α

∂ξ
= α(1− α)

c∑
q=1

∂`e,i(θ
′)

∂p̂iq

∂p̂iq
∂α

, (A.10)

where
∂`e,i(θ

′)
∂p̂iq

is given by (A.4) and

∂p̂iq
∂α

=
c∑

k=1

∂p̂iq

∂p̂lik

∂p̂lik
∂α

. (A.11)

Here,
∂p̂iq

∂p̂lik
is given by (A.6), and

∂p̂lik
∂α

=
K∑
j=1

∂p̂lik
∂βijk

∂βijk
∂α

, (A.12)

where ∂p̂lik
∂βijk

is given by (A.8) and

∂βijk
∂α

= exp(−γkd2
ij) =

βijk
α
. (A.13)

The complete procedure is summarized in Algorithm 3.
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Algorithm 3 Gradient calculation.

Require: {ηk, γk}ck=1, ξ, α, {plik, p̂lik, p̂ik}
n,c
i,k , {βijk}n,K,ci,j,k , {dij}n,Ki,j

for i = 1 to n do
for q = 1 to c do

Compute ∂`e(θ′)
∂p̂iq

using (A.4)

end for
for k = 1 to c do

for j = 1 to K do

Compute ∂p̂lik
∂βijk

,
∂βijk
∂γk

and
∂βijk
∂α

using (A.8), (A.9) and (A.13)

end for
Compute ∂p̂lik

∂γk
and ∂p̂lik

∂α
using (A.7) and (A.12)

for q = 1 to c do
Compute

∂p̂iq

∂p̂lik
using (A.6)

Compute
∂p̂iq
∂γk

using (A.5)
end for
Compute

∂`e,i(θ
′)

∂ηk
using (A.3)

end for #k loop
for q = 1 to c do

Compute
∂p̂iq
∂α

using (A.11)
end for
Compute

∂`e,i(θ
′)

∂ξ
using (A.10)

end for #i loop
for k = 1 to c do

Compute ∂`e(θ′)
∂ηk

using (A.1)
end for
Compute ∂`e(θ′)

∂ξ
using (A.2)

Ensure: Gradient ∂`e(θ′)
∂θ′

=
(
∂`e,i(θ

′)
∂η1

, . . . ,
∂`e,i(θ

′)
∂ηK

,
∂`e,i(θ

′)
∂ξ

)T
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