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A Revolution for developing of safety critical application

Developing safety critical applications often requires rare human resources to complete successfully while off-the-shelf block solutions appear difficult to adapt especially during short-term projects. Developed during the R&D project FUI LCHIP [START_REF] Lecomte | Double coeur et preuve formelle pour automatismes sil4[END_REF], the CLEARSY Safety Platform fulfills a need for a technical solution to overcome the difficulties to develop SIL3/SIL4 system. Its technology is based on a smart combination of diverse hardware (2x PIC 32 micro-controllers) and a formal method with proof heavily used in the railways industry for decades. It avoids most testing and ensures safety at the highest level.

The CLEARSY Safety Platform is both a software and a hardware platform aimed at designing and executing safety critical applications. One formal modelling language (B) is used to program the board. Programs are developed using a dedicated IDE or could be the by-product of some translation from a Domain Specific Language to B. The IDE takes care of the verification of the software (type check, proof, compilation) and then ensures its uploading to the hardware platform. Program is guaranteed to execute until a misbehaviour is detected, leading to a safe restricted mode where board outputs are deactivated.

Added value The CLEARSY Safety Platform eases the development of safety critical applications as:

it covers the whole development cycle of control-command systems based on digital inputs/outputs. development time is shortened as the safety principles are built-in, and are out of reach of the developer who cannot alter them. Development is focused on the behaviour.

the testing phase is dramatically reduced as the mathematical proof replaces unit and integration testing (based on a formal language (B) and related proof tools).

Eased certification

The CLEARSY Safety Platform eases the certification of safety critical applications as the safety cannot be altered by the developer. It comes with a certification kit to be used for the safety case of the system embedding the CLEARSY Safety Platform. The building blocks of the CLEARSY Safety Platform, already certified in international railway projects (platform screen doors controller in Brazil (São Paulo line 15) and Sweden (Stockholm Citybanan), remote IOs in Canada), have been used to develop a generic version of this technology that could fit a broader range of applications.

B Technology

With the CLEARSY Safety Platform, the very technical aspects related to safety are taken into account by the platform, leaving the developer to focus only on the development of the function to perform. The CLEARSY Safety Platform is made of two parts: an IDE to develop the software and an electronic board to execute this software. The full process is described in figure 1. Software development It starts with the function specification (natural language) to develop. The developer has to provide a B model of it (specification and implementation) using the schema:

the function to program is a loop, where the following steps are performed repeatedly in sequence:

• the inputs are read.

• some computation is performed.

• the outputs are set. -The steps related to inputs and outputs are fixed and cannot be modified.

-Only the computation may be modified to obtain the desired behaviour.

The implementation is usually handwritten but could also be generated automatically with the B Automatic Refinement Tool. The B models are proved (mostly automatically as the level of abstraction of typical command & control applications is low) to be coherent and to contain no programming error. From the implementable model, two binaries are generated:

binary 1 , obtained via a dedicated compiler, developed by CLEARSY, transforming a B model into HEX file, binary 2 , produced with the Atelier B C code generator then compiled with the GCC compiler into another HEX file.

Each binary represents the same function but is supposed to be made of different sequences of instructions because of the diversity of the tool chains. Then the two binaries binary 1 and binary 2 are linked with:

a sequencer, in charge of reading inputs, executing binary 1 then binary 2 , then setting the outputs a safety library, in charge of performing safety verification (more details in https://www.clearsy.com/en/download/download-documentation). In case of failing verification, the board enters panic mode, meaning the outputs are deactivated (no power is provided to the Normally Open (NO) outputs, so the output electric circuits are open), the board status LED start flashing, and the board enters an infinite loop doing nothing. A hard reset (power off or reset button) is the only possibility to interrupt this panic mode.

The final program is thus made of binary 1 , binary 2 , the sequencer and the safety library. The memory mappings of binary 1 and binary 2 are separate. This program is then uploaded on the two micro-controllers µC 1 and µC 2 .

Verification The bootloader, on the electronic board, checks the integrity of the program (CRC, separate memory spaces). Then both micro-controllers start to execute the program. During its execution, the following are performed:

internal verification:

• every cycle, binary 1 and binary 2 memory spaces (variables) are compared;

• regularly, binary 1 and binary 2 memory spaces (program) are compared in deferred mode; • regularly, the identity between memory output states and physical output states is checked to detect if the board is unable to command the outputs. external verification:

• regularly (every 50ms at the latest), memory spaces (variables) are compared between µC 1 and µC 2 .

If any of these verifications fail, the board enters the panic mode. the B to HEX compiler, initially developed to control platform screen doors for metro lines in Brazil. This tool proceeds in two steps: a translation from B to ASM MIPS, then from ASM MIPS to HEX. the C to HEX GCC compiler.

the linker combining the 2 hex files with the safety sequencer and libraries.

the bootloader.

Safety principles The safety is built on top of few principles:

a B formal model of the function to develop, proved to be coherent, to correctly implement its specification, and to be programming error-free, four instances of the same function running on two micro-controllers (two per micro-controller with different binaries obtained from diverse tool-chains) and the detection of any divergent behaviour among the four instances, the deferred cross-verification of the programs on the two µC, outputs require both µC 1 and µC 2 to be alive and running as one provides energy and the other one the command, output physical states are regularly verified to comply with the memory states, to check the ability of the board to command its outputs, input signals are continuous (0 or 5V) and are made dynamic (addition of a frequency signal) in order to prevent the short-circuit current from being considered as high level (permissive) logic.

From a safety point of view, the current architecture is valid for any kind of mono-core processor. The decision of using PIC32 micro-controllers (able to deliver around 50 DMIPS) was made based on our knowledge and experience of this processor. Implementing the CLEARSY Safety Platform on other hardware would "only" require the existing electronic board and software tools to be modified, without impacting much the safety demonstration.

C Complementary technologies

The CLEARSY Safety Platform implements a well-oiled automatic process from a proved B model to a safe execution. However several limitations prevent a larger exploitation:

the B language (even restricted to a subset) is not widely disseminated and often considered as difficult to use by engineers.

the fully automatic model proof is only achieved with "bounded complexity algorithms", even if we are not considering implementing metro automatic pilots with the CLEARSY Safety Platform. fine-tuning and debugging applications that run simultaneously on two processors are difficult to achieve.

To overcome these limitations, several features (see figure 3 for the global picture) have been added to the CLEARSY Safety Platform and are detailed in the forthcoming sections:

connection with Domain Specific Languages, to entitle engineers to model with their usual language and to keep the formalities behind the curtain. improved proof performances. That way, the formal verification is also hidden behind the curtain, as log as the complexity of the implemented algorithms is compatible with the automatic proof capabilities (we are not aimed at metro automatic pilots here) debugging facilities on host with a dedicated VM 

C.1 Connection with DSL

A B model is the mandatory entry-point of the CLEARSY Safety Platform. However this B model could be obtained from the translation of a DSL model into B. This approach allows to seamlessly involve domain experts without changing their modelling languages. Experiments were conducted with SNCF [START_REF] Pereira | B-specification of relay-based railway interlocking systems based on the propositional logic of the system state evolution[END_REF] in order to translate relay-schemes into B models for various applications (ITCSwrong track temporary installation, signal controller). The translation allows to interactively describes relay-schemes and to generate formal models (figure 4).

Finally a wired-logic installed for decades could be easily replaced by a safe programmed-logic. The poster "Porting Relay-Based Schemas to a SIL4 Programmable Control Platform" is available at https://www.clearsy.com/wpcontent/uploads/2019/07/Affiche-A1-v3.pdf.

Other DSLs are being considered, such as grafcet / sequential functional / chart to directly address automation outside railways. 

C.2 Improved Proof

The B method enforces that the development is mathematically sound by producing proof obligations. A proof obligation has a goal and hypotheses, all expressed in a mathematical formalism (first order logic, with set theory and integer arithmetic). Historically, proof obligations have been verified using a mix of automatic proof procedures provided in Atelier B and user insight (e.g. case splitting, quantifier instantiation, etc.) All proof related tools are part of the IDE and have been in place since the inception of Atelier B.

In order to benefit from the technical and scientific improvements in the field of automated reasoning, a new proof obligation generator has been developed. Proof obligations are then produced in a XML-based format which can then be translated to the native format of any formal verification tool. As a proofof-concept, a connection to third-party provers was conducted as part of the B-Ware initiative, using the Why3 platform [START_REF] Bobot | Why3: Shepherd your herd of provers[END_REF] as a gateway. This experiment produced excellent results in terms of proof automation, in particular for the Alt-Ergo prover [START_REF] Conchon | Tuning the Alt-Ergo SMT Solver for B Proof Obligations[END_REF]. The results of this work are now being integrated in Atelier B to provide new proof features to the IDE. Using this approach, we target full proof automation for selected DSLs.

Cubicle [START_REF] Conchon | Cubicle: A parallel SMTbased model checker for parameterized systems -tool paper[END_REF] is a model checker for verifying safety properties of transition systems manipulating arrays. Cubicle finds inductive invariants of systems by the integration of the SMT solver Alt-Ergo with a backward reachability algorithm. In order to improve its reachability algorithm, we developed a new approach based on program unwinding, reminiscent to property-driven reachability. This algorithm has then been extended for reasoning about weak memory model for verifying properties of assembly x86-TSO programs. Our extension relies on a tuned axiomatic memory model for SMT and a specific backward reachability algorithm that exploits a new partial order reduction technique for the TSO model of x86. First experiments benchmarks from synchronization barriers to mutual exclusion implementation like the spinlock from Linux 2.6 kernel show that this approach is very promising.

C.3 A Virtual Machine Approach

One original contribution of the LCHIP project is the possibility to run the embedded program in a virtual machine (VM) of a high-level programming language. This primarily provides an alternative mean of execution, which offer new ways of debugging and improving security. Indeed, the original compilation models considered (which target the C language or the PIC assembly) follow similar patterns, but with the use of a VM we can produce binaries with a very different execution path, ensuring redudancy checks of the behaviour of programs. To this end, we thus propose a specific implantation of the virtual machine of the OCaml language. This machine takes advantages from the expressiveness of this language (implementing functional, imperative, object-oriented and modular paradigms), as well as its guarantees (such as the safety provided by its static type system).

A first experience of implementing this VM for PIC18, called OCaPIC [START_REF] Vaugon | Programming Microcontrollers in Ocaml: the OCaPIC Project[END_REF], has shown the feasibility of running complex programs on micro-controllers with scarce resources (a few KiB for RAM, 32KiB for flash memory). This approach was then generalized with the OMicroB [START_REF] Varoumas | A Generic Virtual Machine Approach for Programming Microcontrollers: the OMicroB Project[END_REF] system, which starts from a bytecode executable program for the OCaml VM and embeds the byte-code in a C file. This generic approach provides the possibility to compile and load a given program on different families of micro-controllers (AVR, ARM, PIC32, . . . ). To do this, several types of optimization are necessary both to reduce the size of the byte-code and for automatic memory management. OMicroB produces an binary that embeds the byte-code interpreter, the execution library and the bytecode. Note that since OMicroB compilation path uses the C language, like the previously described compiling path that consists of translating B to C, security concerns would entail the use of another C compiler in order to dissipate probable unknown bugs inherent to the chosen C compiler.

The OMicroB system has successfully been ported for the LCHIP hardware, and various OCaml programs have been executed on the platform. Debugging can be rendered easier by using OMicroB since it comes with a simulator that can represent interactions with the external hardware to which is connected the microcontroller(s). Furthermore, for possible modifications of the hardware (as discussed in section B), this approach is easily adaptable, since it has been designed to be portable on many architectures.

In order to run the program derived from the B model, we need to provide a source-to-source translator from B0 to OCaml, as it is shown in figure 3. This translator will be very close to the C4B translator that produces a C source code, since we can take advantage of all the imperative constructs of the OCaml language (by using mutable records and arrays as equivalent to C variables and data structures, for example).

As other future works, the internal checks between the two binaries could be orchestrated by a synchronous extension "à la Lustre" called OCaLustre [START_REF] Varoumas | Concurrent Programming of Microcontrollers, a Virtual Machine Approach[END_REF]. Since this extension is built above the OCaml language, it is completely compatible with our virtual machine. An additional interest of this virtual machine approach is to factorize in property checks at the byte-code level, such as the estimation of the WCET (Worst Case Execution Time) for programs that do not dynamically allocate memory (like synchronous programs) [START_REF] Varoumas | Wcet of ocaml bytecode on microcontrollers: An automated method and its formalisation[END_REF]. This is currently possible on hardware where the memory model is simple (no caches, simple scalar pipelines), like some AVR microcontrollers, and thus guarantees timing compositionality of each (bytecode) instruction. On simple hardware, we can herewith project the byte-code analysis to the actual architecture instructions set. However, the application of such a computation on more complex hardware like the PIC32 (that has pre-fetch cache system) is still under consideration.

D Education, dissemination and exploitation

The CLEARSY Safety Platform is being used in several universities in Europe and America, to teach both formal methods and embedded systems4 . It is an interesting mean to involve mathematicians into close-to-hardware thematic, and conversely to bring embedded systems practitioners to more abstract reasoning. Lectures were given up to Master2, aimed at demonstrating safety engineering at computer scientists and electronic engineers, with dedicated hands-on sessions. The two existing starter kits SK 0 and SK 1 are clearly aimed at respectively education and prototyping. A forthcoming industry-strength version will be provided as a daughter-board (PLC without inputs/outputs) to integrate into inhouse development. Easier certification, lower development and deployment costs will have a dramatic impact on public safety, allowing to embed safety in systems for a limited cost. More over on-going research projects are aimed at bringing safety to robotic systems.
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 1 Fig. 1: Full path from function description to safe execution with the CLEARSY Safety Platform. Round boxes are tools, rectangular boxes are files.
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More information at https://www.clearsy.com/en/category/clearsy-safety-platformen/