N
N

N

HAL

open science

Multicore shared memory interference analysis through
hardware performance counters

Alfonso Mascarenas Gonzalez, Youcef Bouchebaba, Luca Santinelli

» To cite this version:

Alfonso Mascarenas Gonzalez, Youcef Bouchebaba, Luca Santinelli. Multicore shared memory inter-
ference analysis through hardware performance counters. 10thEuropean Congress on Embedded Real

Time Software andSystems(ERTS 2020), Jan 2020, Toulouse, France. hal-02446031

HAL Id: hal-02446031
https://hal.science/hal-02446031
Submitted on 20 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02446031
https://hal.archives-ouvertes.fr

Multicore shared memory interference analysis through
hardware performance counters

Alfonso Mascarefias Gonzdlez!, Youcef Bouchebaba', and Luca Santinelli!-?

IONERA - DTIS, {alfonso.mascarenas, youcef.bouchebaba, luca.santinelli} @onera.fr
2AIRBUS DS Germany, luca.santinelli @airbus.com

Keywords: Multicore, Measurement and statistical timing analysis, Hardware performance counters, Memory interference, Pre-
dictability, Extreme Value Theory

I. INTRODUCTION

Multicore platforms begin to be used to implement real-time systems within automotive and avionic domains. Although they bring
large amount of resources and unexpected increase of performance, guaranteeing their predictability is becoming more and more
complex. Multicore systems exhibit numerous behaviors, depending on the runtime environment conditions and interference that can
affect task executions; multicore are difficult (or costly) to model as they embed features more oriented on performance than on
predictability. Complexity and lack of models make multicore unpredictable or with over pessimistic representations. The industry
is especially worried by the use of multicore for critical applications as their products have to comply with certification.

Timing analysis methods compute tasks Worst-Case Execution Time (WCET) as an upper-bound to any possible task execution
time [/1, [2} |3]]. Static timing analysis [1] is one of the timing analysis methods, and it relies on sophisticated control flows and abstract
models of the hardware architecture. While satisfactory when used with singlecore platforms, static timing analysis is currently
experiencing difficulties with multicores due to the cost of obtaining accurate models. Measurement-Based Timing Analysis (MBTA),
is another timing analysis method which estimates WCETs from execution time measurements [2]. MBTA does not need system
models, instead it constructs empirical models from measurements of the actual platform behavior. Measurement-Based Probabilistic
Timing Analysis (MBPTA) is a special case of MBTA which estimates a probabilistic version of the WCET, called probabilistic
WCET (pWCET) [3]l; the pWCET is a distribution that is able to upper-bound every possible task execution time, and the MBPTA
computes it with the Extreme Value Theory (EVT) applied to measurements of task execution times.

The aim of this paper is to present a high precision and event-versatile MBPTA framework that we have developed for the statistical
timing analysis of multicore platforms. Its use satisfactorily allows the study of complex multicore platforms from the CPU point of
view, without requiring hardware or software models. This gives us an accurate real view of the platform behavior for any specific
situation without using extra tools. In addition, this measurement framework is directly portable to other multicore platforms with the
same CPU version and easily portable to other CPU versions within the same manufacturer. The MBPTA framework directly uses
coprocessors and the Performance Monitor Unit (PMU), i.e. Performance Monitor Hardware (PMH), instead of software profilers.
Hardware performance counters provide low-overhead access to a considerable amount of performance information of numerous
elements such as the CPU, caches or bus. The statistical timing analysis consists in proposing average and worst-case modeling by
making use of the tool diagXtrrrﬂ [4] applied to measurement of task execution times. Measurements obtained from the PMH are
used for analyzing and quantifying the interference that can happen within a multicore platform. The potential for measurements
from coprocessor and PMU, as well as its potential for statistical analysis, is shown by using an heterogeneous multicore Texas
Instrument system on chip. The interference we focus on are due to the shared memory of this platform.

II. PLATFORM AND APPLICATIONS
A. Heterogeneous multicore platform

We use the heterogeneous multicore Keystone II model TCI6630K2L [5[] within the EValuation Module (EVM) TCIEVMK2LX [6].
It is made of 6 single core processors (cores), where 2 of them are ARM15 CPUs architecture version 7 [7], and the other 4 are
C66x DSPs [8]. Both types of processors have their own level 1 instruction cache (L1P) and level 1 data cache (L1D) of 32KB size.
The two ARM processors (cores) share a level 2 cache (L2) of 1MB size, while each DSP processor has its own L2 cache of 1IMB;
the DSPs do not share L2 cache. The 6 processors are connected, with the Multicore Shared Memory Controller (MSMC) [9]], which
is connected to the TeraNet bus together with all the peripherals. Among the peripherals there is the DDR3 external memory of 2GB
size which is shared between all the processors.

B. Real-time application

The real-time application used is divided in two kind of tasks: a critical task which is the one under observation and also supposedly
the most important part of the application, and non-critical tasks which act as memory stressing sources.
For the sake of convenience, both kinds of tasks operate in the same way: they consist of loops, simple operational calculations and
matrices that are the main memory demanding element. The matrices are firstly initiated using the loop counter variable. Later, they
are filled again with the results of mathematical operation, where the operands are the matrices data. This refilling process changes
and is repeated as function of the level of stress we desire. Algorithm [1|is an example of the simplest kind of critical task being
used (in0 and inl are the matrices, size is the length of the matrix):

diagXtrm is a statistical analysis and MBPTA tool developed at the ONERA |https://forge.onera.fr/projects/diagxtrm2.

https://forge.onera.fr/projects/diagxtrm2

Algorithm 1 Safetyl task

for (int i = 0; i < size; i++)
for (int j=0; j < size; j++)
in0f[i][j] = i+j+1;
for (int i=0; i < size; i++)
for (int j=0; j < size,; j++)
inl[i][j] = inO[i—=1][j]+in0[i][j—1]+inO[i][j]+in0[i][j+1]+in0[i+1][j];

These tasks are not behaving as a realistic real-time application tasks would, i.e. a large number of heterogeneous tasks made up
of more varied and complex operations. Instead, they are very handy to create and verify interference from shared memory. In spite
of the tasks simplicity, the ease of changing the parameters makes them very flexible as stressing sources.

The critical task has up to three different stress levels. The first of them has been called safetyl, indicating that is the least demanding
and the last is named safety3, being the most demanding one. The critical task is placed uniquely in one ARM core (critical core);
the non-critical tasks are in the other cores (non-critical cores), i.e. the other ARM and the 4 DSPs.

The ARMs are managed using the certified real time operating system PikeOS [10], making use of the integrated development
environment (IDE) CODEO [11]] for the code development. The PikeOS service task is set in the non-critical core to avoid any
possible interference with the critical one. As the DSPs lack of the same operating system, they are programmed in bare-metal using
the IDE Code Composer Studio [12]].

C. Execution model

The cores execution is always synchronous. This synchrony is what causes to have arbitration schemes for accessing certain
resources. A first arbitration decision is taken in the ARM pack, when both cores tries to access the shared L2 cache; a second
arbitration decision is taken when the ARM pack and the DSPs try to access the MSMC. The arbitration consists in priority levels
and starvation counters. Both of them are by default equal for all the cores, what leads to a fair share of the resources. This makes
the non-critical task to moderately interfere with the critical task. If the priorities of the non-critical cores were increased, then a
bigger interference takes place, and the opposite if the priorities of these were decreased. Future work will investigate the impact
that this priority difference have, using the current implementation as a reference.

The tasks within the cores are executed repeatedly without idle time between the start and the end of the task, i.e. a duty cycle of
100%. This is to provoke constant interference between tasks.

III. MEASUREMENTS FRAMEWORK

The interference quantification of the critical task is done by using the 15th coprocessor CP15 available in the ARM cores [[13].
CP15 works with the PMU [7], allowing the gather of the system statistics on the memory and processor operations. The PMU is
made up of 6 general purpose counters plus a specific counter for execution cycles; these counters are in charge of keeping track
of how many times an event has taken place. The number of the features or events available is extensive, but in our case there are
considered only those in Table

Event Event ID (hex)

Cycles OxIT Register Name

Bus Access 0x19 PMSELR Performance Counter Selection Register
L1D cache refill 0x03 PMXEVTYPER Event Type Select Register

L1D cache access 0x04 PMCNTENSET Count Enable Set Register
Miss-predicted branch 0x10 PMCR Performance Monitor Control Register
Level 2 data cache access 0x16 PMOVSR Overflow Flag Status Register

Level 2 data cache refill 0x17
TABLE I: PMU events

A. PMU counter setup

To set up the PMU general purpose counters and extract the value from them, it is necessary to configure and access the PMU
registers in CP15. This can be done in the following way (alternatively see [14]):
1) Selection of the counter to use: in ARM15, a counter among the 6 available is selected with a number between 0 and 5. From
now on, the other registers are modified with respect to the selected counter. The register used to select the counter is PMSELR:
__asm__ __wolatile("mer pl15, 0, %0, 9, ¢12, 5 :: 777 ((default_register_value&cPMSELR MASK)|counter id));
2) Write into the register the event to keep track of: the de51red event we want to analyze is written using its hexadecimal tag.
The register for selecting the event under study e.g. execution time, is PMXEVTYPER:

TABLE II: PMU registers

_asm____wvolatile("mer pl15, 0, %0, ¢9, ¢13, 1”7 = "r" ((default_register_value& PMXEVTY PER_MASK)|event_id));

3) Activate the selected counter: Activates the counter and starts counting. Register PMCNTENSET is for setting the event count:
_asm____volatile("mer pl5, 0, %0, 9, 12, 17 :: 717 (((default_register_value& PMCNTENSET _MASK)|(1 <<
counter_id)));

4) Reset the selected counter value: the 32-bit counter is reset to avoid an overflow and performance counters are enabled in case
they weren’t by default. We must ensure that the counters are enabled (current step) and activated (Step 3) to start counting;
register PMCR is used for resetting the value and status of the counter:

_asm__ __volatile("mer pl5, 0, %0, 9, 12, 07 :: "7 ((de fault_register_value& PMCR_MASK)|0x3));

5) Read the selected counter register: the first counter value is read from the register PMCR and stored:
_asm__ __wolatile(” MRC pl5, 0, %0, c9, c13, 27 :7 = r”(value));
6) Execute the critical task: execute the task under observatlon
7) Read again the selected counter register: the second counter value is read and the difference with the first can be made. PMCR
is the register used:
_asm__ __volatile(" MRC pl5, 0, %0, c9, 13, 27 :7 = r"(value));

This procedure E] can be used straight forward if using only one counter. When retaking a new measurement for the same condition,
we can loop from steps 4 to 7. In case the task is computationally heavy, an overflow handling logic should be implemented should
be checked (PMOVSR). If more counters are required, then, step 1, 2, 3 and 4 should be repeated as many times as needed while
changing the counter number and the event to be analyzed. Each time a register read is required (step 5 and 7), the counter selection
must be done before. Table [[Il summarizes the most important registers involved in the previous PMU configuration.

The previous steps follow a start-read pattern. The main drawback of a start-read pattern is the overhead introduced when using more
than one counter. This occurs because the already configured counters include the set up of the next ones in their statistics. This issue
is relatively more noticeable with tasks less demanding in execution time. The overhead can be reduced by quantifying how much
overhead is included and then remove it from the results. However, we can find other configuration patterns like the start-stop that
can solve entirely this problem [[16]. The start-stop pattern will be studied and compared with the start-read pattern in the future.
Other performance profiling techniques, like the use of simulators or tools that modifies the resultant application for data collection
[17], can be seen as an alternative. Nevertheless, these are either slower or intrusive and their results are validity speaking questionable.
PMH does not interfere with the system under analysis, assures accuracy of the studied event and quickly collects the data while
the tasks are running. Therefore, despite of the PMH own drawbacks, e.g. variations due to pipeline effects, it is preferred over the
other techniques. [16} 18].

B. Trace of measurements and statistical analysis

The measured data are exported from the embedded system using the UART module. The data from the different events are then
grouped together forming a trace (like in Figures [Ia] or [5b) whose behavior is statistically analyzed to quantify the variability or
predictability, among others. The main event to focus on is the execution time (pWCET study) but the other events, e.g. bus accesses
or cache refills, are also analyzed to observe data correlations. In particular, the measurement traces are processed with diagXtrm
to compute average models for the trace itself e.g., empirical distribution, mean, maximum, standard deviation. Alternatively to the
traces, the histogram representation is used to observe the data distribution and figure out what kind of distribution function fits the
best (See Figures [2a] or [2d).

diagXtrm applies also the EVT to the input trace of measurements for the worst-case modeling in terms of pWCET estimates.
diagXtrm tests EVT applicability with the hypothesis testing state of the art [19, |4]. The EVT hypothesis tests allow to know whether
the EVT can be reliably applied or not, but also allow studying patterns and specific behaviors within traces. The EVT hypothesis
to fulfill and its respective tests are the following [4]:

o Stationary: The measured data set must respect the stationarity, i.e. data is identically distributed and hence belonging to the
same probabilistic law. Abrupt measurement changes that causes discontinuities leads to no stationarity. h;. Check: Kwiatkowski
Phillips Schmidt Shin test;

e Short range independence: Close in time measurements have no dependence, i.e. local samples independence. Dependency
occurs when consecutive measurements have similar values. The decision rule is based on a given distance and on a threshold
value. ho 1. Check: Brock Dechert Scheinkman test;

o Long range independence: Far in time measurements have no dependence, i.e. extremal or far in time independence. Long
time dependence are caused by periodic effects. The decision rule impose that for a measurement over a defined threshold, the
probability to have other measurement over the same threshold should tend to zero. hy 2. Check: Extreme index;

e Matching: The measurements belongs to the generalized Pareto distribution or the generalized extreme value distribution
maximum domain of attraction. The goodness of fit is used to see how well the distributions fits the observations set. hs.
Check: Cramer von Mises criterion;

The tests output can be seen in form of spider diagrams [4] like in Figure [#a] The spider diagram interpretation is the following:
The circles of the diagram express the confidence level (cl) for a specific hypothesis from O to 4 (p-values of 0, 0.01, 0.025, 0.005
and 0.1 respectively). Only if the hypothesis cl value is equal or higher than the second inner circle (cl of 1), we can consider the
hypothesis as passed. The confidence levels that must comply that cl > 1 are cll,1, cl2,1 or cI2,2 and cl3, which are associated to
the stability, short range independence, long range independence and MDA hypothesis respectively. This leaves us with the following
expression:

hy AND (hyy OR hys) AND hs.

If this expression is met, the color of the diagram turns green else it turns into red (See Figures and [Ad). c11,2 and cl4 are
two optional hypothesis. The first supports the stationarity hypothesis and the second indicates if the data ICDF converges, i.e. if
we can determine an execution time for a zero probability risk or not. If all of the compulsory hypothesis are satisfied, thus the
pWCET obtained with the EVT is a safe worst-case distribution estimate for the condition considered by the measurements. When
the pWCET is achieved for a specific runtime execution condition, we refer to it as a relative pWCET, instead of an absolute pWCET,

2Note that the present procedure assembly code is specific for ARM CPUs. However, the steps and registers may be similar for other processors, e.g. Intel’s Pentium
processor with registers Event select control register and Counter configuration control register [15]

since it is able to upper bound execution times from only the condition considered. The same tests apply also to verify the existence
of patterns in the traces, thus for verifying the behavior of the system. Note that the pWCETs obtained from diagXtrm are worst-case
distributions only for the execution conditions considered for the measurements. Another important data representation figure is the
worst-case model representation, e.g. Figure set [3] In here, it is compared the Inverse Cumulative Distribution Function (ICDF)
representation of the estimated pWCET with the ICDF of the samples in the trace. This graph has two main strengths. The first one
is that you can visually check hypothesis cI3 fulfillment by seeing the level of fitness of both ICDF. The second is that it can be
seen the ICDF of the estimated pWCET and hence associate the probability to overpass a specific execution time.

IV. MEMORY INTERFERENCE

Among the possible interference sources, we study mainly two: the first one is based on ARM pack critical and non-critical cores
relationship; the second comes from the critical ARM core and DSPs interaction with the MSMC. The results are presented in four
different scenarios.

The first one (Scenariol) consists in analyzing only the critical core alone, this means that the rest of cores are in an idle state.
The memory usage is gradually increased so that all the memories levels are used and hence quantified. This scenario is the reference
for the other three.

The second scenario (Scenario2) consists in the study of the first source of interference, which is the one coming from the second
ARM core. This interference is produced when both cores, critical and non-critical, requires the L2 cache and the use of the bus for
bringing data back to the first from the DDR3.

The third scenario (Scenario3) consists in analyzing the second source of interference, which is the one produced by the DSPs
when using the MSMC for accessing the DDR3. The critical ARM core and the 4 DSPs are active while the second ARM is idle.

The fourth scenario (Scenario4) consists in merging scenario2 and scenario3 together, i.e. having the critical and non-critical ARMs
and the DSPs running together.

The whole data presented here is a small selection of the entire data retrieved during this workﬂ the data shown here have been
obtained using only 1 PMU counter for the task execution time event.

950
|

7 7, / V
8 87
84 2 &
S - 8 i
o o 81 14
g g g
) oS o o 38
2 g =~ =Y % S |
SR / S] g / 53
o S w
7 / s =3 / 7
=} / 8 § B / Q
) // / 3 : 5 /
7 3 : <3 17 ik
Wi s YB0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Instant Instant Instant Instant
(a) Matrices occupation: 512B (b) Matrices occupation: 128KB (c) Matrices occupation: 512KB (d) Matrices occupation: 2MB
Fig. 1: Isolated critical task safetyl cycle traces results.
° S 0
o
2 I
10 'y N
g g N o
g ° 2o 2 < 28
I o < 9 T 2
£ £ £ g St
23 23 2 2
= 21 = 81 = o =38
a © Q2 o Q o Qo C‘D 4
g g 21 g4
2 S . <2 o~
1 1 5 =1
IS 5 5 8
kS b
Q o Q
600 700 800 900 1000 c>139000 141000 143000 540000 560000 580000 600000 620000 2180000 2220000 2260000 2300000
Value Value Value Value
(a) Matrices occupation: 512B (b) Matrices occupation: 128KB (c) Matrices occupation: 512KB (d) Matrices occupation: 2MB

Fig. 2: Isolated critical task safetyl cycle pWCET results represented with histograms.

3The data is fully available in the ONERA repositories (https://forge.onera.fr/projects/diagxtrm?2)

leTUO
leTUO
leTOO
1eT00

model model model model
+ measurements + measurements « measurements « measurements

2 | 5] 3 3
> > >4 >4
3 3 3 3
RS R R R
° 1 ° 1 S 1 S 1
a = a a - S 4
X X X X
© » o)
T o T o [X o

3 3 3 3

& & & &

3 3 3 k 3

800 1000 1200 1400 140000 150000 160000 0.0e+00 4.0e+14 8.0e+14 1.2e+15 2250000 2270000 2290000
Value (k= 999 ,u= 636) Value (k= 229 ,u= 139268) Value (k= 1000 ,u= 540971) Value (k= 200 ,u= 2244493.8)
(a) Matrices occupation: 512B (b) Matrices occupation: 128KB (c) Matrices occupation: 512KB (d) Matrices occupation: 2MB
Fig. 3: Isolated critical task safetyl cycle pWCET results represented with ICDFs.
cly,
(a) Matrices occupation: 512B (b) Matrices occupation: 128KB (c) Matrices occupation: 512KB (d) Matrices occupation: 2MB

Fig. 4: Isolated critical task safetyl hypothesis fulfillment.

A. Critical application

The analysis of the critical core run in solitary (Scenariol), allows us to validate the effect of the memory levels on the data
behavior. This can be seen in Figures [Ta] [Tb] and [Td where each level of memory is reached, L1, two times L2 and DDR3
respectively from left to right. The quantity of memory used by the sum of the matrices is indicated for each figure. The Y axis of
the sample trace graphs shows the quantity of the event under study e.g. the execution time measured in cycles, while in the X axis
the sample number.

The first trace of execution time, Figure [Ta] shows several peaks. One large at the beginning (973 cycles) due to the cold start of
the processor, and smaller ones (681 and 670 cycles) appearing randomly owing to the branch predictor misprediction. The rest of
samples have the same execution cycle value, 636 cycles, coinciding with the mean. Figure 24 is the histogram representation of the
measurements trace from which we derive the average modeling of the task behavior.

The behavior of the second trace, Figure [T is similar to the previous with small variations on the nominal value. These variations
are low compared to the cold start initial spike (143804 cycles); branch misprediction few peaks are still present. The mean is settle
to 139294 cycles, very close to the rest of the values measured.

Figure [Tc]is like Figure [TB| (both uses the L2 cache) but with more variability due to the increase of memory occupation (variance
of 68375 against 8316715 respectively). The cold start is relatively higher than both, the nominal value (540971 cycles) and the other
peaks (542626 cycles) produced by mispredictions and L2 cache maintenance operations. The average value is 541176 cycles.

In Figure [Id]it is represented the execution condition in which the DDR3 and the bus are exercised. This provokes the large variation
on execution time that can be seen. The cold start and the branch misprediction effects are relatively reduced, because the variability
due to memory interference from one execution to another is strong. The mean and maximum are 2229078 and 2295192 cycles,
respectively.

Figures [3a] 3b and [3d| show the measurement traces pWCETSs (worst-case models) in the ICDF form and in a logarithmic scale.
The distribution graph in purple is the pWCET distribution obtained with EVT, while the brown spots are the measured data above
a certain threshold. In the Y axis the cumulative probability for overcoming the samples, and for the pWCET; the X axis is the
value of the sample (execution cycles in these figures). Figures [3a] [3b] and [3c| show a clear mismatch between the measurements data
distribution (See the distribution as histograms in Figures [2a] and [2c) and the pWCET distribution, which means that the EVT
fails to comply the MDA hypothesis. Instead, Figure [3d| represents a nice fit of the measured data: the MDA is satisfied. This happens
because the data follows a distribution similar to a Gaussian (See histogram in Figure 2d). The MDA hypothesis requires that the
distribution of the data belongs to the MDA of an EVT resulting distribution, i.e. generalized Pareto distribution or a generalized
extreme value distribution.

Figures [a] [4b] and [4d| show the hypothesis fulfillment of the traces. Only for the last case (Figure [dd) the EVT can be applied
and its ICDF be reliably used for the worst-case modelling. Therefore, in Figure [3d] we find a reliable and accurate worst-case model
for the considered conditions.

B. ARM critical and non-critical application

The inclusion of the second ARM core (Scenario2), acts as a source of interference for the critical core in the L2 cache and
in the DDR3. This happens if the memory used by the non-critical task in the second ARM is sufficiently high to start using the
shared memory levels. These interference are produced mainly due to the sharing of the L2 cache stack among the two ARM cores.
This leads to have less space available and forces cache evictions of the critical task information: the non-critical task consumes
L2 memory of the critical task, and produces evictions which imply future DDR3 accesses that are forced on the critical task. The
consequences can be seen in Figures [5] [6 and [7} in which there are represented different measured events and the pWCET model for
a specific execution condition. Due to the shareable L2 cache or DDR3 accesses by the two ARM cores, the samples traces exhibit
variability from lower memory requirements than Scenariol; the EVT can be applied from lower memory requirements, fulfilling
the stability, the short and long range independence and the MDA hypothesis (Figures [5d} [6d] and [7d); both average and worst-case
models can be reliably and accurately computed.

210000

190000
L

14000

12000
L

10000

Value
! | A | |

1040 1050 1060 1070 1080 1090 1100 1110

le-02 le-01 1e+00

Risk probability

le-03

model
° measurements

o

200 400 600
Instant

(c) Event: Cache refill

le-04

i
195000 200000 205000

Value (k= 150 ,u= 193286.9)
(d) Distribution

Fig. 5: Critical and non-critical ARM tasks safetyl results with matrices size of 128KB and 2MB respectively.

Value
1055 1060 1065 1070

1050

1045

1e+00

le-01

?///

Risk probability
1e-02

le-03

: : :
0 200 400 600
Instant

(c) Event: Cache refill

model

. measurements

L
T T T T 1
145000 155000 165000 175000

Value (k= 125 ,u= 142159.1)
(d) Distribution

Fig. 6: Critical and non-critical ARM tasks safetyl results with matrices size of 128KB and 128KB respectively.

[} q [}
El El
28| Sg|
R 8
1 8]
o 3
(=]
8 |
= g
S ;
T T T T i T T T T
0 200 400 600 0 200 400 600
Instant Instant
(a) Event: Cycle (b) Event: Bus accesses
8.
B} / 3 //
o]
£ |
— o
S
[} 7 [7
= El
Sg / £8. /
g |
7 / Q /
g ; w4 § il ///
8 Z
g ol
S T T : ; T T :
0 200 400 600 0 200 400 600
Instant Instant
(a) Event: Cycle (b) Event: Bus accesses
% / //
[}] []
= El
s s

2280000 2290000 2300000 2310000

16650

5///

Value
16600

16550

16500

(a) Event: Cycle

T T T
0 200 400 600
Instant

170000 180000 190000 200000 210000 220000

T T T
200 400 600
Instant

o4

(b) Event: Bus accesses

1e+00

le-01

Risk probability
1e-02

le-03

T T T
0 200 400 600
Instant

(c) Event: Cache refill

model
measurements

JTITI T T
2310000 2315000 2320000
Value (k= 50 ,u= 2306060.6)

(d) Distribution

Fig. 7: Critical and non-critical ARM tasks safetyl results with matrices size of 2MB and 128KB respectively.

Figure [5a] shows a different behavior than Figure [Ib] due to the interference of the non-critical task, forcing the use of the DDR3.
This leads to a change in variability and in execution time (168864 average cycles). The number of bus accesses can be seen in
Figure [5b| (8349 average accesses). The L1D cache refilling is seen in Figure [5c| (1062 average refills), being almost the same for
Figure [1b| as the quantity of data to be brought to the critical core L1 cache is the same in both case.

In Figure [6] we can see the case where the L2 cache is used by the critical and non-critical cores but not sufficiently for requiring
the DDR3. Hence, the bus accesses are zero except for the cold start (Figure [6b). The variability remains despite being lower than
in Figure [5| (variance of 9257042 against 4977282016).

Figure [/] is similar to Figure [5| but with higher cycles, bus accesses and refilling values, with 2295342, 173693, 16557 in average
and 2316186, 218773, 16667 as maximum values respectively. This is owing to the higher critical task memory in use (2MB instead
128KB).

The effect of the different stress levels can be seen in the set of figures found in Figure[8] We appreciate that as more demanding the
execution is, the more relative maximums we find. The quantity of cycles in Figure [8c| (Safety3) is more than an order of magnitude
bigger than Figure [8a] (Safetyl), being 34506605 and 2320258 average cycles respectively.

2380000
L
3.8e+07

10400000

10000000

2340000
|

Suese
=

Value

Value
9600000

Value
3.6e+07
L
e

=

s

G

2300000
|

3.4e+07
L

|
N
9200000

%

T T T T T 1 T T T T 1 T T T T 1
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

2260000
L

Instant Instant Instant
(a) Safetyl (b) Safety2 (c) Safety3

Fig. 8: Critical and non-critical ARM tasks cycles results with matrices size of 2MB and 2MB respectively.

C. ARM critical and DSPs non-critical application

The DSPs act as another source of interference for the critical ARM core, more concretely in the MSMC when trying to access the
DDR3. Therefore, the critical and non-critical tasks must fill their correspondent L1 and L2 caches in order to encounter this problem.
Figures [0} [T0] [IT] and [T2] corresponds to the critical task output interfered by 1, 2, 3 and 4 DSPs running in parallel respectively. To
create a continuous source of interference, the DSPs are not using their L1D and L2 caches and each core pack, ARM and DSP,
have the same access priority to the shared resources. Besides, in contrast to Sections [V-A] and [[V-B] to show the entire behavior of
the critical task, the number of samples per runtime condition are 10000 (10 times bigger).

1le+00
]

—— model
< measurements

2300000
)
le-01

Value

2250000
Risk probability
1le-02

3 X
. Cly]
8 -
§ i
« v =
o~ o
‘ : : : ‘/////‘ g"a 1 R 010111 clz2
0 2000 4000 6000 8000 10000 2280000 2300000 2320000
Instant Value (k= 1500 ,u= 2263505.5)
(a) Cycles (b) Distribution (c) Hypothesis fulfillment

Fig. 9: Critical and 1 DSP non-critical tasks safetyl results with matrices size of 2MB and 12MB respectively.

1e+00
]

= model
S + measurements
& -
9 |
> 3
o =
g =
) 3 T o
S Q | 2
g 24
g %
€1 * g |
N g
2 %
o <
s ; 7 =
Q& ‘ ‘ ‘ ‘ \] I
N oo 2000 4000 6000 8000 10000 2300000 2320000 2340000 2360000
Instant Value (k= 1500 ,u= 2292378
(a) Cycles (b) Distribution (c) Hypothesis fulfillment

Fig. 10: Critical and 2 DSPs non-critical tasks safetyl results with matrices size of 2MB and 12MB respectively.

o
o B a =4 -
S % % // o § —— model
8| + measurements
/ | 7 s ! —
- : a o 7 ?D i
gk : e, 2T
g 2
ER S 8|
s - X
o x
o (2]
S - [
o 2N
g 7 3|
s, : : : : ‘ o L L
N 0 2000 4000 6000 8000 10000 2380000 2420000 2460000 2500000
Instant Value (k=500 ,u= 2365645.9)
(a) Cycles (b) Distribution (c) Hypothesis fulfillment

Fig. 11: Critical and 3 DSPs non-critical tasks safetyl results with matrices size of 2MB and 12MB respectively.

o o
g g
8 3 model
o measurements
7 —
=) 9 4
g z-
g 3
o T o
S Q2 o
< 7 o I
© = O
> 5 Q
N * g |
L]
. —
8
o < S
o - & o
§ i : : : : ‘ 3'1 " A AL C|2-2
0 2000 4000 6000 8000 10000 2500000 2600000 2700000 2800000
Instant Value (k= 1500 ,u= 2476819.8)
(a) Cycles (b) Distribution (c) Hypothesis fulfillment

Fig. 12: Critical and 4 DSPs non-critical tasks safetyl results with matrices size of 2MB and 12MB respectively.

From the cycles traces (Figures [9a] [T0a] [TTa] and [I2a) we can see that a DSP addition increases exponentially the execution time,
being more notable when using 3 and 4 DSP cores concurrently. The variance also tends to increase following this exponential
behavior. The mean, maximum and variance can be numerically seen in Table m where the 0 DSP case is included as the reference.

DSPs Mean (cycles) Maximum (cycles) Variance (cycles)
0 2224420 2356814 343967865
1 2241536 2343183 465614203
2 2266079 2370502 629619565
3 2306344 2520805 1177881735
4 2400577 2809433 7534655301

TABLE III: Critical and DSPs non-critical tasks statistics

Figures [0b] [TOB] [ITH] and [T2D)] indicate that the data and pWCET ICDF fit is optimal for all of the cases. However, the spider
diagram indicates whether the estimated pWCET can be used or not. The cases with 1, 2 and 3 DSPs fulfill the EVT hypothesis
(Figures and but not when using 4 DSPs (Figure [I2¢). The latest fails in both of the independence hypothesis, short
and long range. These two hypothesis levels of confidence decrease as new DSP cores are being added (See the spider diagrams).
These DSP core additions also change the measurement trace pattern. This is clearly visible in Figure [T2a] when the 4 DSPs are
concurrently working. In this plot we appreciate a pattern with distinguishable relative minimums and maximums sections, e.g. from
measurement 0 to 130 and from measurement 780 to 850 respectively. The minimums represent the situation where the critical core
has very small interference. It behaves as if there were no DSPs or only if 1 or 2 DSPs were being executed (relative minimum
values do not overpass the maximum value of DSPs 0, 1 and 2 shown in Table . The maximums behaves as if 3 or 4 DSPs were
intensively interfering the critical task from loading data from the DDR.

D. ARM critical and non-critical and DSPs non-critical application

Scenario4 has all the cores of the platform activated and running. Therefore, the critical task will be interfered (1) in the L2 cache
by the non-critical ARM and (2) in the DDR by the non-critical ARM core and the DSPs. The results found in Figures [I3] and

can be used to determine whether or not the pWCET model can be applied in a complete case or not. As it can be seen, both
cases fulfill the EVT hypothesis and hence allowing us to apply the probabilistic model for each case. The results can be found
counter-intuitively as Figure in Scenario3 did not pass the EVT tests. In here, the non-critical ARM removes the dependency
(visible patterns) caused by the 4 DSPs by adding variability.

—

1.0

7000000
|

Value
6600000
X

Risk probability
0.4

y

L

6200000
L

S ———— - clzz
0 2000 4000 6000 8000 10000 7000000 7100000 7200000
Instant Value (k= 1500 ,u= 6962346.9)
(a) Cycles (b) Distribution (c) Hypothesis fulfillment
Fig. 13: ARM critical and non-critical and 4 DSPs non-critical tasks safety3 results with matrices size of 512KB, 2MB and 12MB
respectively.
5 ey /////////// clyg
8 7 e
= @ el
o2 ¢
=] Q
T [
> S o
% i
3 x \‘

0.2

\ \\\\\

4.0e+07
L

7 o
o
0 2000 4000 6000 8000 10000 5.5e+07 6.5e+07 7.5e+07
Instant Value (k= 1500 ,u= 52557868.2)
(a) Cycles (b) Distribution (c) Hypothesis fulfillment

Fig. 14: ARM critical and non-critical and 4 DSPs non-critical tasks safety3 results with matrices size of 2MB, 2MB and 12MB
respectively.

Note that the stress level 3 (safety3) is used. By using Figure [8c| as a reference (Scenario2, stress level3, 2MB for both ARM
cores), we see that the overhead caused by introducing the 4 DSPs is around 36.76%. Recall that no data caches are being used for
the DSPs and that all cores have an equal shared resource access priority.

V. CONCLUSIONS AND FUTURE WORK

In this work we show the feasibility and the potential of using the processors PMH for embedded systems timing analysis purposes.

We propose a low-overhead measurement framework and a statistical analysis for average and worst-case modeling of task execution
times under different execution conditions. The statistical analysis is applied on measured execution time, and accurate models are
computed. This framework is used to investigate interference that tasks receive from shared memory in multicore real-time embedded
systems.
Future work will extend the timing analysis framework to other system parameters and other system interference sources e.g.,
communication buses or partitioning tools. Also, the statistical analysis will be integrated with other metrics to increase the quality
of the representations obtained. The analysis will also apply to realistic real-time applications and other possible industrial multicore
platforms.

REFERENCES

[1] Reinhard Wilhelm et al. “The worst-case execution-time problem - overview of methods and survey of tools.” In: ACM Trans.
Embedded Comput. Syst. 7 (Jan. 2008).
[2] Stephen Law and Iain Bate. “Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis”. In:
28th Euromicro Conference on Real-Time Systems, ECRTS. 2016, pp. 189-199.
[3] Francisco J. Cazorla et al. “PROARTIS: Probabilistically Analysable Real-Time Systems”. In: ACM Transactions on Embedded
Computing Systems (TECS). Vol. 12. 2. 2012, pp. 1-26.
[4] F. Guet, L. Santinelli, and J. Morio. “On the Reliability of the Probabilistic Worst-Case Execution Time Estimates”. In: 8th
European Congress on Embedded Real Time Software and Systems (ERTS). 2016.
[5] Texas Instruments. TCI6630K2L Multicore DSP+ARM KeyStone II System-on-Chip (SoC). Jan. 2015.
[6] Einfochips. Keystone2 EVM Technical Reference Manual. Dec. 2014.
[71 ARM. Cortex-Al5 Revision: r2pl. Technical Reference Manual. Dec. 2011.
[8] Texas Instruments. TMS320C66x DSP CorePac. July 2013.
[9] Texas Instruments. KeyStone II Architecture Multicore Shared Memory Controller (MSMC). Nov. 2012.
[10] SYSGO. PikeOS Hypervisor certified according to Common Criteria. URL: https://www.sysgo.com/news - events/news -
articles/article/pikeos-hypervisor-certified-according-to-common-criteria/.
[11] SYSGO. PikeOS Hypervisor Eclipse-based CODEQO. URL: https://www.sysgo.com/products/pikeos-hypervisor/eclipse-based-
codeo/.
[12] Texas Instruments. Code Composer Studio (CCS) Integrated Development Environment (IDE) CCSTUDIO (ACTIVE). URL:
http://www.ti.com/tool/CCSTUDIO.
[13] ARM. About the coprocessor interface. URL: http://infocenter.arm.com/help/index.jsp ?topic=/com.arm.doc.ddi0333h/Bgbhbiah.
html.
[14] ARM. Using the PMU Event Counters in DS-5. URL: https://developer.arm.com/tools-and-software/embedded/legacy-tools/ds-
5-development-studio/resources/tutorials/using-the-pmu-event-counters-in-ds- 5.
[15] B. Sprunt. “Pentium 4 performance-monitoring features”. In: IEEE Micro 22.4 (July 2002), pp. 72-82.
[16] D. Zaparanuks, M. Jovic, and M. Hauswirth. “Accuracy of performance counter measurements”. In: IEEE International
Symposium on Performance Analysis of Systems and Software. Apr. 2009, pp. 23-32.
[17] B. Sprunt. “The basics of performance-monitoring hardware”. In: IEEE Micro 22.4 (July 2002), pp. 64-71.
[18] Vincent M Weaver and Sally McKee. “Can hardware performance counters be trusted?” In: Oct. 2008, pp. 141-150.
[19] L. Santinelli, F. Guet, and J. Morio. “Revising Measurement-Based Probabilistic Timing Analysis”. In: 2017 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). Apr. 2017, pp. 199-208.

10

https://www.sysgo.com/news-events/news-articles/article/pikeos-hypervisor-certified-according-to-common-criteria/
https://www.sysgo.com/news-events/news-articles/article/pikeos-hypervisor-certified-according-to-common-criteria/
https://www.sysgo.com/products/pikeos-hypervisor/eclipse-based-codeo/
https://www.sysgo.com/products/pikeos-hypervisor/eclipse-based-codeo/
http://www.ti.com/tool/CCSTUDIO
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0333h/Bgbhbiah.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0333h/Bgbhbiah.html
https://developer.arm.com/tools-and-software/embedded/legacy-tools/ds-5-development-studio/resources/tutorials/using-the-pmu-event-counters-in-ds-5
https://developer.arm.com/tools-and-software/embedded/legacy-tools/ds-5-development-studio/resources/tutorials/using-the-pmu-event-counters-in-ds-5

	Introduction
	Platform and applications
	Heterogeneous multicore platform
	Real-time application
	Execution model

	Measurements framework
	PMU counter setup
	Trace of measurements and statistical analysis

	Memory interference
	Critical application
	ARM critical and non-critical application
	ARM critical and DSPs non-critical application
	ARM critical and non-critical and DSPs non-critical application

	Conclusions and future work
	References

