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and Roland Keunings4

Background
Nanocomposites composed of carbon nanotubes (CNTs) in a polymer matrix exhibit a 
significant enhancement of electrical conductivity, mechanical and thermal properties 
[1, 2]. Due to the large length to diameter aspect ratios (from 100 to 10,000), they create 
conducting networks at low volume fractions [3].

In many forming processes (injection, extrusion, among many others), however, the 
CNT flow-induced orientation can alter dramatically the effective properties [4]. More-
over, the flow can induce aggregation and disaggregation mechanisms that also affect the 
final properties of the processed part [5]. It is well known that extrusion [6] and injection 
processes [7] can in some cases cause a conducting-to-insulating transition.

An important goal is to develop robust processes that maximize both electrical con-
ductivity and mechanical properties, which asks for a suitable compromise in terms of 
flow-induced microstructure. There are many works focusing on the effects of shear 
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rate [8], network structure [9–11], extensional flow [12], CNT orientation [13] and the 
resulting properties [14].

An important recent observation is that the flow-induced concentration of CNTs is 
not uniform [15–19]. Indeed, CNTs have the tendency to aggregate (in what follows we 
do not make distintion between agglomeration and aggregation, we use the last term 
because it was the one considered in our former works). As a result, all properties and 
mechanisms must be reformulated in the context of suspensions and networks involving 
clusters composed of CNTs, instead of considering a population of perfectly distributed 
isolated CNTs [5].

In our recent studies [20–22], we have proposed kinetic theory models to predict the 
kinematics and rheology of either rigid or deformable aggregates of CNTs in a Newto-
nian fluid matrix. In addition to providing a simple description of a rich microstructure, 
the proposed models are able to point out collective effects that are observed experi-
mentally [23]. In these studies, we considered hydrodynamic effects only. Electrical 
mechanisms are discussed in the present paper.

In terms of modeling and simulation, two different approaches are usually adopted to 
take account of electrical effects. The simplest one considers a given network and pro-
ceeds to evaluate its direct current (DC) electrical properties. To that purpose, three 
main steps are followed: (1) generation of the composite’s microstructure, (2) creation of 
an equivalent resistance network corresponding to this microstructure, and (3) calcula-
tion of this network in a continuous or discrete manner [24].

The above approach allows for a detailed analysis of the electrical properties for a 
given microstructure, which usually remains “frozen”.

The second approach consists in predicting the network itself, and then carrying out 
the electrical analysis. In this case, it is usual to proceed at the mesoscopic scale using 
methods of Dissipative Particle Dynamics (DPD) for describing packed assemblies of 
oriented fibers suspended in a viscous medium [25]. Computer simulations are per-
formed in order to explore how the aspect ratio and degree of fiber alignment affect the 
critical volume fraction percolation threshold required to achieve electrical conductivity. 
The fiber network impedance is assessed using Monte Carlo simulations after establish-
ing the structural arrangement with DPD. Thus, these simulations allow one to predict 
the microstructure (CNT dispersion and aggregation), and, even though most such sim-
ulations do not consider the flow coupling, there are no major difficulties to include it as 
well. Computational micromechanics approaches for modeling effective conductivity in 
CNT-nanocomposites in general were addressed in [26, 27].

The main limitations of these two common approaches are that (1) they concern a 
computational domain that is only representative of a small region of the whole process 
and part, and (2) they analyze a particular configuration, which implies many individual 
solutions in order to perform a valuable statistical treatment of the results.

In the present work, we propose an alternative approach to evaluating electrical prop-
erties in flowing suspensions of perfectly dispersed CNTs in a Newtonian fluid (the 
dispersion is ensured by assuming an appropriate functionalization). Starting from a 
microscopic description, we derive both mesoscopic and macroscopic descriptions. The 
main advantage of mesoscopic models is their ability to address systems of macroscopic 
size, while keeping track of the detailed physics through a number of conformational 



coordinates for describing the microstructure and its time evolution. At the mesoscopic 
scale, the microstructure is defined by means of the orientation distribution function 
that depends on physical space, time and CNT orientation. The moments of this distri-
bution constitute a coarser description often used in macroscopic modeling, at the cost 
of compulsory closure approximations whose impact on the results is either ignored or 
unknown. Finally, the modeling of particle contacts is addressed as they determine the 
final functional properties, in particular electrical conduction. Different descriptors of 
rod contacts will be proposed and analyzed.

Orientation induced by the electric and flow fields
In this section, we first give the equation governing the orientation of a rod immersed in 
a Newtonian fluid of viscosity η in presence of an electric field ǫ(x, t) and a velocity field 
v(x, t). Then, the proposed model will be coarsened for describing a population of rods 
within the framework of kinetic theory. Finally, a macroscopic model will be derived.

Microscopic description

We consider a suspending medium consisting of a Newtonian fluid in which are sus-
pended N rigid slender rods (e.g. CNTs) of length 2L. As a first approximation, the fiber 
presence and orientation are considered not to affect the flow kinematics defined by the 
velocity field v(x, t), with x ∈ Ω ∈ R

3.
The microstructure is described at the microscopic scale by the unit vector defining 

the orientation of each rod, i.e. pi, i = 1, . . . ,N . In absence of electric field, one fiber can 
be defined by p or −p, which implies a symmetry property for the orientation distribu-
tion function. When considering the electric field induced charges, however, that sym-
metry is broken and the orientation is defined univocally. We assume that p points from 
the negatively-charge bead to the positive one (Fig. 1).

If the suspension is dilute enough, rod-rod interactions can be neglected and a micro-
mechanical model can then be derived by considering a single generic rod whose orien-
tation is defined by the unit vector p.

We thus consider the system illustrated in Fig. 1, that consists of a rod immersed into 
a fluid flow, with two beads at the extremities that have respectively an electrical charge 
+q and −q assumed for the sake of simplicity permanent and independent of the applied 
electric field. Hydrodynamic forces are also assumed to act on both beads. Thus, the 
resultant force acting on bead pL reads

Fig. 1 Hydrodynamic and electrostatic forces applied on a rod immersed in a Newtonian fluid



where ξ is the friction coefficient and E ≡ qǫ. It has been assumed that the velocity gra-
dient is constant at the scale of the rod (first-gradient theory).

Obviously, if F is applied on bead pL, then for the opposite bead −pL the resultant 
force reads

Neglecting inertia, the balance of linear and angular momenta yields [28]

and

This can be rewritten as:

where ṗE is the contribution of electrostatic forces to the rotary velocity and ṗJ repre-
sents the hydrodynamic contribution that coincides with the Jeffery solution for infinite 
aspect ratio ellipsoids [29].

Equation (3) determines the suspension rheology whereas Eq. (5) governs the micro-
structure evolution.

Mesoscopic description

Because the rod population is very large, the description that we just proposed, despite 
of its conceptual simplicity, fails to address the situations usually encountered in prac-
tice. For this reason, coarser descriptions are preferred. The first plausible coarser 
description applies a zoom-out, wherein the rod individuality is lost in favour of a prob-
ability distribution function [30–33].

Fokker‑Planck equation

In the case of rods, one can describe the microstructure at a certain point x and time t 
from the orientation distribution function Ψ (x, t,p) which gives the fraction of rods that 
at position x and time t are oriented in direction p. Obviously, the function Ψ  satisfies 
the normality condition:

where S is the surface of the unit ball that defines all possible rod orientations.
The balance equation that ensures conservation of probability reads:

(1)F(pL) = E+ ξL(∇v · p− ṗ),

(2)F(−pL) = −E− ξL(∇v · p− ṗ).

(3)F = (E · p)p+ ξL
(

pT · ∇v · p
)

p,

(4)ṗ =
1

ξL
(E− (E · p)p)+

(

∇v · p−

(

pT · ∇v · p
)

p
)

.

(5)ṗ =
1

ξL
(I− p⊗ p) · E+

(

∇v · p−

(

pT · ∇v · p
)

p
)

= ṗE + ṗJ ,

(6)

∫

S

Ψ (x, t,p) dp = 1, ∀x, ∀t,

(7)
∂Ψ

∂t
+

∂

∂x
(ẋ Ψ )+

∂

∂p
(ṗ Ψ ) = 0.



For inertialess rods in first-gradient flows, we have ẋ = v(x, t) and the rod rotary velocity 
is given by Eq. (5):

Equation (7), combined with Eq. (8), is known as a Fokker-Planck equation. It is a suit-
able compromise between the macroscopic scale that defines the overall process, and a 
finer microscopic description of the electric field induced orientation of each individual 
rod. The price to pay is the increase of the model dimensionality, since the orientation 
distribution is defined in a high-dimensional domain, i.e. (x, t,p) ∈ Ω × I × S.

In the case of dilute suspensions of CNTs, Brownian forces have a randomizing effect. 
These effects can be accurately described collectively with a diffusion term in the Fok-
ker-Planck equation:

where the diffusion coefficient Dr quantifies the randomizing nature of rod-rod interac-
tions and Brownian forces, that in semi-concentrated flowing systems was assumed scal-
ing with the shear rate [34].

Parametric solutions of the Fokker‑Planck equation

The Fokker-Planck equation (9) is defined in a multidimensional space involving the 
physical space x, the time t and the conformational coordinates associated to the rod 
orientation p, with ṗ given by Eq. (8).

We proposed a few years ago [35, 36] a discretization technique based on the use of 
separated representations in order to ensure that the complexity scales linearly with the 
model dimensionality. This new approach is now known as Proper Generalized Decom-
position (PGD). This technique consists in expressing the unknown field as a finite sum 
of functional products, i.e. expressing a generic multidimensional function u(x1, . . . , xd) 
as

Here, both the one-dimensional functions Fj
i  and the appropriate number of terms N are 

unknown a priori. The interested reader can refer to the research papers [37–43] and the 
recent book [44].

One of the most appealing features of this technique is its ability of solving multi-
dimensional models. Thus, with the PGD, the parameters of a physical model can be 
considered as extra-coordinates, such that by solving only once the resulting multidi-
mensional model one has access to the general parametric solution that can be used to 
evaluate the impact of each parameter on the solution (that is, for performing sensitivity 
analyses) or to perform fast inverse identification [44–46].

In the case of the Fokker-Planck model (9)–(8), which only involves as coordinates 
the space x, the time t and the conformational coordinates p, its solution depends 

(8)ṗ =
1

ξL
(I− p⊗ p) · E+

(

∇v · p−

(

pT · ∇v · p
)

p
)

.

(9)
∂Ψ

∂t
+

∂

∂x
(v Ψ )+

∂

∂p
(ṗ Ψ ) =

∂

∂p

(

Dr
∂Ψ

∂p

)

,

(10)u(x1, · · · , xd) ≈

N
∑

i=1

F1
i (x1) · . . . ·F

d
i (xd).



parametrically on the following parameters: (1) the diffusion coefficient Dr, (2) the effec-
tive electric field E/ξL and (3) the components of the velocity gradient ∇v

Within the PGD framework, and assuming a uniform effective electric field Ẽ = E/ξL, 
the parametric orientation distribution Ψ (x, t,p,Dr , Ẽ,∇v) is written in a separated form 
for circumventing the curse of dimensionality associated with standard mesh-based dis-
cretization techniques. The simplest separated representation reads

where Gzz = −(Gxx + Gyy) in view of incompressibility.
In 3D physical space, this formulation involves 18 dimensions. With the PGD, the 

computational complexity is associated with the solution of some 2D or 3D problems 
related to the calculation of the functions Fx

i (x), F
p
i (p) and FE

i (Ẽ), and a series of 1D 
problems for calculating the remaining functions involved in Eq. (12). The generic PGD 
solution procedure, that is, the constructor of the unknown low-dimensional functions 
involved in Eq. (12), is described in detail in the book [44].

Macroscopic description

Fokker-Planck based descriptions are rarely considered in industrial applications pre-
cisely because the computational complexity that high dimensionality induced by the 
use of conformation coordinates implies. For this reason, mesoscopic models are com-
monly coarsened one step further to obtain macroscopic models defined in standard 
physical domains, involving only space and time coordinates.

At the macroscopic scale, the orientation distribution function is substituted by its 
moments for describing the microstructure, as proposed in [47]. We consider the first 
four orientation moments a(1), a(2), a(3) and a(4) defined as:

(11)∇v =





Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz



.

(12)

Ψ (x, t,p,Dr , Ẽ,∇v) ≈

N
∑

i=1

Fx
i (x) · F

t
i (t) · F

p
i (p) · F

D
i (Dr) · F

E
i (Ẽ) · G

xx
i (Gxx) · G

xy
i (Gxy)·

Gxz
i (Gxz) · G

yx
i (Gyx) · G

yy
i (Gyy) · G

yz
i (Gyz) · G

zx
i (Gzx) · G

zy
i (Gzy),

(13)a(1) =

∫

S

p Ψ dp,

(14)a(2) =

∫

S

p⊗ pΨ dp,

(15)a(3) =

∫

S

p⊗ p⊗ p Ψ dp,

(16)a(4) =

∫

S

p⊗ p⊗ p⊗ p Ψ dp.



In view of the non-symmetry of Ψ , the odd moments of the distribution function Ψ  do 
not vanish.

Evolution equations for the orientation moments

As detailed in [28], by taking the time derivative of Eqs. (13) and (14) and taking into 
account the expression of the rotary velocity ṗ expressed by Eq. (5), we obtain

and

both requiring closure relations, the first one (17) concerning a(2) and a(3) and the sec-
ond one (18) associated with a(3) and a(4).

When Brownian effects are retained, the resulting macroscopic model is given by [28]

which, in absence of electric field, E = 0 and of flow, v(x, t) = 0, ensures a steady-state 
isotropic distribution, i.e. a(1)(t → ∞;E = 0; v = 0) = 0. The second moment evolves 
according to

where d = 2 in 2D and d = 3 in 3D. In absence of electric field and of flow, we obtain a 
steady-state isotropic distribution, i.e. a(2)(t → ∞) = I

d
.

On closure relations

We proposed and analyzed in [28] the following hybrid closure relation for a(2), to be 
considered when the microstructure evolution is described from the single a(1) descrip-
tor requiring the integration of Eq. (17):

with

d = 2, 3 in 2D and 3D respectively, and

(17)ȧ(1) =
1

ξL

(

E− a(2) · E
)

+ ∇v · a(1) − a(3) : ∇v,

(18)

ȧ(2) =
1

ξL

(

E⊗ a(1) + a(1) ⊗ E− 2a(3) · E
)

+ ∇v · a(2) + a(2) · (∇v)T − 2a(4) : ∇v,

(19)ȧ(1) =
1

ξL

(

E− a(2) · E
)

+ ∇v · a(1) − a(3) : ∇v − Dr a
(1)
.

(20)

ȧ(2) =
1

ξL

(

E⊗ a(1) + a(1) ⊗ E− 2a(3) · E
)

+ ∇v · a(2) + a(2) · (∇v)T − 2 · a(4) : ∇v − 2dDr

(

a(2) −
I

d

)

,

(21)a(2),cl = χI+ γ
a(1) ⊗ a(1)

tr
(

a(1) ⊗ a(1)
) ,

(22)χ =
1

d

(

1−

(

a(1) · a(1)
)2

)

,



Integration of Eq. (17) also requires the third-order moment. In [28], the following prag-
matic choice was considered

even though, as discussed below, it does not satisfy the required symmetry conditions.
When considering both microstructure descriptors, a(1) and a(2), closure relations are 

needed for approximating the third and fourth-order moments, a(3) and a(4) respectively.
There is a vast choice of possible closure relations of the fourth-order tensor a(4) usu-

ally encountered in standard suspension models [48–50].
When there is no difference between p and −p to describe rod orientation, the distri-

bution function is symmetric and odd moments vanish. In the present case, the symme-
try is broken and odd moments do not vanish, thus requiring appropriate closures.

From the definition of a(3), we can identify the following symmetry conditions (for the 
sake on simplicity and without loss of generality we restrict the analysis to the 2D case):

We could consider the following terms in the closure of the third-order moment:

  – The cubic term a(1) ⊗ a(1) ⊗ a(1) fulfills the symmetry relations (25), whereas 
a(1) ⊗ a(2) and a(2) ⊗ a(1) do not satisfy in general conditions (25);

 – Quadratic terms obtained from tensor products of a(2) and constant vectors or quad-
ratic terms coming from the tensor product of a(1) twice and constant vectors do not 
verify in the general case the symmetry conditions;

 – Linear terms obtained from tensor products of a(1) and constant matrix do not verify 
in the general case the symmetry conditions;

 – If we define vectors IT
1
= (1, 0) and IT

2
= (0, 1), then tensors I1 ⊗ I1 ⊗ I1 and 

I2 ⊗ I2 ⊗ I2 verify the above mentioned symmetry conditions.

Thus, we could consider the following closure:

In the numerical analysis and discussion reported later, we will consider the cubic clo-
sure (26) with β = δ = 0, i.e.

Description of the rod network
We have seen how to model and predict the microstructure induced by the electric 
field. We addressed in [28] the following questions: (1) how to compute the electric field 

(23)γ =

(

a(1) · a(1)
)2

=

(

tr
(

a(1) ⊗ a(1)
))2

.

(24)a(3),cl = a(2),cl ⊗ a(1),

(25)







a
(3)
112

= a
(3)
121

= a
(3)
211

a
(3)
122

= a
(3)
212

= a
(3)
221

.

(26)a(3),cl = α

(

a(1) ⊗ a(1) ⊗ a(1)
)

+ β(I1 ⊗ I1 ⊗ I1)+ δ(I2 ⊗ I2 ⊗ I2).

(27)a(3),cl = α

(

a(1) ⊗ a(1) ⊗ a(1)
)

.



E(x, t), (2) how to evaluate the induced conductivity properties, and finally (3) how to 
determine preferential electrical paths in the computational domain of interest Ω.

In what follows, the electric field is assumed known from the solution of the Laplace 
equation in the domain occupied by the suspension (see [28] for details). We focus here 
on the multi-scale description of rod contacts.

Mesoscopic description

In order to quantify the rod network, we introduce the number density of rod con-
tacts C(x, t,p) for a rod with orientation p, depending on the two main microstructure 
descriptors: (1) the CNT concentration φ(x, t), and (2) the orientation distribution 
Ψ (x, t,p).

When calculating the number of contacts, there is no difference between p and −p. 
Thus, we use the symmetrized orientation distribution function Ψ S(x, t,p) defined as 
follows:

The fraction of rods oriented in direction p is φ Ψ S(p). The center of gravity of all of 
these is located at position P. All rods having their center of gravity at position Q inside 
the sphere of radius 2L centered at point P could interact with the former. Due to the 
small size of the considered rods (CNTs), we can assume that the orientation distribu-
tion Ψ  and concentration φ at positions P and Q coincide.

In fact, because of electronic tunneling effect, the contact between the fibers is not 
necessarily needed. There is a minimum distance, δ, from which the electrical conduc-
tivity occurs. The interaction between rods aligned in directions p and p′ whose centers 
of gravity are closer than 2L can be evaluated by a simple geometrical construction as 
shown in Fig. 2.

The local and directional contact density C(p), when its dependence on the space and 
time coordinates is omitted, reads

(28)Ψ S(x, t,p) =
Ψ (x, t,p)+ Ψ (x, t,−p)

2
.

(29)C(p) = φ

∫

B

∫

S

χ(r,p,p′) Ψ S(p′) dp′ dr,

Fig. 2 Evaluating rod contacts



where B is the ball of radius 2L centered at point P and where χ(r,p,p′) is a function 
equal either to 1 if the distance between the fibers is lower than δ, or to zero otherwise.

It can be expected that the conductivity at position x and time t along the direction p 
scales with the number of contacts φ C(x, t,p)Ψ S(x, t,p). Thus the conductivity becomes 
local and directional. One can expect that percolation along direction p occurs locally (at 
position x and time t) when the number of contacts φ C(x, t,p)Ψ S(x, t,p) is higher than 
a threshold value T . Lower values imply an infinite local directional electrical resistiv-
ity. Thus, percolation could be considered local and directional, allowing us to create 
a network as described in [28] in which we associate to each node a connexion with 
each one of its 26 neighbours (Fig. 3). Once we know the local directional resistivity at 
node (i, j, k) scaling with φ C(x, t,p)Ψ S(x, t,p), we can compute the electrical resistances 
between node (i, j, k) and each one of its neighbouring nodes, and, using Kirchhoff’s law, 
analyze the resulting electrical circuit as described in [28].

The microstructure description based on the use of the density of contacts C(p) is 
very close to that obtained following the rationale proposed by Toll [51, 52] (in continu-
ity with the works of Doi and Edwards [53] and Ranganathan and Advani [54]). In our 
approach, the effect related to the finite diameter of the rods is neglected, but its inclu-
sion is straightforward.

The integration involved in Eq. (29) can be understood from the geometrical construc-
tion depicted in Fig. 4. It can be noticed that all rods oriented along direction p′ having 
their centre of gravity inside the parallelogram of side length 2L, defined by the black 
broken line, intersect the test rod (the horizontal one). The area of this parallelogram is 
(2L)2�p× p′�. Thus, integral (29) can be rewritten as

(30)C(p) ∝

∫

S

�p× p′� Ψ S(p′) dp′,

Fig. 3 Cell related to node (i, j, k)

Fig. 4 Integration domain for computing the density of contacts



in order to emphasize its resemblance with expressions proposed in the works just 
mentioned.

The density of contacts C(p) is appropriate because it constitutes a rich description 
of the microstructure. Its calculation, however, requires knowledge of the distribution 
function Ψ (p) that is only available when operating at the mesoscale by solving the Fok-
ker-Planck equation.

Towards a fully‑macroscopic description

The question arising immediately concerns the existence of an appropriate fully-macro-
scopic description.

The simplest proposal consists in defining a tensor L as follows:

which in view of Eq. (30) can be rewritten as

This expression is very close to the interaction tensor b introduced by Ferec et al. [55],

Indeed, we have the equality

As the distribution function Ψ S(p) can be approximated from its associated moments 
(only the even ones in view of symmetry), as proven in [47], the interaction tensor b 
can be written from the different orientation tensors aS,(n), n = 2, 4, . . ., where the super-
script S highlights the fact that all of them are associated to the symmetric orientation 
distribution function Ψ S(p). It is easy to verify from the moments’ definition that

This procedure for expressing b as a function of a(2) and a(4) was considered in [56] 
where an appropriate expression b = b(a(2), a(4)) was proposed and validated.

This route allows us to finally establish a link between our descriptor L (32) and the 
standard orientation tensors, which allows for a fully-macroscopic description.

Now, from the knowledge of L, we can obtain the directional properties along direc-
tion p by calculating (pT · L · p) p, or equivalently (L : (p⊗ p)) p.

Another appealing microstructural descriptor could be the second-order tensor J 
defined such as to verify

In general, such a tensor does not exist, and then the most natural possibility is to 
enforce this equality is a least-squares sense. Thus, we define the functional F(J),

(31)L = φ

∫

S

p⊗ p C(p)Ψ S(p) dp,

(32)L = β

∫

S

∫

S

p⊗ p �p× p′� Ψ S(p) Ψ S(p′) dp dp′.

(33)b =

∫

S

∫

S

p⊗ p �p× p′� Ψ S(p) Ψ S(p′) dp dp′.

(34)L = β · b.

(35)

{

a
S,(n) = 0 n ∈ [1, 3, 5, . . .]

a
S,(n) = a

(n)
n ∈ [2, 4, 6, . . .]

.

(36)(J : (p⊗ p)) = C(p).



that should be minimized.
Now, the extremum condition for the functional F(J) yields

or

This expression constitutes a sort of bridge (in a least-squares sense) between macro-
scopic and mesoscopic scales. Indeed, knowing L (which can be evaluated from the 
orientation tensors a(2) and a(4)) and using Eq. (39), we can evaluate the tensor J, from 
which we calculate C(p) (in a least-squares sense) from (36).

It is important to recall that, in the least-squares approximation (37), the equality is 
weighted by the distribution function Ψ S(p). This means that more than reproducing 
C(p), we are approximating C(p)Ψ S(p), which constitutes a better description from the 
physical point of view, as it combines the potential of a given direction expressed by C(p) 
with the number Ψ (p) of rods having this orientation.

Numerical results
Evaluating the closure relations

We now evaluate and validate the different closure relations introduced above.
In "Macroscopic description", we derived two frameworks for describing the micro-

structure evolution. The first one considers the first moment a(1) such that

It requires two closure relations for expressing the higher-order moments a(2) and a(3) as 
a function of a(1).

The second framework involves the first two moments, where Eq. (40) is comple-
mented with an equation for the second-order moment:

This second framework requires appropriate closures for the third and fourth-order 
moments.

In what follows, we consider the richer framework that involves Eqs. (40) and (41) with 
the fourth-order hybrid closure and different choices of that of third order. The fourth-
order hybrid closure is given by

(37)F(J) =

∫

S

((J : (p⊗ p))− C(p))2 Ψ S(p) dp,

(38)J :

∫

S

p⊗ p⊗ p⊗ p Ψ S(p) dp =

∫

S
p⊗ p C(p) Ψ S(p) dp,

(39)φ J : a(4) = L.

(40)ȧ(1) =
1

ξL

(

E− a(2) · E
)

+ ∇v · a(1) − a(3) : ∇v − Dr a
(1)
.

(41)

ȧ(2) =
1

ξL

(

E⊗ a(1) + a(1) ⊗ E− 2a(3) · E
)

+ ∇v · a(2) + a(2) · (∇v)T − 2 · a(4) : ∇v − 2dDr

(

a(2) −
I

d

)

.

(42)a(4),cl = f a(4),qua + (1− f )a(4),lin,



where in the 3D case

and

where I is the identity tensor.
First, for different orientation distributions Ψ (p, t) coming from the solution of the 

Fokker-Planck equation for different choices of the velocity and electric fields, we com-
pute the third-order moment a(3),FP from Eq. (15) (the superscript FP refers to the Fok-
ker-Planck nature of the solution). We then fit the coefficient α in Eq. (27) in order to 
minimize the gap (in a least-squares sense) between a(3),FP and a(3),cl,

The best fit was obtained with α adjusted from several numerical experiments as follows:

It is easy to verify by taking the trace of both sides of Eq. (41) that ddt tr
(

a(2)(t)
)

= 0, 
which implies tr(a(2)(t)) = 1 if the initial condition has a unit trace. However, as the clo-
sure relation (45, 46) does not reproduce exactly a(3), we must check the model consist-
ency by examining if the trace of a(2)(t) remains unitary when integrating Eq. (41) from 
an initial condition with unit trace.

In simple shear flow, integration of Eq. (41) with the closure relation (45, 46) yields an 
unphysical variation of the trace of a(2). This fact can be observed in Fig. 5 which depicts 
the evolution of a(2)(t) (on the left) and its trace (on the right) resulting from the integra-
tion of Eq. (41) for planar shear flow vT = (y, 0), Ẽ = 1, Dr = 0.1 and an isotropic planar 
orientation state.

In relation to Eq. (41), the condition that the third-order closure must satisfy in order 
to keep the trace constant is 2a(1) · E = 2 tr

(

a(3) · E
)

 that can be easily verified

(43)a(4),qua = a(2) ⊗ a(2),

(44)

a
(4),lin
ijkl = −

1

35

(

IijIkl + IikIjl + IilIjk
)

+
1

7

(

a
(2)
ij Ikl + a

(2)

ik Ijl + a
(2)

il Ijk + a
(2)

kl Iij + a
(2)

jl Iik + a
(2)

jk Iil

)

,

(45)a(3),cl = α

(

a(1) ⊗ a(1) ⊗ a(1)
)

.

(46)α = 1.2− 0.2�a(1)�.

Fig. 5 Second‑order moment a(2)(t) computed with the closure (45, 46) (left) and its trace (right)



When considering the closure (45) into Eq. (41), we obtain

that must be equal to 2a(1) · E in order to guarantee a constant value of the trace of the 
second-order moment. The only possibility is that α in Eq. (45) verifies

from which the third-order moment closure verifying both the symmetry conditions and 
the model consistency (with respect to the preservation of the unit trace of a(2)) must be

The closure relation (49), however, when considered in the integration of Eq. (41), yields 
large deviations with respect to the reference solution obtained from the Fokker-Planck 
solution, as can be seen in Fig. 6 for the same flow conditions as considered previously.

One possibility is to develop richer closures, as for example (26), which in the 2D case 
reads

With α =
µ

tr(a(1)⊗a(1))
, Eq. (51) reads

2 tr
(

a(3) · E
)

= 2

∫

S

tr(p⊗ p) p · E Ψ (p) dp =

(47)2

∫

S
p · E Ψ (p) dp = 2a(1) · E.

(48)2 tr
(

a(3),cl · E
)

= 2αtr
(

a(1) ⊗ a(1)
)

a1 · E,

(49)α =
1

tr
(

a(1) ⊗ a(1)
) ,

(50)a(3),cl =
1

tr
(

a(1) ⊗ a(1)
)

(

a(1) ⊗ a(1) ⊗ a(1)
)

.

(51)a(3),cl = α

(

a(1) ⊗ a(1) ⊗ a(1)
)

+ β(I1 ⊗ I1 ⊗ I1)+ δ(I2 ⊗ I2 ⊗ I2).

Fig. 6 Second order moment a(2)(t) computed with the closure (50)



from which the trace of Eq. (41) involving the electric contribution gives

where E1 and E2 are the components of E. Considering β = νa
(1)
1

 and δ = υa
(1)
2

, the pre-
vious expression can be rewritten as

which must be equal to 2a(1) · E in order to guarantee a constant value of the trace of 
the second-order moment. This equality holds if µ+ ν + υ = 1. All the possibilities that 
such richer closures open constitute work in progress whose results will be reported in 
further works. In what follows, we consider an alternative route.

This alternative route consists in reinterpreting the pragmatic closure (24) by assum-
ing that it is in fact a closure of the tensor product a(3) · E, that is

With the second moment closure verifying the normality property tr
(

a(2),cl
)

= 1, as
ensured for example by Eq. (21), we have the equality

that ensures the model consistency (unit trace).
Thus, in what follows, the retained closures of the third-order terms in Eqs. (40) and 

(41) are respectively

and

In the forthcoming numerical examples, we use Eqs. (40) and (41) with the fourth-order 
hybrid closure (42) and the third-order closures (57) and (58). We first consider planar 
flows characterized by a velocity gradient of the general form

and different values of the diffusion coefficient.

(52)a(3),cl = µ

(

a(1) ⊗ a(1) ⊗ a(1)
)

tr(a(1) ⊗ a(1))
+ β(I1 ⊗ I1 ⊗ I1)+ δ(I2 ⊗ I2 ⊗ I2),

(53)2 tr
(

a(3) · E
)

≈ 2 tr
(

a(3),cl · E
)

= 2

(

µa(1) · E+ βE1 + δE2

)

,

(54)2 tr
(

a(3) · E
)

= 2(µ+ ν + υ) a(1) · E,

(55)
(

a(3) · E
)cl

=

(

a(2),cl ⊗ a(1)
)

· E = a(2),cl (a(1) · E).

(56)tr
(

a(3) · E
)cl

= tr
(

a(2),cl
)

(a(1) · E) = a(1) · E,

(57)
(

a(3) : ∇v
)cl

= a(1) (a(2),cl : ∇v),

(58)
(

a(3) · E
)cl

= a(2),cl (a(1) · E).

(59)∇v =





Gxx Gxy 0

0 Gyy 0

0 0 0



,



In all cases, the Fokker-Planck equation (9) is solved for the orientation distribution 
Ψ (p, t) by means of the PGD. The initial orientation distribution is assumed isotropic. 
From Ψ (p, t), the first and second-order moments a(1),FP(t) and a(2),FP(t) are calculated, 
respectively from Eqs. (13) and (14). This procedure does not involve any closure rela-
tion. The solutions a(1),FP(t) and a(2),FP(t) can thus be considered as reference solutions.

The same moments are now computed via Eqs. (40) and (41) using closure approxi-
mations. When integrating Eq. (40) to obtain a(1)(t), we take the second-order moment 
from the solution of Eq. (41) and the third-order moment is approximated by using the 
closure (57). When integrating Eq. (41) to obtain a(2)(t), we use the closure (58) for the 
third-order moment and the standard hybrid closure (42) for the fourth-order moment.

We consider both simple shear and extensional flows for evaluating the accuracy of the 
resulting closed macroscopic description:

  – Shear flow: Gxx = 0, Gxy = 1 and Gyy = 0 with Dr = 0.1 and Dr = 0.01.
 – Extensional flow: Gxx = 1, Gxy = 0 and Gyy = −1 with Dr = 0.1 and Dr = 0.01.

In Figs. 7 and 8, the approximate closure solutions a(1) and a(2) are compared with the 
reference solutions a(1),FP and a(2),FP obtained from the direct solution of the Fokker-
Planck equation. Agreement is in general quite satisfactory, but the development of even 
more precise closures will require a considerable amount of work.

It is well known that closure relations can induce artifacts, as for example the disap-
pearance of hysteric behaviour in reversal flows. To check the model response in such 
conditions, we apply a simple shear flow defined by vT = (γ̇ y, 0, 0) for t ∈ [0,T = 5s]; 
the flow is reversed for t ∈ [T , 2T ] by changing the sign of γ̇, and it is again reversed in 
subsequent time intervals. In other words, the shear flow is reversed at times t = nT , 
n = 1, 2, . . .

Fig. 7 First and second‑order moments for Dr = 0.1 (top) and Dr = 0.01 (bottom)



We see in Fig. 9 that the closure solution a(1) constitutes a reasonable approximation 
of the reference solution, again computed from the orientation distribution solution of 
the associated Fokker-Planck equation. In order to appreciate this more clearly, Fig. 10 
compares the component a(1)y  of both solutions. Finally, we compare in Fig. 11 the planar 
component of a(2) and a(2),FP. All these results show that the proposed closure relations 
remain quite reasonable and do not introduce unphysical behaviours.

Parametric solution of the Fokker‑Planck equation

When controlling the applied flow and electric fields, one could require many solutions 
of the model in order to reach optimal conditions with respect to an output of inter-
est. In these circumstances, the parametric solution of the model would be extremely 

Fig. 8 (Top) First and second moments for Dr = 0.1 and (bottom) first and second moments for Dr = 0.01

Fig. 9 Solution a(1) versus a(1),FP in simple shear flow with regular flow reversals



valuable. As the PGD parametric solution of the Fokker-Planck equation is performed 
offline and only once, it is indeed well worth the effort [44], despite of the necessity of 
solving a high-dimensional problem, involving the physical coordinates (space and time), 
the conformational coordinates (orientation) and a number of extra-coordinates (model 
parameters) as described in "Parametric solutions of the Fokker-Planck equation".

In what follows, we consider a homogeneous simple shear flow vT = (γ̇ y, 0, 0), γ̇ = 1. 
Its homogeneity avoids the dependence of the orientation distribution function Ψ  on the 
space coordinates x. We assume planar orientation, with a single conformational coor-
dinate to describe it, i.e. the angle θ with respect the x−coordinate axis. An electric field 
of intensity E is applied along the y−coordinate axis, i.e. E = Eiy (with iy the unit vector 
defining the y−coordinate axis direction). In this section, E refers to the effective electric 
field denoted by Ẽ in "Parametric solutions of the Fokker-Planck equation".

Thus, the four-dimensional parametric solution Ψ (t, θ ,Dr ,E) of the Fokker-Planck 
equation (7) is sought in the separated form

(60)Ψ (t, θ ,Dr ,E) ≈

i=N
∑

i=1

Ft
i (t) · F

θ
i (θ) · F

D
i (Dr) · F

E
i (E).

Fig. 10 Solution a(1)y  versus a(1),FPy  in simple shear flow with regular flow reversals

Fig. 11 Solution a(2)xy  versus a(2),FPxy  in simple shear flow with regular flow reversals



Figure  12 depicts the different functions involved in the separated representa-
tion (60). Finally, Fig.  13 shows the reconstructed parametric steady state solution 
Ψ (t → ∞, θ ,Dr ,E).

For more details on the practical implementation of the PGD for solving parametric 
PDE’s, see [44–46].

Evaluating interaction descriptors

Finally, we check whether the different interaction descriptors discussed in "Description 
of the rod network" perform as expected.

First, given the two planar orientation distributions shown in Fig. 14, we compute the 
density of contacts C(θ) given by Eq. (29) and the one given by Toll [51, 52]. Both results 

Fig. 12 PGD modes involved in the separated representation of the parametric solution Ψ (t , θ ,Dr , E): (top-
left) Fti (t); (top-right) F

θ
i (θ); (bottom-left) FDi (Dr) and (bottom-right) FEi (E)

Fig. 13 Reconstructed steady‑state parametric solution Ψ (t → ∞, θ ,Dr , E)



are compared in Fig. 15. We observe an excellent agreement despite of some hypotheses 
introduced in our approach (related to the assumption of a vanishing rod diameter).

As expected, Fig. 16 shows the perfect agreement between the scaled Ferec interaction 
tensor b, Eq. (33), and the one that we proposed above, L, Eq. (31).

Finally, we discussed in "Towards a fully-macroscopic description" the use of ten-
sor J as an interaction descriptor in order to fit in a least-squares sense the density of 
contacts. The least-squares being weighted by the distribution function Ψ , the resulting 
directional information J : (p⊗ p) is closer to CΨ  than to C, as can be noticed in Fig. 17.

Fig. 14 Two orientation distributions for a large (left) and a smaller (right) diffusion coefficient

Fig. 15 Directional density of contacts: C(p) versus Toll’s model

Fig. 16 Comparing interaction tensors L and b



Conclusions
In this work, we have revisited the microstructural kinematics of electrically conductive 
rods immersed in a flowing suspension to which an electric field is applied. The evolu-
tion equation for the microscopic rod orientation was derived by considering standard 
balances of forces and moments. These kinematics were then introduced into a meso-
scopic description based on the Fokker-Planck equation, whose parametric solution was 
formulated within the separated representation framework at the heart of the method 
of Proper Generalized Decomposition. The mesoscopic description was coarsened one 
step further in order to derive a fully macroscopic description based on the use of the 
first or the first two moments of the orientation distribution. Both approaches require 
the use of appropriate closure relations. In the present work, we proposed consistent 
closures for the third-order orientation tensor, which despite being non optimal produce 

Fig. 17 Reconstructed C(p) (top); C(p) Ψ (p) (middle) and pT Jp (bottom)



results that are in reasonable agreement with reference solutions obtained directly from 
the Fokker-Planck description.

On the other hand, prediction of the electrical properties of the suspension as a whole 
requires the quantification of the rod interaction. We quantified the directional con-
ductivity by calculating the directional density of contacts that depends on the orien-
tation distribution and the local rod concentration. This approach, already considered 
in our former work [28], requires however the mesoscopic calculation of the orienta-
tion distribution. In this work, we proposed an alternative fully-macroscopic route. For 
that purpose, we defined an interaction tensor L which by construction is equivalent 
to the interaction tensor proposed by Ferec in [55]. As the latter can be approximated 
with reasonable accuracy from the orientation tensors of even order, a fully macroscopic 
approach is thus finally obtained.
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