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a b s t r a c t

The muscle-tendon complex (MTC) is a multi-scale, anisotropic, non-homogeneous structure. It is
composed of fascicles, gathered together in a conjunctive aponeurosis. Fibers are oriented into the MTC
with a pennation angle. Many MTC models use the Finite Element Method (FEM) to simulate the
behavior of the MTC as a hyper-viscoelastic material. The Discrete Element Method (DEM) could be
adapted to model fibrous materials, such as the MTC. DEM could capture the complex behavior of a
material with a simple discretization scheme and help in understanding the influence of the orientation
of fibers on the MTC's behavior. The aims of this study were to model the MTC in DEM at the macroscopic
scale and to obtain the force/displacement curve during a non-destructive passive tensile test. Another
aim was to highlight the influence of the geometrical parameters of the MTC on the global mechanical
behavior. A geometrical construction of the MTC was done using discrete element linked by springs.
Young's modulus values of the MTC's components were retrieved from the literature to model the
microscopic stiffness of each spring. Alignment and re-orientation of all of the muscle's fibers with the
tensile axis were observed numerically. The hyper-elastic behavior of the MTC was pointed out. The
structure's effects, added to the geometrical parameters, highlight the MTC's mechanical behavior. It is
also highlighted by the heterogeneity of the strain of the MTC's components. DEM seems to be a pro-
mising method to model the hyper-elastic macroscopic behavior of the MTC with simple elastic
microscopic elements.

1. Introduction

Tearing of the muscle-tendon complex (MTC) is a common
sports-related injury (Bianchi et al., 1998). Muscles are more prone
to tear while doing eccentric exercises in which muscle contrac-
tion is combined with excessive stretching (Petilon et al., 2005,
Bianchi et al., 2006, Chen et al., 2009, Uchiyama et al., 2011).
Following a tear of a muscle, functional impairment occurs as the
result of the alteration of the MTC’s mechanical properties. How-
ever, the mechanisms leading to such an injury are still unclear as
are the site of mechanical failure and structures involved (Brickson
et al., 2011, Butterfield and Herzog, 2006, Pratt et al., 2012).
Knowing these mechanisms could provide a rational basis for

preventing such injury and/or rehabilitation (Morisawa et al., 1997,
Uchiyama et al., 2011). In order to better understand and model
tearing of the MTC, a first step is to model and validate the MTC's
behavior.

The MTC is a multi-scale, anisotropic, non-homogeneous
structure. It is composed of fascicles that are gathered together
in a conjunctive aponeurosis (epimysium). The use of computa-
tional methods has been used extensively in biomechanics to
model the MTC’s mechanical behavior. Many models of the MTC
use the Finite Element Method (FEM) to simulate the MTC’s
behavior as an incompressible and hyper-viscoelastic material
(Yucesoy et al., 2002), using, for instance, Odgen's law (Bosboom
et al., 2001, Gras et al., 2012) or Mooney-Rivlin's law (Weiss et al.,
1996, Untaroiu et al., 2005). Most Finite Element models have
complex, non-linear mechanical properties and many parameters
(Hernandez-Gascon et al., 2013). In Finite Element models, the
behavior of the muscle's architecture is described with consitutive
laws. These laws can be complex as they also include the complex
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micro-architecture of the muscle. Many authors use this technique
to describe the muscle and fibers’ behavior (Blemker and Delp,
2005, Tang et al., 2009, Grasa et al., 2011, Böl et al., 2011, 2012).
Another interesting approach is to describe the micro architecture
with simple constitutive laws as done in the Discrete Element
Method. The Discrete Element Method (DEM) (Cundall and Strack,
1979), which is used for modeling granular assemblies or for the
manufacturing of composite materials (Fillot et al., 2007, Iliescu et
al., 2010), can be adapted to fibrous materials such as the MTC. To
the best of our knowledge, this is the first time this method has
been applied to the MTC. It allows taking into account the
microstructure of the MTC and the influence of its components on
its global response. As opposed to FEM, DEM can capture the
complex behavior of a material with a simple discretization
scheme in terms of concept (Tavarez and Plesha, 2007) and
implementation. DEM is also an efficient tool to understand the
influence of fibers’ orientation on the MTC’s behavior or to take
into account failure problems (André et al., 2013).

Then, as the first step to model the MTC's tear, the aims of this
study were, to model the MTC using DEM, at a macroscopic scale,
to reproduce the non-linear force/displacement curve obtained
experimentally for the passive muscle behavior during a non-
destructive passive tensile test, and to highlight the influence of
geometrical parameters of the MTC on the global mechanical
behavior during a passive tensile test.

2. Material and methods

2.1. MTC model

2.1.1. Geometrical construction and discrete elements
A set of DEMMTC models based on different muscles’ and tendons’ geometrical

parameters was constructed. This approach allowed us to assess the influence of
the muscles’ and tendons’ lengths, widths, and thicknesses and the influence of the
orientation of fibers, as characterized by pennation angles ranging from 0° to 90°.
MTC is composed of tendon and muscle, and it includes fibers, a matrix and the
epimysium. Tendon is inserted finger-like into the muscle to represent the myo-
tendinous junction (Trotter et al., 1985, Trotter, 2002, Hijikata et al., 1993, Turrina et
al., 2013) (Fig. 1). Each discrete element of the tendon is linked to several discrete
elements of the muscle: one discrete tendon element is linked to the discrete
muscle element situated in front of it, and to the two closest neighboring discrete
muscle elements. The same operation is duplicated with the next row. The length
and width of the myotendinous junction can also be modified. All these parameters
are assumed to be representative parameters of the MTC's geometry.

Discrete elements are created to represent all components. The steps between
elements depend on the pennation angle and the maximum number of elements
that can be inserted in a fiber in a free-stress position without contact
between them.

2.2. Element linking

Links are created between all discrete elements of the same components of the
MTC (represented by a set of spherical discrete elements). Some links can also be
created between components to model interactions between them, i.e., the myo-
tendinous junction. For instance, muscle’s fibers are modeled by a chain of discrete
elements linked to each other. The tendon’s fibers are composed of fibers with links
between them to create sliding. Such fibers have the same architecture as the
muscle’s fibers. The myotendinous junction (MTJ) is constructed by multi-links

between tendon and muscle to respect the finger-like insertion. Links are also
created between fibers and the epimysium in order to simulate sliding between
these two entities. The extracellular matrix (ECM) is created in all directions by
links between fibers.

2.3. Mechanical properties

In the model, springs were used to link the elements to each other. The stiffness
of each spring is related to the discrete element's cross-sectional area, the initial
length of the springs and Young's Modulus of the anatomical structure (Fig. 2a).
Young's modulus values of the muscle’s and the tendon's fibers are fixed as the
values retrieved from the literature to model the microscopic stiffness of each
spring (Table 1). As described by Wang (2006), a specific latency is imposed on the
springs that constitute the tendon to model the pre-trigger for the first 2% strain
region. This latency corresponds to the “toe” region in which fibers are still
crimped. After this region, there will be a linear regionwith straightened fibers. The
epimysium is an extension of the tendon, so it is composed of the same material as
the tendon. The Young's modulus of the epimysium used in the model is therefore
the same as the tendon's Young's modulus (Maganaris and Paul, 2000, Teran et al.,
2005, Azizi et al., 2009). However, since the epimysium is a fascia of the MTC,
sections of the epimysium’s discrete elements are smaller than the MTC's other
components in order to obtain a thin fascia for the MTC. The myotendinous junc-
tion's Young's modulus is supposed to have a value that is intermediate between
Young's moduli of the muscle's fibers and the tendon.

ECM is supposed to be “fibers” of matrix between the muscle's fibers, and it has
the same geometrical properties as the MTC's other components. The ECM's
mechanical behavior was modified to model the possible contact between two
fibers. In compression, if the length of the ECM's spring was smaller than the initial
step between the extremities of two discrete elements (Δs), and the ECM's stiffness
was equal to the fiber’s stiffness (Fig. 2b). Because of the lack of values in the lit-
erature, several values of Young's modulus were tested in order to obtain the same
aspect as the experimental curves (Gras et al., 2012). Thus, the value for the ECM's
Young's modulus was chosen as 0.1 MPa.

3. Analysis of the influence of geometrical parameters

3.1. Design of experiments

A complete design of experiments was prepared to determine
the geometrical parameters that affect the MTC's mechanical
behavior and to identify existing interactions between them. The
mean value of each geometrical parameter with a variation of
more or less one standard deviation was chosen to construct the
MTCs with due consideration of data from the literature (Gras
et al., 2012). The widths and thicknesses of the muscle and the
tendon were chosen to be equals to each other. Five angles were
chosen to better characterize the influence of the pennation angle,
in agreement with the literature (Kawakami et al., 2006). Table 2
provides a summary of all geometrical parameters and tested
values. This complete design of experiments represents 405 pos-
sibilities of MTC.

3.2. Tensile test simulation and boundary conditions

GranOO software (Granular Object Oriented, www.granoo.org,
Mechanics Institute of Bordeaux (I2M)) was used to model MTC
and to simulate the tensile tests. First the geometry with links is
created. The mechanical properties are then associated to each
spring.

In the tensile tests, the lower extremity of the MTC was fixed,
and the upper extremity was subjected to a linear displacement
with a maximum displacement of 20 mm (strain c.a. 10%) with a
tensile test speed of 1 mm/s. Visualization of the simulation and
data (force, displacement, position ) are also obtained.

3.3. Identified parameters

The four studied parameters are listed below:Fig. 1. Front and lateral views of muscle-tendon complex's geometrical parameters.
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� Variation of the volume of the MTC based on the calculation of
the volume of the external sheath

� σing¼Force/S0 (S0¼ initial cross-sectional area of the middle of
the MTC, where S0¼π*(muscle's width/2)²) (the cross sectional
area is circular and the diameter is equal to muscle's width) for
εing¼10% with εing¼Displacement/L0 ( L0¼MTC's initial
length¼(muscle’s initial length)þ2*(tendon's initial length))

� Variation of the pennation angle to study the evolution of the
MTC’s central fibers

� Force/displacement curves were fitted with a global hyper-
elastic law. Parameters m and α for the identification of the
hyper-elastic constitutive law (Ogden's incompressive law
(Ogden, 1997)) used by Gras et al. (2012): FHyper ¼ 2μ

α s0

λ1α�λ1α=2
� �

:λ1�1 with λ1 ¼ 1þ D
L0

with D¼MTC's
displacement.

3.4. Data analysis

A two-way ANOVA was used to evaluate the effects of the geo-
metrical parameters on the mechanical properties. Post-hoc Tukey
comparisons were used as follow-up to the significant ANOVA
results. Significance was set at po0.05 for all statistical comparisons.

4. Results

All of the DEM models of MTC were created based on the
geometrical parameters from the design of experiments (Fig. 3).

All of the models were tested numerically in passive tensile tests.
Fig. 4a shows six kinds of force/displacement curves. Efforts ran-
ging between 10 and 40 N were required to obtain the maximum
displacement for the simulations. One simulation takes 1h30
(CPU: 1596 MHz, Intel Xeon 3.33 GHz) for a model with 5294
discrete elements and 33420 springs with a discrete element’s
radius of 0.33275 mm.

The variation of the MTC’s volume was estimated during all
simulations, and all variations were less than 3%.

Values of σing ranged from 11.5 to 88.4 MPa (48.3715.5 MPa,
mean7SD). The analysis of variance showed that muscle width
(MW), tendon width (TW), and pennation angle affected σing for
εing¼10%. The higher were TW and pennation angle, the higher
was σing; the effect was the opposite for MW (Fig. 5a and b).

The pennation angle decreased during the tensile tests in the
range of 6–10° (Fig. 4b). The variation of the pennation angle
between its initial value and its value at 13% of the muscle's strain
was linked to pennation angles with values between 6.7° and 10.7°
(Fig. 5c).

For the hyper-elastic constitutive law, the values of m ranged
from 15.7 to 174 kPa (82732 kPa). MW, TW, and pennation angle
affected m. An increase of TW or pennation angle (or a decrease of
MW) caused an increase of m (Fig. 6a and b). The values of α ranged
from 15.2 to 25.6 (20.071.9). Its variation was linked to MW (for
the increases) and to TW (for the decreases) (Fig. 6c).

5. Discussion

A geometrical construction of the MTC is done using discrete
elements linked with springs. During the numerical tensile tests, it
was observed that all of the muscle’s fibers were reoriented and

Fig. 2. (a) Relationship between Young's modulus (E) and stiffness (k) for muscle's fiber (lo¼spring’s initial length and d¼fiber's diameter); (b) Extracellular Matrix's (ECM)
stiffness during the tensile and compression tests (R¼Discrete element's radius, l¼spring's length, ΔL¼spring's lengthening, and Δs¼ initial length between two discrete
elements).

Table 1
Young's modulus of muscle-tendon complex's components.

MTC's components Young's modulus (MPa) Reference

Tendon's fiber/epimysium 800 Matscheke et al. (2013)
Muscle's fiber 0.03744 Regev et al. (2011)
Myotendinous junction 400 –

ExtraCellular matrix 0.1 –

Table 2
Geometrical parameters of the muscle-tendon complex, and their levels.

Parameters Level 1 Level 2 Level 3 Level 4 Level 5

Pennation angle (°) 10 15 20 25 30
Muscle's length (mm) 116 134 149 – –

Muscle's width (mm) 11.0 12.1 13.3 – –

Tendon's length (mm) 11.6 13.4 14.9 – –

Tendon's width (mm) 5.5 6.7 8.0 – –

Fig. 3. Muscle-tendon complex's geometry with the Discrete Element Method with
an expanded view of the myotendinous junction (springs of epimysium are tem-
porarily hidden for a better view).
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aligned with the tensile axis. The hyper-elastic behavior of the
stretching MTC was in agreement with in vitro data. Structure
effects, added to the geometrical parameters, highlighted the
mechanical behavior of the MTC in the tensile test.

The very small variation of volume confirmed the hypothesis that
MTC is considered to be a quasi-incompressible material (Teran

et al., 2005, Yucesoy et al., 2002, Untaroiu et al., 2005, Behr et al.,
2006).

Geometry had a significant effect on the MTC's mechanical
behavior. Gras et al. (2012) highlighted the effects of the geome-
trical parameters on the compressive response of dogs’ muscles. In
the present study, σing depended on MW, TW, and pennation

Fig. 4. Examples for different Muscle Lengths (MLo), Tendon Lengths (TLo), Muscle Widths (MW), Tendon Widths (TW) and Pennation Angles (Ang): (a) force/displacement
curves compared with experimental results from (Gras et al., 2012); (b) variation of the pennation angle during the tensile tests.

Fig. 5. (a) Influence of Pennation Angle on σing for 10% of strain; (b) Cross-influence of Muscle's Width x Tendon's Width on σing for 10% of strain; (c) Evolution of the pennation
angle’s variation between 0% and 13% of muscle's strain, for different values of pennation angle; * for significant correlation. i.e. * po0.05, ** po0.01, *** po0.001, **** po0.0001.
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angle, and it decreased when the MTC’s cross-sectional area
increased (when MW increased) because the same force was dis-
tributed over a larger cross-sectional area. The cross-sectional area
of the tendon increased (TW increased), which increased the
number of fibers, thereby increasing force required to deform the
structure (equivalent to an increase of σing). Fig. 5b shows the
cross-effect of MW and TW. The third parameter that affected σing
was the pennation angle; the force required to realign the fibers in
the tensile axis increased when more and more fibers tended to be
oriented (high pennation angle). Indeed, pennate muscles are
more resistant since they have more fibers, and, since these fibers
are highly oriented, the force applied to them is lower (Kawakami
et al., 2006).

When the muscle's cross-sectional area increases, there is a
tendency for the stress to decrease. In fact, a tendon and a muscle
can be modeled by two springs in series, with an equivalent
stiffness of keq ¼ km :kt

km þkt
where, km is the muscle's stiffness, and kt is

the tendon's stiffness.
Equivalent force is Feq ¼ keqΔL, and engineering stress (σing) is

proportional to F
D2
m
, where Dm is the diameter of the center of the

muscle. The muscle's stiffness is also dependent on the muscle’s
geometry. Indeed, km is proportional to the product, kfm.Dm²,
where kfm is the stiffness of the muscle’s fiber. Thus, engineering
stress is proportional to kfm :kt

kfmD
2
m þkt

. Therefore, if the diameter of the

center of the muscle increases (linked to the central cross-
sectional area), the engineering stress decreases.

Following the same steps for the tendon, the engineering stress
can be found to be proportional to 1

D2
m
:

km :ktf
km=D

2
t þktf

. For a fixed muscle’s

cross-sectional area (Dm fixed), if the tendon’s cross-sectional area
increases (Dt increases), then the engineering stress (σing)
increases.

The pennation angle decreased during the tensile test, which
was in agreement with the literature. Indeed, during passive
stretching of a muscle, the pennation angle decreases to the range
of approximately 3–7° (Morse et al., 2008, Abellaneda et al., 2009,
Zhao et al., 2011). As for composite materials, the values of the
pennation angle affected the results of the tensile simulations
(Ladevèze et al., 2005, 2012). In pennation angle/displacement
curves, two parts can be highlighted. In the first part (until the first

two millimeters), the pennation angle does not vary; this is due to,
the initial stretching of the MTC’s tendinous parts during the
tensile test. Then, in the second part (displacement greater than
two millimeters), the variation of the pennation angle is quasi-
linear due to the orientation of MTC’s fibers with respect to axis of
the tensile test. The high variation of the pennation angle between
its initial value and its value at 13% of the muscle’s strain is linked
to the strain of the components that make up the MTC (Fig. 5c). In
fact, during the tensile tests, the area of the middle muscle
underwent lower strain than the intermediate areas (between MTJ
and the area of the middle muscle), which are subject to high,
non-linear variations (Fig. 7).

This variation of the pennation angle was also linked to the
muscle’s form; the more bulging the MTC is (i.e. the higher the
MW/TW ratio is), the more strained those intermediate areas
become. This strain’s heterogeneity during tensile test has already
been shown in in vivo studies (Maganaris et al., 2001, Blazevich

Fig. 6. (a) Effect of Tendon's Width on m (parameter of the hyper-elastic constitutive law); (b) Effect of Pennation Angle on m; (c) Cross-effects of Muscle's Width x Tendon's
Width on α (parameter of the hyper-elastic constitutive law); * for significant correlation. i.e. * po0.05, ** po0.01, *** po0.001, **** po0.0001.

Fig. 7. Force vs. local strain for a muscle-tendon complex (MTC) with Muscle's
Length¼134 mm, Tendon's Length¼13.4 mm, Muscle's Width¼12.1 mm, Tendon's
Width¼5.5 mm and Pennation Angle¼15°; (MTJ¼Muscle-Tendon Junction).
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et al., 2006). For pennation angles less than 20°, the central fibers
are long and located in intermediate areas, therefore their strain
during the tensile test will be higher than when the pennation
angle are greater than 20°. This is because, the fibers are shorter,
more inclined, and located in the middle-muscle's area where
variations of strain are minimal.

The simulations results were in agreement with the experi-
mental data obtained from the SCM muscle within an order of
magnitude (Gras et al., 2012). However, because of the lack of
knowledge about mechanical properties of the ECM and the
myotendinous junction, some hypotheses have been proposed
regarding the mechanical behaviors of these components in order
to obtain a reasonable fit between the experimental and numerical
curves. For example, Young's modulus for the patellar tendon
(Matschke et al., 2013) was used, but it cannot be applied directly
to SCM's tendon. MTC was created with a simple geometry, with
the fibers oriented correctly. Results have to be qualified compared
to real studied geometry and geometry’s simplifications of our
model. In real muscles, the fibers are not oriented perfectly in the
direction of pennation angle and then an organization of the fibers
occurs during a tensile test (Clemmer et al., 2010). Therefore, a
random arrangement of fibers is created to prevent them from
being organized perfectly in the muscle. Also, springs are used in
the model because their bending rigidity better represents the
behavior of the fibers. The mechanical behavior of the MTC is
described as finite element models of muscles do (Bosboom et al.,
2001, Blemker et al., 2005, Behr et al., 2006, Laville et al., 2009),
but with a simple geometry at the microscopic scale, that makes it
possible to follow a fiber’s behavior easily during a solicitation.

The aspect of the curve can be identified as a non-linear and
hyper-elastic behavior for the MTC (Martins et al., 1998, Johansson
et al., 2000, Breuls et al., 2003, Blemker and Delp, 2006) and then
as a quasi-linear behavior (corresponding to the alignment of the
fibers with the axis of the MTC). The non-linear aspect of the
curves was in agreement with studies on rabbits (Lin et al., 1999,
Morrow et al., 2010), and on mice (Anderson et al., 2002).

Regarding the hyper-elastic constitutive law, its parameters
were affected by geometrical parameters. Indeed, m and α para-
meters are linked directly to the geometrical parameters of the
MTC, i.e., pennation angle, tendon’s global stiffness (related to
TW), and the size and number of fibers (related to MW). The first
model’s parameter, m, is characteristic of the initial slope of the
force/displacement curve. The higher m is, the stiffer the structure
is at the beginning of the tensile test. The higher the pennation
angles are, the higher m is; therefore the structure is stiffer (Fig. 6a
and b). This is linked to the stiffness of the extracellular matrix,
which has a significant effect when the structure is oriented, as
explained earlier for the engineering stress. Furthermore, an
increase of TW results in an increase of the tendon’s global stiff-
ness, which leads to an increase of the MTC's stiffness. Thus, the
force will be higher for small displacement, i.e., the parameter m
increases. The second model's parameter, α, is characteristic of the
curvature and the hyper-elastic behavior of the curve, and α
increases when MW increases or TW decreases (Fig. 6c). The MW/
TW ratio, which describes the MTC's form (bulging or straight), is
linked to the variation of α. So, for quasi-straight MTC (low MW/
TW ratio), intermediate areas (between MTJ and the area of the
middle muscle) have constant widths, and their strains are low,
inducing a low variation of α, as shown in previous results of the
pennation angle (Fig. 5c). For bulging, intermediate areas (ratio
MW/TW high), the strain is higher, reflecting their non-linear
behavior and inducing an increase in α.

The order of magnitude of α (15.2–25.6, 2071.9) was the same
as reported in the literature. Bosboom et al. (2001) used Ogden’s
(Ogden, 1997) constitutive law to describe the behavior of a rat’s
muscle during compression tests. The value of αOgden in their

study (21.4, on average) was equivalent to values of α in the cur-
rent study. Concerning m (15.7 to 174 kPa, 82.3731.8 kPa), Bos-
boom et al. (2001) used a modulus mOgden (15.6 kPa, on average)
which is linked to the parameter m by the relationship m¼mOgden.
αOgden/2. Thus, in compression tests of the rat’s muscle, m was
equal to 157 kPa, on average. This value is close to the value
identified in the current study, but it was obtained in a compres-
sion test. Compared to Gras et al.'s (2012) values, α has the same
order of magnitude (16.9–52), and the values of m in this study
were a little higher than those from Gras et al.’s (2012) study (4–
98 kPa, 45.7732.4 kPa), but they had the same order of
magnitude.

The results were affected by three main parameters (MW, TW,
and pennation angle). These three parameters can properly define
MTC's geometry and give a correct overview of all possible
responses to a tensile test of the MTC. However, these parameters
are linked together because of their dependence on the size and
number of the MTC's fibers.

6. Conclusions

The DEM seems to be a promising method for modeling the
MTC. The shape of numerical curve was in agreement with the
curves obtained experimentally, confirming the possibility of
modeling the non-linear, hyper-elastic macroscopic response of a
muscle with simple, linear, elastic, microscopic elements. The
MTC's behavior seems to result from a geometric effect linked to
the reorganization of the fibers in the structure, i.e., the widths of
the muscle and tendon and the pennation angle. The model that
was developed can account for the effect of fibers, and it allows
the identification of two main effects that would be very complex
to assass with standard techniques, such as FEM: (1) the influence
of fibers' reorientation on mechanical response during the passive
tensile test and, (2) the heterogeneous response of the MTC as a
function of the pennation angle.

The next step will be to study the stress inside a cross-sectional
area of muscle and tendon during the tensile test. This will help to
detect where the MTC's rupture is most likely to occur. The muscle
activation will be implemented into a spring model, thanks to a
force/length law for the muscle's fibers, in order to model an
eccentric contraction. All these different parts will then be com-
bined to model the total tear of the MTC.
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