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Abstract: Occupancy grid is a popular environment model that is widely applied for autonomous
navigation of mobile robots. This model encodes obstacle information into the grid cells as a reference
of the space state. However, when navigating on roads, the planning module of an autonomous
vehicle needs to have semantic understanding of the scene, especially concerning the accessibility of
the driving space. This paper presents a grid-based evidential approach for modeling semantic road
space by taking advantage of a prior map that contains lane-level information. Road rules are encoded
in the grid for semantic understanding. Our approach focuses on dealing with the localization
uncertainty, which is a key issue, while parsing information from the prior map. Readings from
an exteroceptive sensor are as well integrated in the grid to provide real-time obstacle information.
All the information is managed in an evidential framework based on Dempster–Shafer theory.
Real road results are reported with qualitative evaluation and quantitative analysis of the constructed
grids to show the performance and the behavior of the method for real-time application.

Keywords: evidential occupancy grid; uncertainty; lane grid; prior map; semantic

1. Introduction

Grid-based environment modeling has become a popular perception paradigm since its first
introduction in [1]. Compared with object-based approaches such as [2,3], the grid-based method
has several advantages since it is straightforward to integrate heterogeneous sensor information
and it relaxes data-association problems which can be especially hard to handle in complex
and dynamic environments. There exists a large literature regarding to grid-based environment
modeling for robotics applications and for autonomous vehicles. In [4], the authors have presented
an occupancy-elevation grid mapping technique for autonomous navigation application. In [5],
the occupany grid is constructed to identify different shape of objects by applying sensor fusion. In [6],
the authors have presented a universal grid map library for grid construction. In [7], the authors
introduced an advanced occupancy grid approach to enable the robust separation of moving and
stationary objects. In [8], a generic architecture for perception in dynamic outdoor environment by
applying grid-based SLAM (Simultaneous Localization and Mapping) is presented. In [9], a grid-based
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approach is proposed for ADAS (Advanced Driving Assistance System) application. In [10], a real-time
algorithm for grid-based SLAM and detection of objects is presented.

Some works tried to integrate dynamic information into grids to get a more complete
representation of the environment. In [11], the space occupied by static and dynamic objects is
distinguished by adopting a sequential fusion formalism. In [12], the authors proposed a complete
semantical occupancy grid mapping framework involving a new interpolation method to incorporate
sensor readings in a Bayesian way. In [13], a Bayesian filter approach was adopted to estimate the state
of the occupancy grid with velocity information.

This paper deals with perception grids for the navigation of road vehicles. The road space is
classically classified as occupied (by obstacles) or free. However, for autonomous navigation on public
roads, this road space description is not sufficient as the host vehicles should be able to know which
space is free to go with authorization. For this purpose, lane-level information should be provided.
A vehicle typically has two options when facing a static obstacle in its own lane: (i) lane-keeping and
stop or (ii) lane changing. For the second option, the host vehicle needs semantic road rules deduced
from lane marking information to evaluate if the space is accessible or not. Thus, the road must be
modeled semantically to represent the accessibility of the space.

Many lane detection methods have been proposed and developed using image processing. In [14],
a robust and real-time approach to detect lane markers was proposed. In [15], the authors proposed
a robust multilane detection and tracking method using LiDAR and mono-vision data. In [16],
based on spatiotemporal images, the authors proposed a method for lane detection, which proved to
be more robust and efficient. In [17], an implementation of semantic image segmentation to enhance
LiDAR-based road and lane detection was presented. In [18], using a proposed region of interest,
the authors managed to reduce the calculation and high noise level for lane detection. Images are
typically segmented into road, obstacles, sky, etc. These methods can be strongly influenced by weather
conditions and by the quality of lane markings. Deep learning-based lane detection methods have
shown superior performance over traditional methods. In [19], the authors proposed a Dual-View
Convolutional Neural Network framework. Reference [20] extended the framework of deep neural
network by accounting for the structural cues. In [21], a unified end-to-end trainable multi-task network
that jointly handles lane and road marking detection and recognition was proposed. The approach is
guided by a vanishing point under adverse weather conditions. Reference [22] proposed a sequential
end-to-end transfer learning method to estimate left and right ego lanes directly and separately without
any postprocessing. However, they usually perform well only when the road conditions are similar to
those used in the training datasets.

We propose to tackle this problem by using geo-referenced maps. Prior map information has
already been used for road object extraction, since it provides cues about the existence and location
of on-road objects [23–25]. In [24], the authors used an open-source dataset for vehicle detection
tasks with geographic information. In [23], the authors have taken advantage of the maps for both
localization and perception. With a map-aided pose estimation, they proposed an obstacle detection
method based on the comparison between the image acquired by an on-board camera and the image
extracted from a 3D model. Now we can have access to very detailed and accurate geo-referenced
databases, which provide rich information for autonomous navigation. Using these maps, lane-level
attributes describing the structure of the road is available. For this purpose, a localization system is
mandatory. In [26,27], a prior map was considered to be a virtual sensor, providing information about
the space occupied by infrastructures, buildings, etc. With an accurate pose estimation, the authors
converted the extracted information into a local perception map. This perception map was then fused
with a local occupancy grid generated from the on-board sensor data. In [28], a holistic 3D scene
understanding method was proposed based on geo-tagged images which allows joint reasoning about
3D object detection, pose estimation, semantic segmentation as well as depth reconstruction from
a single image. Large-scale crowd-sourced maps were used to generate dense geographic, geometric
and semantic priors. In [29], an algorithm for road detection was proposed using Geographical
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Information Systems (GISs). The priors are obtained by building a road map using information such
as the type of the road and the number of lanes, retrieved from a database and then by projecting the
road map onto the vehicle frame.

Although geo-referenced maps provide valuable prior semantic information, a real difficulty
remains in tackling the uncertainties coming from estimation errors on the pose of the vehicle and the
errors on the map features arising from the mapping process. In this paper, we suppose that the prior
map is very accurate in comparison with the localization errors thanks to the use of high-grade devices
used in the data acquisition process and refined post-treatments. Localization is therefore the main
source of uncertainty in this process.

Based on this discussion, this work has the following contributions. We first propose a method
to integrate semantic lane information from a prior map into grid–based environment models by
taking into account explicitly the localization error of the vehicle. In previous work, we have presented
some related results concerning the construction of grids based on prior maps[30]. In this paper,
we present extensive theoretical and experimental results to show further the interests of our approach.
Secondly, an approach based on Dempster–Shafer theory is presented to fuse this semantic map with
an occupancy map built from on-board sensing information.

The paper is organized as follows. In Section 2, the approach to construct semantic lane grid
based on prior map and uncertain pose is introduced. In Section 3, the fusion of occupancy grid and
semantic lane grid based on the Dempster–Shafer theory is presented. In Section 4, real road results
are reported and analyzed. Finally, in Section 5, we draw conclusions.

2. Semantic Grids Using Maps and Uncertain Localization

2.1. Semantic Grid with Lane Information

In occupancy grids, each cell contains probabilities quantifying the belief that there exists or
not an obstacle in the cell. So, the possible states are Free or Occupied. Inspired by occupancy
grids, we propose to define spatial grids in which one can interpret the lane information as cell
values which have semantic meanings needed by the trajectory planner of the navigation system.
The simplest cell states which permit the host vehicle to perform lane-level navigation can be defined
as {Ego, Accessible, Forbidden} in which Ego is the current lane and the two other states define the
traffic rules. Differencing between the current lane and the other ones of the carriageway with the
same driving direction, is important for lane-keeping or overtaking applications. The Forbidden state
defines not only the lanes which are not permitted but also the regions outside of the road.

Figure 1 illustrates the semantic road rules information. The host vehicle is marked with a star on it,
the Ego lane is depicted in bright green, the Accessible lane in cyan, the Forbidden areas (which include
both the forbidden lanes and regions outside of the current road and the forbidden lanes on opposite
direction) are painted in red and the outside road regions on dark green. The boundaries between
these regions are the lane markings that implies the traffic rules. As shown in Figure 1, the state of
lanes and thus the state of grid cells depends on the position of the host vehicle.

To obtain the road and the lane boundary information, we use an accurate map constructed
beforehand. Figure 2 illustrates the construction process of the proposed semantic lane grid.
The Ego-localization step outputs the 2D pose estimate (with uncertainty) of the host vehicle.
One should note that two sources of uncertainty intervene in the construction process, which come
respectively from the pose estimation step and from the map. In our approach, we make the hypothesis
that the map is accurate (or with an error that is negligible compared to the pose estimate) and with
no attribute error thanks to the high-grade sensors used in the map construction process. The pose
uncertainty is the predominant uncertainty which must be taken into account. For that, we are
interested in studying an evidential approach which is proposed based on Dempster–Shafer theory.
The lane grid construction process contains two steps as shown in Figure 2, which are respectively lane
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belief construction and grid cell belief construction. These two steps will be explained in Sections 2.2
and 2.3.

Forbidden

Ego

Accessible

Figure 1. The lane state depends on the host vehicle position depicted with a star. Ego lane in bright
green, Accessible lane in cyan, the Forbidden areas in red and dark green.

Figure 2. Lane Grid construction process.

To facilitate the illustration of our approach, let us define different coordinate systems. Let denote
FO as the global frame in which the prior map is defined, with an origin O, x and y pointing to East
and North. We also use a road-oriented frame FR [31] which has the same origin O of the global
frame but with the x-axis pointing in the direction of the road. The working frame of vehicle FM is
defined at the center of the vehicle’s rear axle with an origin called M. One needs to note that M is
not a deterministic position in FO or FR because of the estimation uncertainty. Figure 3 shows the
coordinate frames definition.
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Figure 3. Frames definition.

2.2. Lane Belief Distribution Construction

The lane belief distribution is a characterization of the status of the lanes based on the estimated
pose of the host vehicle and its uncertainty.

2.2.1. Uncertainty in the Construction of Lane Belief Distribution in a Road-Oriented Frame

As shown in Figure 2, the first stage for building a lane grid consists of the construction of the
lane belief distribution which is here carried out in the road-oriented frame FR.

The lane states are characterized according to semantic road rules and depends on which lane
the host vehicle is located. This requires the lateral position knowledge of the vehicle relatively to the
road. The localization system estimates the position of the vehicle in FO and its uncertainty can be
represented by a 2D ellipse as shown in Figure 4. If we consider the local estimated road-oriented frame
(xe, ye) shown in Figure 4, the lateral uncertainty of the pose estimation for the construction of the lane
belief distribution is perpendicular to the lane or road direction, i.e., along the axis ye. This uncertainty
characterizes laterally the position of the vehicle relatively to the lanes. The longitudinal uncertainty
in the road-oriented frame is not related to the process of determining on which lane the vehicle is
localized. The lateral uncertainty is represented by p(y) in Figure 4.

Suppose that the estimation uncertainty is represented by a covariance matrix

OP =

"
O p11

O p12
O p12

O p22

#

which is defined in FO and is obtained from the ego-localization process. The transformation of this
uncertainty into the road-oriented frame FR is given by:

RP =

"
R p11

R p12
R p12

R p22

#
= R · OP · RT (1)

where R =

"
cos(y) sin(y)
�sin(y) cos(y)

#
is the rotation matrix, y is the heading of the road.
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Figure 4. Uncertainty of the estimated pose.

Then the lateral Gaussian distribution’s standard deviation in FR is given by (see [32] for details):

sR =
q

R p22 · (1 � (
R p21p

R p11 ·
p

R p22
)2)

2.2.2. Multi-Hypothesis Approach

The objective now is to quantify the belief supporting the lane distribution over the road knowing
the pose uncertainty and the configuration of lanes in the map.

Let denote:

• nl the number of lanes (extracted from the map)
• W a frame of discernment of the space with W = {Ego, Accessible, Forbidden}.
• B(i, A) the belief of state A, A 2 W for lane i.
• Hi the hypothesis that lane i is the Ego lane
• nh the number of hypotheses Hi

The model takes into account all the possibilities concerning which lane is Ego, and based on each
possibility a hypothesis is proposed and the belief is calculated as the integral of the pose distribution
over the lane. For instance, the belief for the hypothesis Hi that lane i is Ego lane is:

BHi (i, Ego) = P(Lane i = Ego) =
Z Le f tMarkingi

RightMarkingi
p(y)dy

with i 2 [1, nl].
With the hypothesis that the map is accurate and with no error of attribute, this belief is propagated

to the other lanes of the road. The state A ( Accessible or Forbidden) is deduced from the lane markings:

BHi (j, A) = BHi (i, Ego) 8j 6= i, A 2 W, A 6= Ego

The algorithm considers every lane in which the host vehicle can be located. If the number
of possibilities is nh, the belief supporting that particular hypothesis BHk , k 2 [1, nh] is calculated.
For example, in Figure 5a nl = 4 and nh = 4 and in Figure 5b nl = 4 and nh = 1.
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We illustrate our model based on the situation shown in Figure 5. The position has a large lateral
uncertainty and the Gaussian distribution covers multi-lanes. That leads exactly to four hypotheses:
“H1: lane 1 is Ego lane”, “H2: lane 2 is Ego lane”, “H3: lane 3 is Ego lane”, “H4: lane 4 is Ego lane”.
Every hypothesis is shown in Figure 6. Ego lane’s belief is drawn in green color inside the pose
distribution. A means Accessible, E means Ego, F means Forbidden.

xe

ye

1 2 3 4

a b c

p(y)

(a) Large pose uncertainty

1 2 3 4

a b c

p(y)

xe

ye

(b) Small pose uncertainty

Figure 5. Examples of pose uncertainty and lane belief distribution.

x

y

1 2 3 4

a b c
B( Lane{1} = Ego ) = ∫S p(y) dy
B( Lane{2} = Accessible) = B( Lane{1} = Ego )
B( Lane{3} = Forbidden ) = B( Lane{1} = Ego )
B( Lane{4} = Forbidden ) = B( Lane{1} = Ego )

p(y)

K P MN

E A FF

{E, A} {E, F} {F}

S

N

(a) H1:lane 1 is Ego Lane
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0

0.2
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0.6

0.8
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marking4
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Forbidden
Accessible
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(b) Belief distribution for H1

x

y

1 2 3 4

a b c
B( Lane{2} = Ego ) = ∫N p(y) dy
B( Lane{1} = Accessible) = B( Lane{2} = Ego )
B( Lane{3} = Forbidden ) = B( Lane{2} = Ego )
B( Lane{4} = Forbidden ) = B( Lane{2} = Ego )

p(y)

K P MN

EA FF

{A, E} {E, F} {F}

S

k

(c) H2 lane 2 is Ego lane

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

1.2

marking4
marking5
Transversal position (normal distribution)
{Ego, Accessible, Forbidden}
Forbidden
Accessible
Ego

(d) Belief distribution for H2

Figure 6. Cont.
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x

y

1 2 3 4

a b c
B( Lane{3} = Ego ) = ∫K p(y) dy
B( Lane{1} = Forbidden ) = B( Lane{3} = Ego )
B( Lane{2} = Forbidden ) = B( Lane{3} = Ego )
B( Lane{4} = Accessible ) = B( Lane{3} = Ego )

p(y)

K P MN

E AFF
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S

P

(e) H3 lane 3 is Ego lane
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(f) Belief distribution for H3

1 2 3 4

a b c
B( Lane{4} = Ego ) = ∫P p(y) dy
B( Lane{3} = Accessible) = B( Lane{4} = Ego )
B( Lane{1} = Forbidden ) = B( Lane{4} = Ego )
B( Lane{2} = Forbidden ) = B( Lane{4} = Ego )

EAFF

{A, E}{F, A}{F}

x

y

p(y)

K P MNS

M

(g) H4 lane 4 is Ego lane
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(h) Belief distribution for H4

Figure 6. Multi-hypothesis algorithm illustration.

There exists the rare case that the true pose of the host vehicle lies outside the road. Our method
does not ignore this possibility. The two regions on the left and right side of the road are considered to
be two independent spaces in our implementation. This treatment can also guarantee the unity of the
calculated belief.

The algorithm considers every case in which the host vehicle is located in each lane, then computes
for each case the belief supporting that particular hypothesis.

2.2.3. Belief Accumulation

To compute the final lane belief distribution, we accumulate the respective belief of the hypotheses
to the correspondent proposition. This accumulation corresponds to the law of total probability and
we can apply this accumulation strategy thanks to the fact that all hypotheses come from the same
information source: the pose distribution.

B(j, A) =
nh

Â
k=1

BHk (j, A) 8j 2 [1, nl] , 8A 2 W

The final belief distribution of the previous example is shown in Figure 7. The color code is shown
in the legend in the figure. At first sight, one can remark that the proposed multi-hypothesis method
leads to Ego belief for every lane because of the pose distribution, all the other belief levels are deduced
from this base. The belief accumulation is mostly highlighted from the Forbidden mass outside the
road. The pose distribution in this case is limited to the road area, and we can remark that all the belief
goes to the Forbidden state outside this area, in line with reality.



Sensors 2020, 20, 352 9 of 29

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

 

 

marking3
marking4
marking5
Transversal position (normal distribution)
Forbidden
Accessible
Ego

Figure 7. Final lane belief distribution.

2.3. Grid Cell Belief Calculation

The objective is to compute now the distribution of belief for each cell of the grid. Both probabilistic
and evidential approaches are illustrated to tackle the grid cell uncertainties. In this section, we show
first the propagation of the pose uncertainty over the grid. The two methods to deal with uncertainty
will be both illustrated in the following sections. The term Belief adopted here in the schema of
Figure 2 can have different meanings depending on the considered approach. In the probabilistic one,
Belief refers to Probability. In the evidential framework, Belief means Mass, since Mass is the basic
belief assignment in the belief function theory.

2.3.1. Uncertain Location of the Grid Cells

Figure 8 gives an illustrative example. b1 ⇠ b6 represent the lane belief distribution. Let imagine
that the true position of the vehicle is located at M and the lane grid is shown in red. One can also
remark that in a 2D situation, another important source of uncertainty for lane grid cells is the heading
angle of vehicle due to some unavoidable estimation error.

For a cell i (red cell in Figure 8) let denote its uncertainty gi(x, y) which depends on its position
in the local vehicle coordinate FM. For simplification from now on, we consider one cell as a point.
The discussion can be easily extended to the cell’s four corner points without loss of generalization.

The coordinates of the cell i in FM are

MXi =

"
Mxi
Myi

#

Transformed into the global coordinate FO, the coordinates are:

OXi =

"
Oxi
Oyi

#
=O RM ·

"
Mxi
Myi

#
+

"
OxM
OyM

#
(2)
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where ORM represents the rotation matrix from FM to FO,

ORM =

"
cos(q) � sin(q)
sin(q) cos(q)

#

"
OxM
OyM

#
is the position of M in global frame. This position has the uncertainty represented

by the ellipse g(x, y). One should note that q is the heading angle which also involves some
estimation uncertainty.

b2

b3

b4

b5

b6

x

xr

yr

O

xe

g(x, 

gi(x, y)

y
e

E
M

b1

y

Figure 8. Lane cell mass computation.

To analyze the uncertainty of the cell in the global frame, one can see from Equation (2) that
the position depends on five variables: (OxM, OyM, q) is the 2D estimated pose of the vehicle in
global frame, (Mxi, Myi) is the position of the cell in the local vehicle frame FM. (Mxi, Myi) have no
uncertainty since the position of grid cells are precisely known. Hence, one can conclude that in the
global frame, the position uncertainty of one cell results from the estimated 2D pose of the host vehicle
(OxM, OyM, q).

To understand the effect of the uncertainties transferred from the pose, we suppose for simplification
that the heading angle q is decorrelated from the position (OxM, OyM) for illustration purpose.
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First, let suppose that the heading angle (q) has no uncertainty, one can deduce that the position
of the cell OXi has linear relation with respect to the vehicle position, thus

Var(OXi|var(q) = 0) = Var(

"
OxM
OyM

#
),

which shows that the covariance matrix of cell position is identical with the covariance of the vehicle’s
position. Thus, this source of uncertainty propagates uniformly to all the cells in the grid.

On the other hand, if we take into account an uncertain heading angle while the position of the
vehicle is precisely known, then we can develop Equation (2) into

OXi = ORM ·
"

Mxi
Myi

#
+

"
OxM
OyM

#
= h(q) (3)

then the covariance of OXi can be computed as

Var(OXi|Var(

"
OxM
OyM

#
) = 0) =


dh
dq

�
· var(q) ·


dh
dq

�T

= var(q) ·
"

u(q) t(q)
t(q) v(q)

#
(4)

where
t(q) = sin q · cos q · ((Myi)

2 � (Mxi)
2) + Mxi · Myi · ((sin q)2 � (cos q)2)

u(q) = (� sin q ·M xi � cos q ·M yi)
2

v(q) = ( cos q ·M xi � sin q ·M yi)2

From the above calculation, one can deduce that the uncertainty of the heading angle q is not
uniformly propagated to the lane grid cells. The uncertainty of one cell in the x direction increases
with regards to the distance augmentation to the host vehicle. In the y direction, the uncertainty of one
cell increases with regards to the x coordinate augmentation. In conclusion, the uncertainty of one cell
caused by heading error increases with regards to the x direction.

Generally speaking, if we now denote the uncertainty of cell i in the global frame Var(OXi),
let f (OxM, OyM, q) denotes the transformation Equation (2). Thus

gi(x, y) = Var(OXi) =


d f

dOXM

�
· POXM

·


d f
dOXM

�T
(5)

where POXi
represents the covariance matrix of the 2D position OXM =(OxM, OyM, q), and


d f

dOXM

�
=

2

664

d f
dOxM

d f
dOyM

d f
dq

3

775

T

2.3.2. Probabilistic Approach to Tackle Grid Cell Uncertainty

In this section, a probabilistic method to compute the belief for each grid cell is proposed. The lane
belief distribution constructed in Section 2.2 is used, let denote B(i, A) the probability that lane i to be
in state A. Herein, the probability of lane i to be in state A is represented as P(Sli = A) = B(i, A).
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Probabilities are for single states, i.e., probability can only be assigned to one of the states in
W = {Ego, Accessible, Forbidden}. Since we have the probability distribution of the lanes, in order to
have probability distribution for a single cell, we need to find out where the cell is localized.

Let us take the red cell i in Figure 8 as an example. We define two properties for each cell
i in the grid, respectively Li which indicates the lane index of this cell and Si for the state
of this cell. Thus, Li 2 (1, 2, ... nl) where nl represents the number of lanes over the road,
and Si 2 {Ego, Accessible, Forbidden}.

Thus, the probability of cell i being in lane k can be calculated as

P(Li = k) =
ZZ

(x,y2Lanek)

gi(x, y)dxdy. (6)

Remember that gi(x, y) is the extrapolated uncertainty in the global frame, x, y being the location
in this frame. Using the total probability law, one can compute the probability of each state for the cell.
For instance, the probability of the state A for cell i can be calculated as:

P(Si = A) =
nl

Â
k=1

P(Si = A | Li = k) · P(Li = k).

We need to compute each part of this equation to get the final result. P(Li = k) has been already
tackled previously. Now, the problem resides in computing the first part P(Si = A | Li = k). To go
through this problem, we suppose the state for lane k is denoted as Slk . In addition, we can develop
the first part into

P(Si = A | Li = k) = P(Si = A | Si = Slk )

because we know if one cell lies in lane k, then it has the same state as lane k.
Furthermore,

P(Si = A | Si = Slk ) = P(Slk = A) = B(k, A).

Remember that B(k, A) is the lane distribution. Finally, the probability of the state A for cell i can
be calculated as:

P(Si = A) =
nl

Â
k=1

B(k, A) ·
ZZ

(x,y2Lanek)

gi(x, y)dxdy.

This process is repeated for every cell in the grid.

2.3.3. Evidential Approach to Tackle Grid Cell Uncertainty

In the continuity of the works on evidential occupation grids, we propose the Dempster–Shafer’s
theory to deal with uncertainties. The frame of discernment

W = {Ego, Accessible, Forbidden} ,

corresponds to the lane states. These singletons are mutually exclusive.
The power set is thus defined as:

2W = {∆, Ego, Accessible, Forbidden, {Ego, Accessible}, . . . (7)

{Ego, Forbidden}, {Accessible, Forbidden}, W} (8)

An advantage of the evidential representation of the lane information using the Dempster–Shafer’s
theory is that we may attribute mass of evidence to any subset of the frame of discernment, for example
{Ego, Accessible}. This is the case when we are not able to tell whether the mass should be assigned to
Ego or Accessible. For our problem, we can take advantage of this property to model the lane marking
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space. Since the lane markings are the boundaries of lanes, if the two lanes which are separated by one
lane marking have two different lane states, then we will assign the mass to the union of the two states.

Moreover, the mass can also be put in W, which indicates the level of ignorance.
The meaning of each proposition is thus detailed below:

1. Ego indicates the cells which are inside the current occupied lane of host vehicle (Ego lane).
2. Accessible indicates the cells which are inside the permitted lanes by road rules but not the current

occupied lane of host vehicle (i.e., Accessible lane).
3. Forbidden indicates the cells which are not inside any permitted lane (Forbidden Lane).
4. {Ego, Accessible} indicates the cells whose states can be both Ego and Accessible, but one cannot

determine which. Normally this proposition describes the lane markings separating the Ego lane
and Accessible lane.

5. {Ego, Forbidden} indicates the cells whose states can be both Ego and Forbidden, but one cannot
determine which. Normally this proposition describes the lane markings separating the Ego lane
and Forbidden lane.

6. {Accessible, Forbidden} indicates the cells whose states can be both Accessible and Forbidden,
but one cannot determine which. Normally this proposition describes the lane markings
separating the Accessible lane and Forbidden lane.

7. W indicates ignorance about the state of the cell (Unknown cell).
8. ∆ indicates that no proposition fits the cell.

To build now the mass function m() for grid cells, we use the computed position uncertainty and
lane belief distribution. Each cell in the lane grid can belong to any of the lanes defined in Section 2.2.
If one cell lies inside one lane, then it should have the same mass distribution as the lane.

We have
mi = mk, i f Ci 2 Lanek

in which mi is the mass distribution of cell i (Ci), mk is the mass distribution of Lanek constructed in
Section 2.2 such as mk(A) = B(k, A), where k represents the lane index and A represents the lane state.

However, to which lane belongs the cell is not deterministic, due to the position uncertainty.
Based on the position uncertainty computed in Section 2.2.1, a confidence level can be defined:

ai
k =

ZZ

(x,y2Lanek)

gi(x, y)dxdy. (9)

This confidence level is applied to discount the mass distribution of lane k, the result is considered
to be a source of information provided by this lane. Specifically, for lane k, we have its mass
distribution mk, the confidence level ai

k, then the information provided by this lane is computed as:

mi
k(A) = ai

k · mk(A), A 6= W
mi

k(W) = ai
k · mk(W) + 1 � ai

k

The process is repeated using each lane, thus each lane is considered as one source of information
providing a mass distribution. Combining all the information provided by all the lanes, we can then
have the mass distribution for one cell.

Thus, the mass distribution for cell i can be computed by

mi = }k mi
k, k = 1, 2, ... , nl (10)

in which k is the lane index, nl is the number of lanes.
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We use the operator } proposed in [33] defined as follows:

(
(m1 } m2)(A) = ÂB\C=A 6=∆ m1(B) · m2(C)

(m1 } m2)(A) = ÂB\C=∆, B[C=A m1(B) · m2(C)
A, B, C ⇢ W

The specialty of this operator is that the conflicting mass will be put into union of propositions.
The reason for this transfer of mass is that the conflicting mass in one cell origins from position
uncertainty and indicates multi-states information which gives hint about lane boundaries. Only the
cells close to the lane boundaries can have large conflicting information if the position uncertainty is
small enough.

3. Combination of Occupancy and Semantic Information in Grids

In this section, we propose to combine the Semantic lane grid with an Occupancy grid to build
a new grid called Perception grid that represents both static and dynamic local environment of a vehicle.
The process to build the Occupancy grid is detailed in [34]. The space was noted either Occupied or
Free of obstacle.

3.1. Defining a Common Frame of Discernment

The occupancy grids are defined by the frame of discernment WO = {O, F}. O for Occupied state and
F for Free state. For semantic lane grid, the frame of discernment is WL = {Ego, Accessible, Forbidden}.
To combine these two grids defined in different frames of discernment, one needs to define a common
frame of discernment to enable information fusion. Herein, the common frame of discernment is
defined as

WC = {Ego_Free, Accessible_Free, Forbidden_Free, Non_Navigable}

This definition has the advantage of maintaining the Free state information in different lanes.
The Non_Navigable information is a combination of the Occupied information as well as the
non-accessible lane information.

The meanings of the singletons are as follows:

• Ego_Free represents Free cells located in the Ego lane.
• Accessible_Free represents Free cells located in an Accessible lane.
• Forbidden_Free represents Free cells located in a Forbidden lane.
• Non_Navigable represents Occupied cells, regardless of their location.

This defined common frame of discernment WC is in fact a refinement of both WO and WL.
The mapping of the refinement is defined as:

From WO to WC:
rOC : 2WO ! 2WC

{O} 7! {Non_Navigable}

{F} 7! {Ego_Free, Accessible_Free, Forbidden_Free}

WO 7! WC

From WL to WC:

rLC : 2WL ! 2WC

{Ego} 7! {Ego_Free, Non_Navigable}

{Accessible} 7! {Accessible_Free, Non_Navigable}

{Forbidden} 7! {Forbidden_Free, Non_Navigable}

{Ego, Accessible} 7! {Ego_Free, Accessible_Free, Non_Navigable}
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{Ego, Forbidden} 7! {Ego_Free, Forbidden_Free, Non_Navigable}

{Accessible, Forbidden} 7! {Accessible_Free, Forbidden_Free, Non_Navigable}

WL 7! WC

Using the above refinement, the mass transfers are performed as follows:

mWO"WC (rOC(A)) = mWO (A) 8A ✓ WO

mWL"WC (rLC(B)) = mWL (B) 8B ✓ WL

Using these formulas, the information from the occupancy grids and the lane grids can be
transferred into the same frame of discernment WC.

3.2. Combination of the Two Grids by Fusion

A this stage, the two sources of information (the grids) are defined in the same common frame of
discernment. We suppose that the grids have the same resolution and the same size. A combination
must be performed to get a final grid. It can be done by fusing the two grids based on the Dempster’s
rule, since these two sources of information are both reliable and independent.

The fusion is performed for every cell as:

mWC = mWO"WC � mWL"WC

where mWC represents the mass function of the cell of the combined grid.
One might be interested to investigate the details of the fusion process, since the Dempster’s rule

implies a normalization process which redistributes the conflict information into the non-conflict states
according to their mass distribution. However, the common frame WC was designed to tackle this
problem. In fact, after the two refinement processes, there exists no conflict mass in these two sources
of information.

4. Real Road Experiments and Results

4.1. Real Road Experiments

Real road experiments have been done with an experimental vehicle of the Heudiasyc Laboratory.
The vehicle is shown in Figure 9 and the sensor configuration is similar to [35]. For semantic
lane grid, the inputs of the algorithm are the map and the vehicle pose with its covariance matrix
(provided by a localization system implementing a Kalman filter). We have used a high-definition
map with negligible error level. In the map, the road is explicitly described with lane information,
including lane markings and road boundary. The lane markings are distinguished in the map with
different attributes which are important to determine the lane state. The vehicle pose comes from a GPS
system with RTK corrections. This system can provide positioning with high accuracy in RTK-fixed
operation mode.

We have used a LiDAR (SICK LDMRS) installed in the front of the vehicle to construct the
occupancy grid. During the experiments, the LiDAR was triggered by the GPS receiver.

To qualitatively evaluate our result, we have adopted the approach proposed in [36]. A wide-angle
scene camera has been installed behind the windshield during the acquisition process in the experiment.
The camera was also synchronized with the GPS receiver. The constructed lane grid is projected on the
scene image captured by the camera to provide a qualitative evaluation indicator. This method enables
the evaluation of the correspondence of the grids with regards to the observed scene. The calibration
between the camera and the GPS antenna has been performed off-line. The retro-projection process
consists in computing the 2D image coordinates corresponding to each grid cell vertex.
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Figure 9. The experimental vehicle.

The system has been implemented on C++ with a Linux computer. Figure 10 shows the system
and its 9 components. The inputs are a GPS receiver, a CAN bus gateway of the vehicle to access
to the speeds, a LiDAR driver and a camera for visualization. The output of a GPS receiver and
CAN bus data (wheel speed and yaw rate) are used in the ego-localization process to estimate the
absolute pose. The semantic lane grid is constructed in the Lane Grid Application component, where
the estimated pose and the prior map are taken as inputs. The evaluation process takes place in the
Grid projection application component. The lane grid is projected on the image coming from the
scene camera. The component LiDAR acquires the data from the SICK LiDAR which is sent to the
“Occupancy grid Application” to construct the occupancy grid in real time. This occupancy grid serves
as input to the “Grid combination Application” with the lane grid from the “Lane Grid Application”.
A qualitative evaluation is performed by projecting the combination grid onto the scene images.

Figure 10. Software implementation in red.

We show grids of 40 ⇥ 16 m in length and width. The cells are with a size of (0.1 ⇥ 0.1) m. In this
part, grids constructed with two different levels of pose uncertainty are given. For notation purpose,
we herein use (sx, sy , sq) as the 2D pose uncertainty. The grids are shown by visualization of a RGB
image. The RGB image enables reflection of the belief level by the RGB color channel brightness.
Brighter color reflects higher belief level.
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4.2. Experimental Results

In this section, semantic lane grid results of both (probabilistic and evidential) approaches are
given. For the purpose of demonstration, a projection of the host vehicle’s position on a prior map is
displayed in Figure 11. The bird view of the map is given with a zoom-out at the region where the host
vehicle is located. In this situation, the host vehicle is running on a three-lane road. The vehicle is in
the middle lane, whereas the lane on the right is for the purpose of entering the road, so this lane is not
accessible. The lane on the left is a parallel lane with the same orientation than the current occupied
lane, thus this lane is accessible.

4.2.1. Probabilistic Lane Grid Result

In Figure 12, the probabilistic grids are shown with the pose uncertainty (sx = 0.2 m, sy =
0.3 m , sq = 0.1 radians), and in Figure 13 shows the results with a larger pose uncertainty (sx =
0.9 m, sy = 1.1 m , sq = 0.1 radians). Corresponding to each uncertainty, the probability distribution
of each lane state is shown separately. The combination of all states is also shown, as well as the
retro-projection of the distribution on the scene image.

Figure 11. Projection of the vehicle position on the map. This map of Compiègne (France) has been
charted by a professional in the framework of the Robotex project.

From these results, one can clearly remark that cells at farther distance have lower probability level
according to the decreasing color level in the grid, especially in Figure 13. The probability distribution
extends to adjacent lanes, which means a dispersed probability. This is the consequence of uncertainty
propagation. The combined probability shown in Figures 12d and 13d further reflect this phenomenon.
The lane cells that are located close to the host vehicle contain single state probability, whereas the
probability distribution of the cells at farther distance can become very ambiguous and dispersed.

In Figures 12e and 13e, the retro-projection of the constructed grids on the images provides
a qualitative view of evaluation. The features reflecting the lanes are valid based on the correspondence
between the grids and the image spaces.
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(a) P(Ego) (b) P(Accessible) (c) P(Forbidden) (d) All probabilities

(e) Retro-projection on image

Figure 12. Probabilistic grids with small uncertainty (sx = 0.2 m, sy = 0.3 m , sq = 0.1 radians).

(a) P(Ego) (b) P(Accessible) (c) P(Forbidden) (d) All probabilities

(e) Retro-projection on image

Figure 13. Probabilistic grids with large uncertainty (sx = 0.9 m, sy = 1.1 m , sq = 0.1 radians).
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4.2.2. Evidential Lane Grid Result

Figures 14 and 15 display respectively the resultant lane grids of the evidential approach with
the small position uncertainty (sx = 0.2 m, sy = 0.3 m , sq = 0.1 radians) and the large one (sx =
0.9 m, sy = 1.1 m, sq = 0.1 radians). In these two figures, the mass distributions are shown in the
format of RGB images. From the color variance in the figure, one can clearly remark that grid cells have
different mass level over distance change. Cells that are closer to the host vehicle tend to have higher
level of mass in each state. This is due to the uncertainty of heading angle causing the farther cells to
have larger uncertainty. The mass in the union of the states also demonstrate this effect. The mass in the
union states are shown in Figures 14d and 15d, and is displayed by the combination of colors: yellow,
cyan and magenta colors represent respectively the mass in {Ego, Forbidden}, {Ego, Accessible} and
{Accessible, Forbidden}. Moreover, one can remark from the retro-projection that the union of the
masses focus mainly on the cells that are on the markings or close to the markings since the proposed
operator takes full advantage of the property that the union of the masses should be assigned to union
of the states that cannot be separated.

(a) Ego mas (b) Accessible mass (c) Forbidden mass (d) Union masses (e) All masses

(f) Retro-projection of Ego, Accessible, and Forbidden mass on image

(g) Retro-projection of union mass on image

Figure 14. Resultant grids of the evidential approach, small position uncertainty (sx = 0.2 m, sy =

0.3 m , sq = 0.1 radians).
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The difference between the resultant lane grids of the two different uncertainties is obvious.
A larger pose uncertainty level results in less mass in the singleton states and more mass in the
union states. The Ego mass level in Figure 14a is clearly higher than in Figure 15a, and in Figure 15d
clearly the union mass area (left to right: {Accessible, Forbidden}, {Ego, Accessible}, {Ego, Forbidden})
is larger than in Figure 14d.

(a) Ego mas (b) Accessible mass (c) Forbidden mass (d) Union masses (e) All masses

(f) Retro-projection of Ego, Accessible, and Forbidden mass on image

(g) Retro-projection of union mass on image

Figure 15. Resultant grids of evidential approach, large position uncertainty (sx = 0.9 m, sy =

1.1 m, sq = 0.1 radians).

In Figures 14f and 15f, the retro-projections of Ego, Accessible, and Forbidden mass distributions
are displayed. One can see that the lane information is correctly integrated in the grid. One should
keep in mind that the road rules are implied in the cell states by different masses supporting each
state. Figures 14g and 15g show the retro-projection of the {Ego, Accessible}, {Ego, Forbidden} and
{Accessible, Forbidden} masses. One can see these masses are concentrated over the markings. This is
the advantage of the adopted operator.

The system has been tested of many roads and the reader can watch the following video online to
get a better idea (https://youtu.be/0fJp-d4K75s).



Sensors 2020, 20, 352 21 of 29

4.2.3. Comparison between Probabilistic and Evidential Lane Grids

Compared to probabilistic approach, the evidential approach provides more flexible way to
handle uncertainty. It provides possibility to put belief into union states if, for example, the belief
in each single state is not clear. The Unknown mass can explicitly quantify ignorance, which avoids
putting prior information to the cases where no data support any state. In the evidential approach,
the pignistic probability [37] can be adopted to transform masses to probabilities. In Figure 16a,c,
we herein compare the pignistic probability grid and probabilistic decision grid. The ratio of identical
decision between these two decision grids is 99.992%, which means the approach to handle uncertainty
by evidential theory is valid.

Figure 16b illustrates the main difference of these two methods. This is the decision grid deduced
by the maximum of evidence masses. The dark space is marked Unknown which means no decision of
state is made over these spaces, because not enough information is provided. This is an important
advantage over the probabilistic approach as this evidential decision grid enables the avoidance of
risky trajectory with insufficient information provided.

(a) Proba (b) max of masses (c) Proba pignistic

Figure 16. Decision grids used for path planning for instance.

4.2.4. Information Discussion

In this section, we give an analysis of the resultant lane grids by introducing the Specificity and
Entropy. Together they give an evaluative view about the quality of the mass distribution of each cell in
the lane grid. Average Specificity and Entropy values are calculated for eachlane grid [38]. According
to the definition of specificity and entropy, an informative and non-ambiguous mass function should
have a high degree of specificity and a low degree of entropy.

Average Entropy and Specificity Variation Regarding to Position Uncertainty

Let study how these two measures evolve with regards to the position uncertainty. The study
is simply conducted by adding random noises to a specific position of the host vehicle. This is
a Monte-Carlo method. Every uncertainty level is sampled 1000 times and corresponding lane grids
are constructed. The average entropy and specificity value are computed in each case.

In Figure 17, simulation results are shown, the x-axis of both images represent uncertainty
variation. Figure 17a shows the average specificity measure. One can remark that if the uncertainty
level augments, the specificity measure gradually decreases, and at last converges to a constant
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value. This behavior demonstrates the fact that the specificity value should be smaller with a larger
uncertainty level. Furthermore, we can deduce that if the position uncertainty becomes too large up
to an inapplicable level, the average specificity value converges to a constant level, which is larger
than the minimal value 1

3 . This is reasonable because there will be always certain quantity of mass in
singleton states.
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(a) Average specificity with regards to position uncertainty (standard deviation)
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(b) Average entropy with regards to position uncertainty (standard deviation)

Figure 17. Average specificity and average entropy with regards to position uncertainty variation.

Similar to the Specificity measure, the Entropy measure shown in Figure 17b eventually converges
to a stable value as well. The explication is the same as for the Specificity measure. However, one
can remark a difference: its value augments at first, then gradually decreases to the stable value,
with regards to uncertainty level. With no uncertainty, the entropy value is 0 at first, then increasing
uncertainty leads to dissonant mass thus larger entropy value. However, if the uncertainty continues
to increase, according to the discounting process, more mass thus goes to ignorance and the mass
in ignorance does not conflict with other states. Thus, finally the entropy measure goes down until
convergence level.

The behaviors of the specificity and entropy demonstrate that the constructed lane grids
become less informative with larger position uncertainty. This comportment means that the provided
information from the constructed lane grids is consistent with input uncertainty. Thus, we can conclude
that the proposed approach has well tackled the uncertainty.

4.3. Combination Grid Results

Figures 18–20 display three particular results. Bird views of the occupancy grids, lane grids,
and combination grids are shown in the top row. They are front-looking grids, the vehicle being



Sensors 2020, 20, 352 23 of 29

located at the bottom on the grids. More precisely, the grids have their origin exactly located at the
middle of the rear axis of the car (and not at the front bumper as often made). This is to make them
usable by a path planer.

The projection of the respective grids on the scene image are shown afterwards for a qualitative
evaluation. Herein green, red, dark and blue colors are applied in these grids. The color code is
identical as the one introduced for occupancy grids (green: free, red occupied) and lane grids. For the
combination grid, since the frame of discernment is defined as WC = {Ego_Free, Accessible_Free,
Forbidden_Free, Non_Navigable}, we use for display the green color which represents the Ego_Free
level, the blue color for the Accessible_Free level, while the red color represents the sum of
Forbidden_Free and Non_Navigable levels. The state level shown in the combination grids are the
pignistic probabilities calculated after the fusion process.

From the occupancy grid, one can remark from the projection on the scene image that the
obstacle vehicle is correctly detected (even if there is a small calibration error on the reprojection).
Moreover, the LiDAR is installed in the front of the host vehicle and this is the origin of the constructed
occupancy grid. However, based on the approach introduced in Section 2, the lane grids are constructed
on local coordinates defined at the center of the vehicle’s rear axle, i.e., the origin M. Herein, to compensate
for this coordinate difference, a translation is performed for the occupancy grid. The resulting dark
region at the bottom of the occupancy grid shows this translation. This area is an unperceived area
(a dead zone), so total ignorance is assigned.

The lane grid shown in Figure 18 is constructed by taking into account the pose uncertainty
(sx = 0.2 m, sy = 0.3 m , sq = 0.05 radians). The effect of the uncertainty propagation can still be seen
in the grid even if the angular uncertainty is small. The projection on the scene image shows that
the semantic lane information is correctly modeled in the grid. One can also remark that the lanes
(which are not straight in this experiment) are well characterized over a long distance ahead. In this
particular situation, the characterization of the navigability of the lanes would be difficult to do with
only on-board sensors like cameras. The advantage of using a localization system with a map is here
clearly highlighted.

Figure 20 displays the result when the host vehicle was performing a lane changing from the
left lane to the right lane. This lane change is particularly visible in the lane grid since the lanes are
rotated on the left. In this kind of situation, one can remark from the mass level in the lane grid that
the Ego and Accessible states are uncertain (Green and blue color are not bright compared to the other
two scene results), which is conform to the fact that the vehicle is running across to the dashed lane
marking which separates the two lanes. The determination of the lane states in this kind of transition
stage is very ambiguous and difficult to perform and the behavior of the perception system perfectly
fits with reality.

Within the combination grid, the perception system handles obstacle information as well as
semantic lane information in a unique representation of the world which is important for a path
planning module as said before. Thus, we have kept the Free information in both the Ego lane and
Accessible lane. The obstacle information is drawn in red along with all the cells in the Forbidden region.

Instead of storing the obstacle information and the semantic lane information in two separate
grids, the combination process manages these two sources of information into a uniform frame which
facilitates path planning afterwards. For the reinforcement of the grid application, the additional
Ego_Free information makes it possible to find the path all along the ego lane for lane-keeping
application, whereas the Accessible_Free information can serve as a second choice when the ego lane
is blocked.

The system has been tested on many roads and the reader can watch the video online
(https://youtu.be/0F078KJkSRo) of a 1.5 km long trial to evaluate the performance of the method.
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(a) Occupancy grid (bird view) (b) Lane grid (bird view) (c) Combination grid (bird view)

(d) Image retro-projection of the occupancy grid

(e) Image retro-projection of the lane grid

(f) Image retro-projection of the combination grid

Figure 18. Results for scene one. In occupancy grids, red means Occupied, green Free, dark Unknown.
In lane grids, red Forbidden, green Ego, blue Accessible. In combination grids, red Non_Navigable
plus Forbidden_Free, green Ego_Free, Blue Accessible_Free.



Sensors 2020, 20, 352 25 of 29

(a) Occupancy grid (bird view) (b) Lane grid (bird view) (c) Combination grid (bird view)

(d) Image retro-projection of the occupancy grid

(e) Image retro-projection of the lane grid

(f) Image retro-projection of the combination grid

Figure 19. Result scene two. Same color code as in Figure 18.
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(a) Occupancy grid (bird view) (b) Lane grid (bird view) (c) Combination grid (bird view)

(d) Image retro-projection of the occupancy grid

(e) Image retro-projection of the lane grid

(f) Image retro-projection of the combination grid

Figure 20. Result scene three when the vehicle is doing a lane change (from left to right). Same color
code as in Figure 18.
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4.4. Processing Time

The average time of execution is computed corresponding to the same grid resolutions as before.
Each step in the approach is timed and the average time consumption is shown in Table 1. The grid
size is set to be (40 ⇥ 16 m) for all the shown results.

Table 1. Average execution time in seconds used by each procedure in the evidential grid construction.
The grid size was set at (40 ⇥ 16) m. Tested on PC of processor Inter(R) Core(TM) i7, CPU @ 2.30GHz.
RAM 8Go.

Resolution (meters) Occupancy Grid Lane Grid Combination Total Time

0.1 0.0311 0.4933 0.0066 0.5310

0.2 0.0206 0.173 0.00147 0.1951

0.4 0.0160 0.0662 0.00026 0.0825

0.8 0.0155 0.0194 0.000154 0.0351

2 0.0146 0.0033 0.000121 0.0168

One can remark that the refinement and the fusion process add little processing time.
At 0.1 m resolution, we need more than a half of second to construct the combination grid, which is

not compatible with a real time implementation. However, at 0.4 m, the average time consumption
decreases to less than 0.1 s. This normally can meet the requirement of real-time applications. In fact,
the shown results can be optimized through parallel programming, which has not been implemented
in the current system.

5. Conclusions

A new grid-based approach to characterize the lane information, integrating semantic road rule
into the grid cells has been proposed. Based on the Dempster–Shafer theory, a road rule is interpreted
as semantic information of accessibility contained in the Semantic lane Grid. The Ego, Accessible
and Forbidden propositions defined in the frame of discernment characterizes the road space into
meaningful parts, and the boundaries of these meaningful parts contains the uncertain mass. We have
proposed a multi-hypothesis model to take into account the host vehicle’s pose uncertainty relative to
the road. Simulation results as well as real road experimental results have been reported.

A Dempster fusion process has been introduced to combine obstacle information and semantic
lane information. They characterize the state of the same space with complementary aspects.
The fusion process provides a more complete representation of the environment in a unique
perception grid keeping the key information for path planning applications with a negligible additional
processing time.

The results show interesting perspective in the domain of intelligent vehicle perception and
navigation especially when HD maps will be available worldwide. Applying this resulting grid
as an input to a path planner would be an interesting application of this work. New level of
information can be added as an extension of this work, like emergency region, public transport
region, etc. Moreover, an evaluation of this approach with a less accurate map would be interesting,
since maps are often affected by errors. On the other hand, the hypothesis of an accurate prior map is
not realistic, which is the main limitation of the proposed approach.
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