N
N

N

HAL

open science

Towards service discovery and autonomic version

management in self-healing microservices architecture

Yuwei Wang

» To cite this version:

Yuwei Wang. Towards service discovery and autonomic version management in self-healing microser-
vices architecture. 13th European Conference on Software Architecture, Sep 2019, Paris, France.

pp.63-66, 10.1145/3344948.3344952 . hal-02445701

HAL Id: hal-02445701
https://hal.science/hal-02445701v1
Submitted on 20 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02445701v1
https://hal.archives-ouvertes.fr

Towards Service Discovery and Autonomic Version Management
in Self-healing Microservices Architecture

Yuwei WANG
EDF Lab Paris-Saclay
Palaiseau, France
UMR SAMOVAR, CNRS, Télécom SudParis, Institut Polytechnique de Paris
Evry, France
yuwei.wang@telecom-sudparis.eu

ABSTRACT

Microservices architectures (MSAs) contribute to building complex
distributed systems by decomposing monolithic systems into a set
of independent microservices. This makes it possible to design,
develop and deploy scalable and flexible systems. However, various
unexpected changes could happen during execution, such as a
service upgrade, a sudden increase of traffic, or an infrastructural
failure. In this cases, how to react autonomously to these changes
without outages becomes a challenge to consider. A PhD project has
been launched to propose a self-healing microservices architecture,
which can adapt dynamically to inside and outside changes without
human intervention. In this paper, we present the first results of a
systematic state of the art in the field of self-healing MSA systems.
As an entry point of our research, we focus on self-healing triggered
by upgrade changes. The initial contribution is a new component
of a version manager in our self-healing MSA solution, in relation
with service discovery elements. This approach can provide an
autonomic version management on both the application level and
the system level, and helps to control services upgrading changes.
We plan to validate our proposition in a company project use case by
deploying it in an emulated production environment, and applying
a chaos engineering approach.

CCS CONCEPTS

« Software and its engineering — Software architectures.

KEYWORDS

Software architecture, microservices, self-healing, service discovery,
version management, industrialization.

ACM Reference Format:

Yuwei WANG. 2019. Towards Service Discovery and Autonomic Version
Management in Self-healing Microservices Architecture. In ECSA 2019: 13th
European Conference on Software Architecture, September 09-13, 2019, Paris,
France. ACM, New York, NY, USA, 4 pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ECSA 19, Sept. 09-13, 2019, Paris, France

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1 INTRODUCTION

In recent years, microservices have become a new software architec-
ture paradigm. In this approach, complex applications are divided
into smaller, independent and loosely coupled services, and each
service provides one functionality with one business objective. This
type of architecture directly emerges from increased needs in terms
of flexibility, scalability, and maintainability. The traditional service-
oriented architecture (SOA) has been wildly used since 2000, but
this architecture meets a bottleneck when systems need to scale up
because of its centralized governance and integration mechanism
such as enterprise services bus (ESB). A lot of companies have built
up a technical debt over the last years. So, microservices architec-
ture (MSA) is an alternative for them to become more effective at
delivering into production environments [16].

However, the reliability of MSA systems decreases straightly
with the growth of the number of microservices and the complexity
of the systems [10]. Services can become temporarily unavailable be-
cause of the unexpected changes, such as network failures, suddenly
increased service loads, release upgrades, configuration changes,
etc. Moreover, unlike monolithic systems, microservices support
the Conway’s law [5] that means aligning microservices ownership
to the structure of teams [12]. In other words, each microservice can
be managed by different autonomous teams. Service dependencies
will not be only controlled by their own teams. So, these unex-
pected changes across service boundaries become more difficult to
deal with. In order to minimize the impact of partial outages of the
system, it is important to design a microservices architecture with
some self-healing capabilities [8] that can discover, study, and react
to these changes. In addition, when changes happen in a system,
how to reallocate and optimize the infrastructure resource usage is
also a associated challenge to address.

In this context, a PhD research project has been launched and
aims at proposing a microservices architecture with self-healing and
autonomic management of resources. This architecture will answer
the following main business requirements: (i) allowing services hot
swapping and automated version upgrading of services without
impacting the other services that depend on them, (ii) implementing
automated microservices’ migration following a failure of part of
the infrastructure, (iii) making systems more resistant to the failure
of one or more services, and making them possible to recover from
an unhealthy state, (iv) taking into account load balancing, traffic
routing, and resources allocation when system changes (including
failures, scale changes, and evolutions).

Since building a complete architecture for self-healing covering
all the desired use cases at once can be difficult, we will firstly focus

ECSA’19, Sept. 09-13, 2019, Paris, France

on the changes caused by microservices’ version upgrading (the
first consideration above) as a breakthrough. Because of upgrades,
the network locations of microservices may change dynamically. A
service discovery mechanism is therefore necessary in our archi-
tecture. Moreover, the problem of versioning has also come up due
to the explosion of microservices.

The contributions of this paper are mainly the following: (i) We
have started a systematic state of the art on self-healing, service
discovery and versioning in MSA systems. This study considers the
guidelines identified in [13]; (ii) We propose a preliminary refer-
ence architecture for microservices clusters with business nodes
and manager nodes; (iii) We introduce a new version manager com-
ponent able to provide an appropriate microservice version and
that works jointly with service discovery.

The rest of the paper is organized as follows. Section 2 presents
an overview of the related work. Section 3 provides the proposed
solution. The excepted results are discussed in Section 4. Section 5
focuses on the plan for evaluation of the proposed microservices
architecture. Section 6 finally concludes the paper.

2 RELATED WORK

This section discusses some works related to self-healing microser-
vices systems, service discovery and versioning for microservices.

2.1 Self-healing in MSA

MSA systems are composed of a set of independent services to
achieve a collective business goal, which makes them possible to
realize run-time healing and dynamic adaptation of systems.

Nowadays in industry, the technologies of containerization such
as Docker and the cluster orchestration platforms for automating
operations such as Kubernetes simplify the resource management
and supports basic self-healing for MSA systems.

Some papers also present their propositions about this topic. [17]
describes an architecture for self-managing microservices to build a
scalable and resilient system in a cloud environment. This architec-
ture implements the management logic within the managed MSA
applications rather than as a third-party service. It draws support
from the distributed hierarchical storage and a consensus algorithm
to elect a leader to provide health management and auto-scaling
functionality. When failures happen, the services can be restarted
on another node that shares service configurations. [6] introduced
an external and decentralized management approach called GRU to
integrate an autonomic manager into Docker-based MSA systems.
GRU is based on a multi-agent system and creates a new abstraction
level with agents units implementing a decentralized MAPE-K [9]
autonomic loop on the top of Docker containers. GRU agents allow
to manage a set of containerized microservices and take decisions
according to their states and also to the status of their neighbors
when the environment changes.

Throughout the existing researches, we find that most of the
works were published in 2015 and 2016; there are only a few new
results coming out in the last years directly addressing self-healing
microservices architectures. When mentioning self-healing systems,
most papers talk about the capacity of detecting and then recovering

Y.W. WANG

from failures. However, in our work, we intend to extend self-
healing to a broader meaning of adapting dynamically to more
various changes.

2.2 Service discovery in MSA

Service discovery is not a new middleware service. DNS (Domain
Name Server) is one of the simplest approach that maps domain
names with IP addresses. But in this case, the address is often hard-
written in applications. This does not allow to meet new challenges
when it comes to microservices and an increasing number of ser-
vices resulting from dynamic changes. So, we need more advanced
mechanisms to solve this problem. There are some existing so-
lutions , mostly used in the industry. Consul [7] is a distributed
key-value store that provides service discovery and integrates mon-
itoring as well as health checking. It uses client agents and RAFT
quorum algorithm to ensure consistency between instances. It also
provides service membership management and message broad-
casting through a gossip protocol. Eureka [11], from Netflix, is a
RESTful service discovery tool with a client/server architecture.
There is a Eureka server per data center and Eureka clients use an
embedded Java component or a sidecar to register and discover ser-
vices. It provides also heartbeats and TTL (Time to Live) to achieve
high availability. Synapse [1], from Airbnb SmartStack, is based on
HAProxy to route requests to microservices. It includes watcher
components to frequently check for changes of service address and
then to update configuration in HAProxy.

[15] mainly addresses service discovery in MSA systems and
proposes a solution called Serfnode, which is based on Docker and
the Serf project. A Serfnode agent encapsulates one or more Docker
images and a supervisor instance, and it communicates with an
event system via a Gossip protocol. It provides a simple monitoring
and self-healing mechanism through a third-party process control
system called Supervisor.

In the state of the art, few of the works associate service discov-
ery with self-healing. It has to be noted that a wide gap appears
between academic research and industrial solutions. In addition,
we consider that service discovery should work together with a
version management component to control the changes of services
versions.

2.3 Version management in MSA

In regard to version management in MSA systems, [4] discusses
three patterns to handle different service versions: immutable server
pattern, blue green deployment, and canary release. Immutable
server pattern means that once the server is deployed in production
environment, when changes happen, it should be replaced with a
new updated instance rather than be modified. Blue-green deploy-
ment and canary release resolve the problem of introducing the
new versions without downtime. When deploying a new version
of a microservice, the old one and the new one are run in paral-
lel. Blue-green deployment routes traffic immediately to the new
version but canary release routes it iteratively. In [12], the author
describes two possibilities for the coexistence of different versions:
maintaining old and new versions of microservices resources, or old
and new interfaces in the same running microservice. [14] proposes

Self-healing Microservices Architecture

a system-level autonomous healing tool called “app-bisect” to trou-
bleshoot and repair MSA applications in production environments.
The idea is that the dependencies of microservices are represented
as a graph change; a particular past version is searched and de-
ployed automatically; the candidate version is sped up to be chosen
by using canary testing and version-aware routing techniques.

Although several articles have mentioned this subject and its
models, they do not provide more details than the main idea. They
only consider the impact of upgrading the service in a single ap-
plication, which means the versioning at the application level. In
the context of a business application, the microservices in another
application developed by another team are often considered as
external components. As an example, consider the scenario in Fig-
ure 1. An application A is composed of a set of microservices and is
managed by an internal or an external team A in the company. An
application B also includes a set of microservices managed by team
B. For reasons of cost reduction and infrastructure reuse, applica-
tion B can use a subset of microservices and also its infrastructure
underlying Application A. In fact, both applications are developed
and maintained independently. This reused subset, like MS1 in fig-
ure, is considered as an external component by the development
team B. If the microservices on which the application B depends
are updated, there is a risk of breaking the application. Thus, the
overall management of the microservices version among several
applications at the company level becomes an important issue. Our
solution will take into account versioning both at the application
level and at the company level.

(.) ' M54 \
- visa ~ . Ms1 y

Application A —team A Application B —team B

Figure 1: Example of versioning problem in microservices

3 PROPOSED SOLUTION

This section presents the preliminary design of the solution we
propose in the context of industry.

To meet the main expected business requirements discussed in
Section 1, in the context of industry, virtualizing the microservices
by mixing and matching containers with virtual machines is a ma-
jor step in our design of MSA infrastructures. Figure 2 illustrates a
reference architecture of clusters for our self-healing MSA. In this
approach, the microservices are containerized as business nodes
that run within a group of virtual machine (VM) instances. An-
other group of VMs is allocated for some manager nodes that help
independent microservices for working together in a distributed
environment and for making complex system changes easier to
manage. To avoid any single point failure, there are several man-
ager nodes. To facilitate the communication between instances of
each node and reduce complexity, we can use a message broker.

Figure 3 shows an outline of our cluster manager node. It takes
care of orchestrating, scheduling and controlling the microservices

ECSA 19, Sept. 09-13, 2019, Paris, France

n Physic machines n Virtual machines n Containers n Microservices

in company Business

- D N
) M | m@ ‘ s1
PM O e | — p— 3 s4
0o wen Cze ‘ :

8 e -
“EG AW

v [0 e

Managers

Figure 2: A reference architecture for clusters

in the clusters. We introduce a new component for managing ver-
sion upgrades. In the following, we present the main components

in a manager node.
| é | Business nodes

51 32

8% | Manager node
=

| Version manager |

Service registry & .
discovery service

Communication Cg |

& —

Exchange format

| Scheduler solver |

Health monitor &
fault manager

Figure 3: Main concerns in the design of the manager node

The version manager focuses on the version changes due to
microservices’ upgrades at the application level and company level.
At the application level, the changes introduced could be minor,
which means that their dependent services do not need to modify
the called APIs, and the version manager can redirect immediately
to the new version. Or they could be major, in which case these
changes are destructive for other microservices, and the version
manager should gradually route the traffic to the new version. At
the company level, the version manager also takes in charge the
control of the utilization of each version and when the older one
should be considered as obsolete.

The service registry and discovery service is a mechanism for
dependent services to locate each other dynamically on the network.
It comprises a service registry, which is a database to maintain
microservices information including IP address, port number and
other useful metadata such as version, service name, and so on.
Microservices exchange with the service registry to record their
locations and discover other registered microservices.

The schedule solver plays the role of a planner and a load bal-
ancer. It takes decisions for microservices scheduling by launching
specific constraints to optimize clusters resource usage, and to pro-
vide high availability. It considers the status of each microservice

ECSA’19, Sept. 09-13, 2019, Paris, France

and route the traffic to relative health instances. This component
also includes a priority engine that identifies a priority level for each
system changes based on different metrics—i.e., a higher priority
level means a more urgent situation to solve.

The health monitor and fault manager address the system quality
attribute of fault tolerance. This component refers to the ability of
detecting, correcting and even preventing failures. It takes responsi-
bility for collecting and checking microservices status at run time. It
relies on a score engine to calculate scores for each microservice on
the basis of defined criteria and weight factors, such as the load of
services, response time, resource usage, failures, etc. The higher the
score obtained by a microservice, the healthier it is. It also carries
out different strategies to minimize the impact of partial outages.
Common architectural patterns and techniques to isolate failures
and to achieve graceful service degradation are considered, such as
failover caching, circuit breakers, rate limiters, etc. [2].

The problem of communication and data exchange format relates
to interactions in the clusters among different nodes and among
different components in a node. MSA applications are distributed
systems running on multiple machines. So how to stitch them
together with different communication styles for different scenarios
and goals should also be considered in our architectural design: e.g.
the communication protocol can be synchronous or asynchronous;
the interaction can be one-to-one or one-to-many, and the exchange
message formats can be text-based formats such as JSON or binary
format such as Protocol Buffers.

In this paper, we give a bird eye view of our self-healing MSA
design. The next step will be entering into the details of each part of
the architecture, starting from the problems of version management.

4 EXPECTED CONTRIBUTIONS

The expected contributions of our work include both theory and
practice. The first contribution is expected as a systematic state of
art study, following guidelines proposed in [13], performed on self-
healing microservices architectures. It provides a comprehensive
overview of the existing challenges in the field and also points out
the current gap between academia and industry. The second con-
tribution concerns an architectural proposition for microservices-
based systems that have the ability to react autonomously to changes
(including failures, variations in scale and evolutions). Especially,
this architecture enables a new approach to manage the versions of
microservices without human intervention. The third contribution
could be an experience report or an evaluation report that applies
our proposition to an industrial case. We aim to help companies
improve robustness as well as performance of systems and reduce
their maintenance costs.

5 PLAN FOR EVALUATION

In order to evaluate our propositions, we will use them for the de-
sign and development of a company project use case. This project
was developed several years ago with monolithic architectures and
now has difficulty to be maintained and scaled. We will help to
optimize this system by using MSA and demonstrate the feasibility
of our design. We plan to deploy this system on physical infrastruc-
tures and a private cloud platform in the company, which follows
the reference architecture described in Figure 2. We will also pilot

Y.W. WANG

it into production environment. Moreover, we will introduce chaos
engineering [3] into our evaluation, which means proactively test-
ing how our system responds to various changes in a production
environment. This implementation and testing will help to validate
the performance and resiliency of our system. In addition, how to
evaluate by benchmarking and which benchmark suite to use are
open issues to be discussed.

6 CONCLUSION

In this paper, we presented a research summary of a PhD project
for discussing the topic of self-healing microservices systems. Our
project is still in a very early stage. We defined the context of our
research and the potential problems. As self-healing involves differ-
ent types of changes: upgrades, failures and scales, we identified an
entrance for our work that is the problem of service discovery and
versioning in microservices systems. We will evaluate our future
solutions by applying into a company project use case.

ACKNOWLEDGMENTS

This work is supported by a CIFRE convention of the ANRT and
the French Ministry of Higher Education, Research and Innovation.

REFERENCES

[1] Airbnb. 2012. Synapse. Retrieved May 2018 from https://github.com/airbnb/
synapse

[2] N. Alshuqayran, N. Ali, and R. Evans. 2016. A Systematic Mapping Study in
Microservice Architecture. In Proc. IEEE 9th International Conference on Service-
Oriented Computing and Applications. Macau China.

[3] A.Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski, J. Reynolds, and C.
Rosenthal. 2016. Chaos Engineering. IEEE Software 33, 3 (May 2016), 35-41.

[4] B. Butzin, F. Golatowski, and D. Timmermann. 2016. Microservices approach
for the internet of things. In Proc 21st IEEE International Conference on Emerging
Technologies and Factory Automation. Berlin Germany.

[5] M.E. Conway. 1968. How Do Committees Invent? Datamation 33, 3 (April 1968).
http://www.melconway.com/research/committees.html

[6] L. Florio and E. Di Nitto. 2016. Gru: An Approach to Introduce Decentralized Au-
tonomic Behavior in Microservices Architectures. In Proc. 2016 IEEE International
Conference on Autonomic Computing. Wurzburg, Germany.

[7] HashiCorps. 2014. Consul by HashiCorp. Retrieved May 2019 from https:
//www.consul.io/

[8] M.C. Huebscher and J.A. McCann. 2008. A survey of autonomic computing-
degrees, models, and applications. Comput. Surveys 40, 3 (Aug. 2008), Article No.
7.

[9] J.O. Kephart and D.M. Chess. 2003. The vision of autonomic computing. IEEE
Computer 36, 1 (Jan. 2003), 41-50.

[10] T.Killalea. 2016. The hidden dividends of microservices. Commun. ACM 59, 8
(Aug. 2016), 42-45.

[11] Netflix. 2012. Eureka at a glance. Retrieved Dec 2014 from https://github.com/
Netflix/eureka/wiki/Eureka-at-a-glance

[12] S.Newman. 2015. Building microservices: designing fine-grained systems. O’Reilly,
USA.

[13] K. Petersen, S. Vakkalanka, and L. Kuzniarz. 2015. Guidelines for conducting
systematic mapping studies in software engineering: An update. Information and
Software Technology 64, C (Aug. 2015), 1-18.

[14] S. Rajagopalan and H. Jamjoom. 2015. App-Bisect: Autonomous Healing for
Microservice-Based Apps. In Proc. 7th USENIX Workshop on Hot Topics in Cloud
Computing. Santa Clara, CA, USA, 16-16.

[15] J. Stubbs, W. Moreira, and R. Dooley. 2015. Distributed Systems of Microservices
Using Docker and Serfnode. In Proc. 7th IEEE International Workshop on Science
Gateways. Budapest, Hungary.

[16] J. Thones. 2015. Microservices. IEEE Software 32, 1 (Jan. 2015), 116-116.

[17] G. Toffetti, S. Brunner, M. Blochlinger, F. Dudouet, and A. Edmonds. 2015. An
architecture for self-managing microservices. In Proc. 1st International Workshop
on Automated Incident Management in Cloud. Bordeaux France, 19-24.

https://github.com/airbnb/synapse
https://github.com/airbnb/synapse
http://www.melconway.com/research/committees.html
https://www.consul.io/
https://www.consul.io/
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

	Abstract
	1 Introduction
	2 Related Work
	2.1 Self-healing in MSA
	2.2 Service discovery in MSA
	2.3 Version management in MSA

	3 Proposed Solution
	4 Expected Contributions
	5 Plan for Evaluation
	6 Conclusion
	Acknowledgments
	References

