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Learning low-dimensional models of microscopes
Valentin Debarnot, Paul Escande, Thomas Mangeat, Pierre Weiss

Abstract—We propose accurate and computationally efficient
procedures to calibrate fluorescence microscopes from micro-
beads images. The designed algorithms present many original
features. First, they allow to estimate space-varying blurs,
which is a critical feature for large fields of views. Second, we
propose a novel approach for calibration: instead of describing
an optical system through a single operator, we suggest to vary
the imaging conditions (temperature, focus, active elements) to
get indirect observations of its different states. Our algorithms
then allow to represent the microscope responses as a low-
dimensional convex set of operators. This approach is deemed
as an essential step towards the effective resolution of blind
inverse problems. We illustrate the potential of the methodology
by designing a procedure for blind image deblurring of
point sources and show a massive improvement compared to
alternative deblurring approaches both on synthetic and real
data.

Index Terms—Space varying PSF, blind deblurring & de-
convolution, machine learning, operator modelling, product-
convolution, super-resolution, sparsity

I. INTRODUCTION

Many recent breakthroughs in optics pertain to the field of
computational microscopy: computers play a critical role to
generate images. This evolution allowed to observe objects
with unprecedented contrasts, temporal/spatial resolutions
or gave access to new quantitative features. To name a
few examples, let us mention Single Molecule Localization
Microscopy (SMLM), Structured Illumination Microscopy
(SIM), Total Internal Reflection Fluorescence microscopy
(TIRF) or Stimulated Emission Depletion (STED) mi-
croscopy.

A common prerequisite for these techniques is the design
of an accurate mathematical model of the optical system.
This step is critical since the generation of images usually
relies on an explicit or implicit inversion of this model. The
advent of these microscopes therefore makes it more and
more important to finely characterize their transfer function.

By far, the dominant models in the image processing liter-
ature are space invariant systems: the point spread function
(PSF) is identical wherever in space. While simplifying the
theoretical, numerical and experimental aspects, this assump-
tion is however often unrealistic. Following [1], the space
invariance is approximately valid only under very restrictive
assumptions. There is clear theoretical and experimental
evidence that the variations of the PSF need to be taken
into acount along the optical axis [2], [3] and the lateral
axis for large numerical apertures (see for instance Fig. 3a).
Neglecting this aspect can have dramatic consequences. For
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instance, it was shown in [4], [5] that this approximation
can severely damage the reconstruction of images in single
molecule localization imaging, with localization errors of
more than 20% for a displacement of less than 200nm. The
effects would be even more stringent for large fields of views
which are a current challenge with the improved quality of
sCMOS detectors. These model mismatches can significantly
downgrade the performance of all computational microscopy
systems and it is hence critical to finely estimate the optical
response of the system.

a) Existing works: A well spread approach to describe
the response of an imaging system consists in using Fourier
optics [6]. This theory provides a nice description of the
system through the pupil function of the objective. In this
domain, it is possible to derive mathematical models of
space variant PSFs [5], [7], [8] and to infer the parameters
of these models (e.g. Zernike coefficients) from experi-
mental data. There are however three limitations to these
approaches. First, they are often based on parameters such
as the numerical aperture, the wavelengths, or many other
physical quantities and the models become significantly
more complex for large numerical apertures [1], [9]. The
more parameters, the more precise the model, but the harder
it becomes to finely characterize them experimentally. In
addition, some active components such as micro-mirrors
introduce additional perturbations which cannot be easily
modeled or inferred. The second problem comes from nu-
merical considerations: the dependency between the model
and its parameters is non-linear, which inevitably leads to
non-convex estimation procedures, leading to local minima
and additional inaccuracies. Finally, it is important to notice
that what matters is not just the PSF related to the optical
elements, but rather the so-called effective PSF [10], which
comprises other effects, such as pixel integration and thermal
diffusion across sensors.

Instead of relying on a physical model it is possible to
directly estimate the optical response from the data. We
will follow this approach in this paper. Imaging fluorescent
micro-beads in a cover-slide in 2D or a cylinder of agarose in
3D gives a partial idea of the system by providing an access
to a few sampled and noisy scattered PSFs. This information
can be used to estimate a space invariant system by averaging
multiple micro-beads [11]–[13]. When the images are aliased
it is even possible to obtain a super-resolved estimation
[14], [15]. It becomes more delicate to estimate a space
variant system. A few researchers - especially in the field
of astrophysics 1 - have addressed this issue. The general

1In astrophysics, the PSFs variations may be due to weak gravitational
lensing and reveal distant massive galaxies.
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framework is the following: a parameterized PSF model is
designed either from physics equations or from the data
itself. The observed PSFs are then interpolated to cover
the whole field of view. In [16], [17], the authors propose
to decompose the PSFs over a low dimensional basis and
to interpolate the coefficients using thin-plate splines. A
subset of the authors proved that this method was minimax
optimal in [18] and we will propose a refined version
in this paper. It is also possible to use more advanced
interpolation methods, using matrix factorization techniques
[19], which share similarities with the proposed approach
or optimal transport [15], but this method would not scale
computationally to the large field of views considered in
here.

b) Our contribution: While there now exists a solid
theoretical and algorithmic framework to estimate space
varying optical responses of optical systems, these methods
are often tested on synthetic data that do not reproduce all
the complexity of real microscopy images. For instance,
the estimation of a PSF requires a very careful treatment
of the background and of the noise. Its interpolation re-
quires specific care to avoid obtaining unrealistic results
far from the observed responses. Our first objective is to
provide precise estimation algorithms adapted to real data
emanating from fluorescence microscopy. In particular, we
propose an algorithm to promote realistic PSFs encoding
properties such as nonnegativity or smoothness properties
by estimating a conical hull of projection coefficients. This
approach shares similarities with [19], but differs in that the
features of realistic PSFs are directly learned from the data
rather than defined as priors. The second and arguably most
original contribution is a new way to calibrate an optical
system by learning all its possible states. Instead of trying
to estimate a single operator to describe the microscope, we
propose to learn a whole family of possible states by varying
the experimental conditions, following the recent theoretical
work [20]. We finally show how the proposed methodology
allows to design new algorithms for blind image deblurring2

of point sources, which significantly outperform more tradi-
tional models proposed in the literature.

II. OPERATOR ESTIMATION

A. Notation

In all the paper, bold fonts refer to vectors, matrices
or vectorial functions while regular fonts refer to scalar
numbers or functions. The i-th value of a vector x is denoted
either xi or x[i]. The `p norm of a vector x is denoted
‖x‖p. The value of a function f is f(x) and its `p-norm is
denoted ‖f‖p. The delta Dirac function at a position x ∈ Rd
is denoted δx. In all the paper, the integers I , J , K, M and
N refer to a number of components described in Table I.

2Thourghout the paper, we will prefer the term deblurring to the more
common deconvolution. We believe that the first one should be preferred
whenever referring to space varying systems: by definition a convolution is
space invariant and would be improper in our context.

TABLE I: Notation.

Symbol Meaning

I size of PSF basis
J size of space variations basis
K number of observed microbeads images
M number of observed microbeads
N number of pixels of an image

B. Preliminaries

A space varying blurring operator H : L2(Rd)→ L2(Rd)
can be seen as a linear integral operator mapping an image
u to the degraded image Hu through the formula

Hu(x) =

∫
Rd

L(x,y)u(y) dy. (1)

The function L(·, ·) is called kernel of the operator. It de-
scribes the impulse response of the system at every location
z ∈ Rd of the image domain since:

(Hδz)(·) = L(·, z). (2)

The PSF S(·, z) of the system at z is defined as the impulse
response centered at 0, i.e.

S(·, z) = L(· − z, z). (3)

The function S is called the space varying impulse response
of the system. This work is based on two important assump-
tions.

Assumption 1 (PSF approximation). Every PSF in the field
of view is well approximated by its projection over a low-
dimensional orthogonal basis (hi)1≤i≤I , i.e.

S(·, z) '
I∑
i=1

〈S(·, z), hi〉hi. (4)

This assumption is valid both from a theoretical and an
empirical viewpoint. It is indeed well known that any smooth
function can be well approximated by its projection on a
low dimensional subspace. Typical bases include splines
or low frequency Fourier atoms [21]. In practice, we can
also construct the family (hi) by computing the principal
component analysis of a family of sampled PSFs. The
numerical experiments performed in the paper reveal that
for our imaging systems, as little as I = 5 elements are
enough to capture all possible PSFs accurately. In addition,
restricting the PSFs to live on a low dimensional subspace
is an efficient method to denoise them as will be illustrated
in the numerical section.

Assumption 2 (PSF variations). Letting

αi(x) := 〈S(·,x), hi〉 (5)

denote the i-th coefficient of the PSF at x ∈ Rd, we assume
that αi varies slowly in space.

This hypothesis means that the PSFs vary smoothly in
space. It can be substantiated experimentally using arrays of
micro-beads for instance, see e.g. [4], [5], [22].
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Under Assumptions 1 and 2, a space varying operator
is completely characterized by the pair (αi, hi)1≤i≤I . Of
interest, this representation of the operator also leads to fast
numerical computations using a structure called product-
convolution.

Proposition 1 (Product-convolution [23]–[26]). Assume that
a blurring operator H has a space varying impulse response
S defined by the tensor:

S(x,y) =

I∑
i=1

αi(x)hi(y),

then for any image u, we have

Hu =

I∑
i=1

hi ? (αiu),

where the symbol ? stands for the convolution operator.

Hence, the numerical complexity of computing a space-
varying operator is just I times the one of a convolution,
which can be achieved efficiently using Fast Fourier Trans-
forms for instance in a way independent of the PSF size.

To the best of our knowledge, this decomposition was
first introduced in [23] and has been revisited and improved
for the last two decades. It can be found under other names
such as deformable filtering, filter flow, parallel product-
convolution, anisoplanatic convolutions... Recent works [25],
[26] provide an overview of existing choices of generic
elementary functions (αi) and (hi). The precise approx-
imation rates of product-convolution operators have been
studied in [25] and we refer to the previous references for
more insight on these structures. The product-convolution
expansion has been used to restore images when the blur
operator is known [2], [27]–[29], but less attention has been
paid to the estimation of these operators. In [30], the authors
assume that the collection of elementary PSFs (hi) is known.
Then, they estimate the space variations and the original
signal. The approach of this paper is rather different since we
aim at estimating both families of space variations and PSFs
beforehand. In this work, we follow the theory developed in
[20] and learn these functions from the acquisitions.

C. Estimating a single operator

Under Assumptions 1 and 2, the problem of estimating
the operator reduces to recovering the low dimensional bases
(hi) and (αi), or at least their discretized counterparts (hi)
and (αi). In this paragraph, we describe the general principle
of the estimation of a blurring operator from a single image
of fluorescent micro-beads. The general process is described
in Fig. 1.

The first step consists in extracting the most relevant
PSFs in the form of small patches (see Appendix A). Then
the background is estimated and removed on each patch
independently to avoid biases in the PSFs estimation. We
propose an original and lightweight procedure in Appendix
B. A principal component analysis is then performed to

estimate the basis (hi) (see Appendix A). Each PSF is
projected on this basis and the resulting coefficients are inter-
polated spatially to provide an estimate of the functions (αi),
which can then be discretized as (αi) (see Appendix C). All
those steps are subtle and need to be performed carefully to
obtain precise estimates. The technical details reported in the
appendices are therefore of great importance. While revising
the manuscript, we realized that the astronomical software
[11], [12] was actually proposing many similar ideas for a
different purpose.

As an output of the algorithm, the pair (hi,αi)1≤i≤I
provides a complete description of the operator, since we
know an approximation of the PSFs at each image location.
The integer I is a user provided parameter.

D. Estimating a subspace of operators

a) Motivation: A microscope produces different trans-
fer functions depending on physical parameters that can
be hard to control. Typical examples include temperature
variations, focal screws, small tilts of optical elements,
surface flatness of cover-slides, slight variations of a spatial
light modulator rest state,... In those conditions, capturing
a single operator (as proposed in the previous section) to
describe the microscope might lead to model mismatches
and reconstruction errors. In this section, we propose an
alternative approach where we aim at learning a family of
plausible operators that capture all the possible states of a
microscope. The principle and the mathematical foundations
behind this approach (statistical properties and fields of
application) were recently established by a subset of the
authors in [20]. We refer the interested reader to this paper
for more details. We provide a simplified description below.

b) Principle: The first requirement to apply this tech-
nique is to image stacks of fluorescent micro-beads (in
2D or 3D) under multiple conditions. This process can be
automatized when using advanced optical tables with motor-
ized stages and thermostatic chambers. An alternative is to
probe only the “extreme” conditions (e.g. highest and lowest
plausible temperatures and tilts). After this experimental
process is achieved, we have access to a set of images
(uk)1≤k≤K . The idea of our estimation procedure is to apply
the following procedure:

1) For each image uk, extract the most relevant PSF
patches (see Appendix A) and remove the background
(see Appendix B).

2) Apply a principal component analysis to the set of
patches over multiple images and keep I principal
components (the PSF basis).

3) Apply a z-score test to discard the patches that are
likely outliers (e.g. multiple PSFs in a patch).

4) Reapply a principal component analysis to better esti-
mate the principal components.

5) For each image uk and each coefficient i, interpolate
the coefficient maps αi,k (see Section C). This inter-
polation process is subtle: in particular we provide a



4

(a) (b) (c) (d)

(e) (f)

Fig. 1: Structure of the algorithm for single operator estimation. (a) Background removal procedure. (b) Selection of
well isolated PSFs. (c) Extraction of relevant PSF patches. (d) Principal Component Analysis of the PSFs to find a low
dimensional basis. (e) Projection of each selected PSF on the low-dimensional basis. (f) Interpolation of the PSFs coefficients
using radial basis functions and correction to ensure admissbile PSFs.

novel method to learn features such as nonnegativity,
or the natural decay of coefficients on the PSF basis.

6) Apply a randomized principal component analysis
[31] to the whole set of sampled interpolation maps
(αi,k)1≤i≤I,1≤k≤K . It is often necessary to apply a
randomized SVD 3 here since the interpolation maps
αi,k are typically large images.

7) Keep the J largest principal components (aj)1≤j≤J .
8) Project each interpolation map αi,k onto the basis

(aj)1≤j≤J , to obtain the matrices Γk ∈ RI×J defined
by

Γk[i, j] = 〈αi,k,aj〉.

The output of this process is two orthogonal bases
(hi)1≤i≤I (which describe the PSFs compactly) and
(aj)1≤j≤J (which describe the PSFs variations compactly)
as well as a set of matrices (Γk)1≤k≤K in RI×J (which
describe the operators associated to each image uk). The

3A standard way to compute principal components requires computing
a singular value decomposition. To retrieve the k first components, for an
m × n matrix, the complexity is O(mnk), which is intractable for large
scale computations. On its side, the randomized SVD provides a certified
approximate solution with a complexity in O(log(k)mn) and requires
significantly less memory.

operator Hk associated to the k-th input image uk is then
defined for all u by:

Hku =
∑

1≤i≤I

∑
1≤j≤J

Γk[i, j]hi ? (aj � u).

c) Reducing the family of admissible operators: The
subspace of operators H that compactly describes the pos-
sible operators is defined by

H def.
= span(Li,j , 1 ≤ i ≤ I, 1 ≤ j ≤ J)

where Li,ju
def.
= hi?(aj�u) is a simple product-convolution

operator. The dimension of H is I × J .
However, all operators in the subspace H are not plausi-

ble. For instance, all PSFs are nonnegative, which is often
a critical feature to avoid ringing artifacts. It is possible to
further restrict the family of operators as follows. Assuming
that all the extreme conditions have been explored, we can
construct the convex hull of the coefficients Γk:

C def.
= conv(Γk, 1 ≤ k ≤ K)

def.
=

{
K∑
k=1

λkΓk, λk ≥ 0,

K∑
k=1

λk = 1

}
.

The quality of the estimate C with respect to the number
of observations K was studied in [20]. If all the sampled
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PSFs are nonnegative, then any conical combination is non-
negative too and imposing the matrix Γ ∈ C will therefore
preserve this property. Another important feature can be
preserved: the coefficients Γk[i, j] follow a distribution that
decays in average with i and j, since they correspond
to eigenvectors of decreasing importance. The set C also
captures this property, resulting in more realistic PSFs.

E. Implementation details

a) Normalizing the operators: Of importance, let us
mention that the procedure described previously suffer from
a well known identifiability issue. Since the micro-beads
intensity is usually unknown, the operator can be estimated
only up to multiplicative constant. To address this problem,
it is possible to replace the matrices Γk by a normalized
version

Γ̄k = Γk/
∑
i,j

Γk[i, j]

and to replace the convex hull by the conical hull

C = cone(Γk, 1 ≤ k ≤ K)
def.
=

{
K∑
k=1

λkΓk, λk ≥ 0

}
.

b) Normalizing the PSFs: The PSFs need to be normal-
ized in different ways. First, they need to be registered at a
subpixel accuracy. To do so, we propose a method described
in Appendix A that amounts to assuming that their center
of mass is located at the origin.

Second, it may also happen that the micro-beads are not
perfectly identical and have different fluorescence levels. In
that case it is important to normalize the PSF patches (after
background removal) by imposing that they sum to 1. By
doing so, the operators will be estimated without accounting
for the variations of intensity that they may induce due to
non uniform illumination. This effect can still be captured
by assuming that the loss of intensity is proportional to
the background. It then suffices to multiply the normalized
patches by the background estimate.

Finally, we also normalize the `2-norm of the PSFs prior
to computing the principal component analysis, in order to
give the same importance to every PSF.

c) Selecting the subspace sizes: The subspace sizes I
and J are the two values that a user needs to provide in order
to estimate the subspace. If the number I (related to the
subspace of PSFs) is too small, then the PSFs will be badly
reproduced, while a value that is too large will result in noisy
operators (the so-called over-fitting in machine learning).
Similarly, the number J captures the variations of the PSFs
and has to be chosen with caution. Finally, we would like
I and J to be as small as possible to reduce the computing
times: the cost of applying a product-convolution operator
is directly proportional to I .

The simplest way to choose I is to test different values
on a subset of representative PSFs and keep the lowest value
that leads to a visually decent reconstruction of the PSFs.
The same can be done with J . In practice, we observed

that the values I = 5 and J = 5 faithfully reproduce the
operators from a perceptual point of view.

Another possibility is to apply recent results in statistics
[32] that provide a simple and optimal way (under a Gaus-
sian noise assumption) to choose I and J . The rule consists
in keeping the principal components associated to a singular
value larger than 2.858 ·σmed, where σmed is the median of
the set of singular values. This procedure requires computing
the set of all singular values to evaluate the median. In
practice, this is possible only for the PSF patches which
are low dimensional.

III. RESULTS

In this section, we test the proposed algorithms against
2 different data-sets: the first one is simulated while the
other comes from a wide-field microscope. We start with
the estimation of a single operator and of a subspace of
operators. We conclude the paper with an application to the
deblurring of sparse objects.

A. Data-sets

1) Simulation: We generate several product-convolution
operators by designing a collection of admissible PSFs and
space variations. The collection of PSFs is obtained by
taking all the slices a 3D astigmatic PSF h(x1, x2, z) where
z denotes the variations in the optical axis direction. The
expression of the 2D PSF at a distance z from the focal
plane (used in [7] for instance) is given by:

h(x, z) ∝
∣∣∣∣∫
D

(exp(−2iπ(〈ξ,x〉)E(ξ, z)) dξ

∣∣∣∣2 , (6)

where x = (x1, x2), ξ = (ξ1, ξ2), D is a disk of radius
NA/λ and E is the electric field at the pupil plane given
by

E(ξ, z) = exp

(
2iπ

(∑
i

ciZi(ξ) + z

√
n2

λ2
− |ξ|2

))
.

(7)
Here, Zi denotes the i-th Zernike polynomial, NA is the
numerical aperture, n is the refractive index of the immersion
oil and λ is the emission wavelength. Note that we neglected
the lateral displacements, which is a crude approximation for
a large numerical apertures.

We then produce a collection of 3D PSFs by varying
the parameters of the model. Each PSF is produced by
taking random values of the parameters NA ∈ [1.1, 1.4],
λ ∈ [550, 650], n ∈ [1.41, 1.61]. The parameters ci have
been fixed to reproduce an astigmatic PSF. In addition, we
model spatial variations by varying the depth z in the lateral
direction. We use random polynomials of low degree to
generate various depth profiles. An additive background is
generated with a smooth Gaussian random process, and the
final image is degraded with Poisson noise, see Fig. 2a for
a simulation example.
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(a) Simulated micro-beads image.

(b) Zooms on a few PSFs in Fig. 2a.

(c) Operator estimated from the single image in Fig. 2a.

(d) Operator estimated from a family of 50 images.

Fig. 2: Simulation experiment: synthesized operators are
applied to randomly scattered Dirac masses in Fig. 2a
(512 × 512 pixels). We then test the estimation procedure
using a single micro-bead image in Fig. 2c and from 50
images in Fig. 2d. Observe that the estimation from a family
is far less noisy.

2) Experimental data: In all experiments, we used a
perfectly plane mono-layer of 100nm diameter micro-beads.
There is no refractive index mismatch between the cover-
slide and the immersion oil, allowing to avoid spherical
aberrations. We used a wide-field fluorescence microscope
with a ×100 objective lens (CFI SR APO 100XH NA
1,49 DT 0,12 Nikon) mounted on a Nikon Eclipse Ti-
E and a Hamamatsu sCMOS camera (ORCA FLASH4.0
LT). A lens with 1.5 magnification (this is an additional
magnification available on Nikon Eclipse Ti-E) is used to
obtain 43nm pixel size on the image plane. A 200-nm Z
interval was acquired on each image. We use SPECTRA
X light engine with excitation of 633nm, and emission of
670nm. Micromanager software was used for the acquisition
software. This produces images of 2304× 2304 pixels. We
collected 18 stacks of fluorescent micro-beads, each one is
8μm thick and is composed of 21 z-stacks. We keep only
the 5 central slices since the beads are too degraded when
far away from the focal plane. This amounts to a total of
90 images and more than 9700 2D PSFs. We display one
image in Fig. 3a.

(a) 2304× 2304 image of fluorescent micro-beads

(b) Zooms on a few PSFs of the original image.

(c) Estimated operator from the single image in Fig. 3a.

(d) Operator estimated from a family of 18 images.

Fig. 3: Image of micro-beads taken with a wide field
microscope and estimation results. The contrasts have been
stretched for a better visualization. Similarly to the sim-
ulation example in Fig. 2, the operator seems far better
reconstructed using the family of images.

B. Estimating operators

In this section we illustrate some features of the proposed
methods by estimating a single operator and a subspace
of operators from the image of micro-beads generated by
the previously described microscopes. Each experiment is
performed on a workstation equipped with Intel Xeon E5
and a GPU card Nvidia Tesla K20c from 2012 (2019
technologies are expected to be 4 times faster).

1) Simulation: We apply the proposed estimation pro-
cedures both for a single operator and for a subset of
operators. The computing time for a single operator is 15
seconds when estimating 3 principal elements for the PSFs
and 3 principal components to describe the coefficients
variations. To estimate the subspace of simulated operators,
we used 50 different micro-beads images. The computing
times increased to 500 seconds (i.e. 10 second per image).
The results are displayed in Fig. 4. Of importance, notice that
the results obtained with the subspace of operators are based
on micro-beads images generated with different operators
and in particular different PSFs. Despite this higher variety
of possible shapes, the method is able to automatically
infer the common patterns and to achieve better denoising
and estimation performance thanks to the larger number of
observed PSFs.
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The estimated operators can be visualized by applying
them to a Dirac comb, see Fig. 2c and 2d. To compare
the quality of reconstruction, we simply evaluate a rescaled
`2 distance between the resulting images and the true one.
Given two images u0 and u, the rescaled `2-distance is
computed as infa∈R,b∈R ‖au + b − u0‖2. It is compulsory
to rescale the distance, since there is an inherent ambiguity
between the micro-beads intensity and the microscope gain.

Estimating a subspace of operators rather than a single
operator improves the quality of the reconstruction allowing
to go from 50% to 15% of relative distance between the
estimation and the ground truth. From a perceptual point of
view, the PSFs family is no longer corrupted with noise, and
the coefficients maps family seems smoother.

2) Wide-field microscopy: We estimate a single operator
and a whole subspace of product-convolution operators
based on the 2304 × 2304 images from the data-set from
wide-field microscopy. We set I = 5 and J = 5. Estimating
a single operator takes about 150 seconds using 120 PSFs,
while estimating the whole subspace takes about 3 hours (i.e
2 minutes per operator) using 9700 PSFs. These computing
times are remarkable given the computer features and given
that the complete dataset weighs about 5Gb.

The PSFs and space variations bases are displayed in
Fig. 5 and the estimated operators are displayed in Fig.
3. Similarly to the previous section, we observe that the
basis and operators obtained using a large set of images
is significantly less noisy. While the principal components
beyond 3 contain a significant amount of noise for the single
image, the 5-th component of the subspace approach still
seems to contain useful geometrical features. The improve-
ment of the coefficients maps is harder to evaluate since the
corresponding convolution kernels have changed. Overall,
learning the subspace of operators led to a significantly im-
proved reconstruction of the operator with no visible residual
noise remaining in Fig. 5. A large part of the improvement
comes from the fact that more PSFs are observed and that
the noise can be averaged out. The second reason is that the
estimates of space variations are less sensitive to errors and
turn out to be smoother.

C. Blind deblurring

Image deblurring is a technique than can lead to sig-
nificant improvements of image resolution and quality. In
most acquisitions, this technique is however neglected since
it requires strong skills in optics, image processing and
computer science. In particular, the prior calibration of
a microscope is critical: model mismatches can lead to
dramatic performance losses and oftentimes lead biologists
to prefer using the raw images. In this paragraph, we show
that the proposed methodology of learning a whole family
of operators to describe the microscope allows to avoid
a precise calibration before each experiment and therefore
significantly eases the application of a deblurring algorithm.

The key observation is that identifying an operator from
a single degraded image becomes rather easy when the

operator depends linearly on a small number of parameters.
In particular, if we know beforehand that the degraded
image contains a few point sources, we show that a simple
constrained least squares problem allows to recover the
operator in Appendix D. We then design an original non-
blind deblurring algorithm with a known operator for sparse
+ smooth images. The overall algorithm is called BSS
for Blind Sparse + Smooth deblurring. The idea of using
two steps algorithms to perform blind deblurring based on
reduced models was already explored in [24], [33] for the
specific case of motion deblurring. Our approach however
differs significantly in the way we model the blur, in the
estimation and deblurring process.

To assess the proposed methodology, we test the proposed
algorithm on a real image of fluorescent micro-beads aligned
along filament like structures. We perform this experiment
on an image obtained with the same wide-field microscope
as the one used to collect the real data. The blurry image in
Fig. 6 is acquired at a distance of 400nm from the focal
plane. It is possible to compare the image at the focal
plane in Fig. 7, (ii) with the image used for the deblurring
experiment in Fig. 7, (i).

We first compare the estimation of the PSF from the image
in Fig. 6, using different approaches. In Fig. 6, (i), (ii), (iii)
we show 16 equidistant PSFs estimated using 3 different
approaches. In (i), we used the Matlab code deconv blind
based on an alternate minimization of two quadratic criteria.
We set 20 iterations and initialized the method with a PSF
size of 21 × 21. The PSF size is clearly underestimated.
In Fig. (ii), we partitioned the image into 4 × 4 patches.
Within each patch, we estimated the PSF by averaging
multiple isolated PSFs as is usually recommended, see e.g.
http://python-microscopy.org/doc/PSFExtraction.html. In av-
erage, we could only use two PSFs within each patch since
the bead density is high and only isolated PSFs can be used.
Therefore, the PSFs are still noisy, and their shape seems
inaccurate, especially on the top-left corner. In Fig. (iii),
we show the output of our blind identification algorithm.
The PSFs are denoised and it seems that we can better
reproduce the first ring of the PSF, though this effect cannot
be quantified in this experiment.

We then propose comparisons with different deblurring
algorithms and show the result on some patches in Fig. 7. In
(i), we show the image used as an input of for the deblurring.
In (ii), we show the image at the focal plane. In (iii), we
show the result of the function deconv blind from Matlab.
Here we assumed that the blur was piecewise constant
on each of the 16 patches. In (iv), we show the result
obtained with the software Huygens Professional version
19.04 (Scientific Volume Imaging, The Netherlands). The
choice of Huygens software is motivated by its wide use
among research facilities. It allows to perform a patch-wise
deblurring of the full image. Here, we used the 4x4 patch
decomposition in Fig. 6, (ii). The reconstruction is displayed
in Fig. 7, (iii). We also conduct a second comparison with
the open-source software DeconvolutionLab2 [34]. Again,

http://python-microscopy.org/doc/PSFExtraction.html
http://svi.nl
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Fig. 4: Estimation on simulated operators. We compare the estimation with a single operator (left) and with a set of 50
randomly sampled operators (right). Top: the PSF basis (hi)1≤i≤3. Bottom: the space variations basis (aj)1≤j≤3. Observe
that the PSF basis is significantly less noisy and that the space variations are significantly smoother when estimating over
the set of 50 images.

this plugin is unable to identify the blur and we feed it with
the operator estimated in Fig. 6, (ii). We use the Richardson-
Lucy with total-variation regularization, which provides the
most satisfactory results, see Fig. 10. The reconstruction is
displayed in Fig. 7, (v). Finally, we show the output of the
proposed Blind Sparse+Smooth algorithm in Fig. (vi). The
Matlab deconv blind approach clearly outputs unsatisfactory
results (here we show the best achievable result by manual
tuning of the parameters). The Huygens software was used
with the default parameters. We input a 2D PSF extended in
3D to account for the defocus, specify 200 iterations with
the CMLE algorithm. We also use the DeconvolutionLab2
software with a Richardson-Lucy algorithm regularized with
the total variation. Both algorithms identify single molecules,
but also produce a significant amount of ringing. Finally,
the output of our blind deblurring algorithm in Fig. 7, is
really convincing. It rather faithfully reproduces the image
obtained at the focal plane in Fig. 7, (ii) with an even better
resolution. Observe that this is a really challenging setting:
the input image has a significant amount of noise and while
the PSFs on the left part are rather small, their diameter is
about 40 pixels on the right of the field of view.

IV. DISCUSSION

In this section, we discuss some limitations and possible
extensions of the proposed approach.

a) Centering the PSFs: The detection of PSFs works
by finding the maximum of correlation of a Gaussian with
the images of micro-beads. The implicit assumption behind
this procedure is that the PSFs have a center of mass located
at the origin. Unfortunately, this hypothesis is wrong for
some abberrations such as coma. In that case, the proposed
method will result in operators that - in addition to blur
- produce slight deformations of the image. Unfortunately,
without prior assumption on the PSF center, it is impossible

to resolve the ambiguity between the micro-bead position
and the center of mass of the PSF. In general, we can
therefore expect slight distortions of the images with the
proposed approach.

b) Physicality of the PSFs: The proposed methodology
is able to reproduce some features of real point spread
functions such as nonnegativity and natural decay of the
coefficients in the PSF basis, thanks to the projection step
on the conical hull of observed operators. This feature is
important and original. When looking at the PSFs inferred
by our algorithms, see e.g. Fig. 3, we can however see
that they are not entirely satisfactory. For instance, the dark
rings that can be seen on real diffraction patterns are not
reproduced accurately. At this stage we do not know whether
it is possible to obtain them with purely data driven approach
as the one proposed here since they are not visible on the
acquired images, which suffer from numerous artifacts such
as noise, quantization, sampling, and background addition.

c) 2D versus 3D: All the proposed algorithms and
examples have been implemented in 2D, but their extension
to 3D is straightforward. From a practical point of view,
the estimation of a 3D operator requires to image scattered
microbeads in a medium such as an agarose gel. This would
allow to characterize the optical response of other types of
microscopes such as confocal microscopes or light sheet
fluorescence microscopes.

A limitation of the proposed approach for 2D microscopy
is cases where the variations of the PSF in depth are
important and the object is really 3D. In that case, the
microscope response should be modelled as an operator
mapping 3D functions to 2D images and we should infer
3D PSFs from 2D slices, which is significantly harder than
what we did here. For instance, the method does not apply
to 3D super-resolution microscopy.
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(a) Operator estimation with a single image containing 94 micro-beads, see Fig. 3a. Top: the PSF basis (hi)1≤i≤5. Bottom: the space
variations basis (aj)1≤j≤5.
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(b) Subspace estimation with 90 images and 9700 PSFs.

Fig. 5: Learning the PSF and space variations bases for a standard wide-field microscope.

V. CONCLUSION

We proposed a set of algorithms to learn a set of product-
convolution representations of optical responses in fluores-
cence microscopy. One of the main originality is to estimate
a subspace of operators to capture the whole diversity of
possible space-varying blurs of a given microscope. This
is in sharp contrast with existing approaches which simply
characterize the microscope by a single PSF, or - at best -
by a single spatially variant operator.

An important outcome of this work is that the learned sub-
space strongly improves the identifiability in blind-inverse
problems such as blind deblurring or blind super resolution.
These arguably constitute two of the most challenging issues
in computational imaging. For instance, recent theoretical
progress based on lifting techniques [35] require the prior
knowledge of a low dimensional subspace. We have pro-
posed an original blind deblurring approach coined BSS to
efficiently solve this problem when imaging point sources
with a smooth background.

Future work will consist in extending the existing codes
to 3D images, providing an open-source toolbox together
with realistic responses of microscopes. This will enable
the optics and signal processing communities to test their
algorithms against realistic operators.

We expect the proposed work to have far reaching applica-
tions ranging from the metrology of imaging systems to new
advanced microscopy methods such as supercritical angle

localization microscopy, metal enhanced fluorescence, po-
larization microscopy. All these applications require highly
accurate models which are currently unavailable for large
fields of view.
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APPENDIX A
PSFS SELECTION AND PROCESSING

a) Rough PSF detection: The rough detection of PSFs
on an image u is quite easy: we simply identify the maxima
of the Laplacian of a blurred version of u and keep those
above a user-provided threshold.

b) Rejection of bad patches: The analytical expression
of a PSF yields functions that are not compactly supported.
However, they decay quite fast at infinity (an Airy pattern
decays as 1/|x|3) and the information brought by the image

is dominated by noise far away from the PSF center. In what
follows, we let r denote an upper-bound on the maximal
radius of a PSF. To avoid patches containing more than one
PSF or PSFs too close to the image boundaries, we select the
subset of PSFs with a center being at least r pixels from the
image boundary and 2r pixels from the other centers. At the
end of this procedure, we obtain a set of patches containing
isolated PSFs.

c) Shift and re-sampling: The maxima of the discrete
Laplacian are localized on the pixel grid and might not
correspond to the PSF center. In addition, there is no reason
for the micro-beads to be perfectly centered on a pixel.
To obtain a better PSF centering, we find the maxima of
correlation with a continuous Gaussian function. This allows
us to re-interpolate the patches around this center using a
bi-cubic interpolation. The output is a sequence of patches
(pm)1≤j≤M .

d) Compact supports: To avoid learning noise, we
select two radii rext ≥ r beyond which the PSF image is
dominated by noise. In practice, we set rext = 1.2r. We then
apply a multiplier to each patch that smoothly decays to 0
from r to rext (a bump function). The analytical expression
of the radial multiplier function m(t) is given by

m(t) =


1 if t < r,

0 if t > rext,

exp

(
−1

1−( t−r
rext−r )

2 + 1

)
otherwise.

e) Principal component analysis: Once all selected
PSFs have been treated, we perform a principal component
analysis to obtain an optimal representation basis. Depending
on the number of sampled PSFs, we can use a standard
singular value decomposition or a randomized one [31].

f) Finer rejection of false detections: Finally, it may
happen that the initial selection of patches did not screen out
all unwanted PSFs (e.g. too degraded or multiple ones on a
patch). To get a finer selection and avoid biases, we project
all the PSFs on the learned basis (hi)1≤i≤I . We then remove
the coefficients in RI obtained by the projection which are
likely outliers. We simply use a z-score test: we evaluate the
empirical mean µi and variance σi of each coefficient and
discard the coefficients that deviate by more than 3σi from
their mean. Once the unlikely patches have been removed we
recompute a PCA on the remaining patches to get a better
estimate of (hi)1≤i≤I .

APPENDIX B
BACKGROUND REMOVAL

Getting a correct estimate of the background is a critical
step since not accounting for it would strongly bias the PSFs
estimates. The background is due to the auto-fluorescence of
the sample and may vary spatially due to a non homogeneous
illumination. In general this variation is smooth, allowing for
an efficient estimation described hereafter.

We assume that the PSF is dominated by noise in a
domain ω made of pixels outside a disk of radius r from
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the patch center (see the previous section for a definition
of the patches). In this region, the image signal is therefore
constituted of background and noise only. Assuming that
the background is a smooth component, we can try to fit a
low degree polynomial to these pixels. Letting pj denote the
j-th patch, this amounts to solving the following quadratic
problem:

inf
λ∈RP

1

2
‖pj −Mλ‖2l2(ω), (8)

where M = [m1, . . . ,mp] ∈ R|ω|×P is a matrix containing
the sampled low degree monomials mp and λ represents the
coefficients of the polynomial. This problem boils down to
a low dimensional linear system which can be solved with
a linear conjugate gradient algorithm. Letting λ? denote the
solution of this problem, the estimated background is simply
Mλ?. In practice, we simply use polynomials of order 2.
In 2D, this yields the value P = 6 for the monomials 1, x,
y, xy, x2, y2.

APPENDIX C
ESTIMATING SPACE VARIATIONS

a) Thin-plate approximation: Once a basis (hi)1≤i≤I
is computed (see section A), it is possible to project each
noisy patch on this basis to get a low dimensional repre-
sentation of the selected PSFs. This provides an estimate
βi,m = 〈pm,hi〉 of the values αi(zm). In order to estimate
the space variations, we can use surface fitting techniques
on the set (zm, βi,m)1≤m≤M to get an approximation of the
functions αi.

There exist numerous surface fitting techniques. Following
the numerical experiment conducted in [16], it seems that
the use of radial basis function [36] is significantly more
efficient than other approaches in the context of astronomy.
We therefore resort to this technique.

Radial basis functions approximation can be interpreted
as a variational problem in the framework of Reproducible
Kernel Hilbert Spaces. In this context, the estimators α̂i of
αi can be expressed as

α̂i = argmin
α∈H2(R2)

1

2

M∑
m=1

wm|α(zm)− βi,m|2 +
η

2
|α|2H2 , (9)

where |α|H2
def.
= 〈∆u,∆u〉L2(Rd) and where η > 0 is a

parameter that allows to trade off the proximity to the
samples βi,m for the smoothness of the surface. In order to
balance the importance of each PSF in the approximation,
the weights wm are chosen equal to the area of the Voronoı̈
cell associated to each location zm.

The solution of (9) is known to be a thin-plate spline [21]
and can be computed by solving a (M+3)×(M+3) linear
system.

In what follows, we will let αi or α̂i denote a version of
αi sampled on a Euclidean grid.

b) Enforcing realistic PSFs: There is no reason for the
thin-plate approximation method to generate realistic PSFs
everywhere in the field of view. Indeed, the coefficients are
interpolated independently of each other while there exists
strong dependencies between them. In practice we observed
that the previous method was not good at extrapolating
the PSFs outside of the convex hull of the sampled PSFs.
Important features like positivity for instance might be lost
far away from the sampled PSFs. To avoid this effect, we
propose an original framework below.

The procedure for estimating the PSF basis (hi) also
yields the projected coefficients (βi,m)1≤i≤I,1≤m≤M . We
propose to define the set of admissible PSFs coefficients
as

B def.
= cone(β·,m, 1 ≤ m ≤M) ⊂ RI .

This roughly amounts to say that admissible PSFs cor-
respond to the conical hull of the already observed and
denoised PSFs. Taking the conical hull seems natural: if a
PSF is in the set, all its scaled versions by a non-negative
factor also belong to the set. Let α = (α1, . . . ,αI) ∈ RI×N
denote a - possibly infeasible - estimate of interpolation
map. We can generate a feasible one α̂ by projection:
α̂[n]

def.
= ΠB(α[n]) for all 1 ≤ n ≤ N .
c) The projection algorithm: Let B =

[β·,1, . . . ,β·,M ] ∈ RI×M denote the matrix of observed
coefficients. Projecting the coefficients α ∈ RI of a PSF
onto B amounts to solving the following convex variational
problem:

inf
λ∈RM ,λ≥0

1

2
‖Bλ−α‖22.

It can be solved using an accelerated projected gradient
descent [37].

Unfortunately, if M is very large, applying matrix-vector
products with B for every pixel n ≤ N becomes untractable
and we need to simplify the cone C. Following [38], we
propose to select a small subset of the columns of B
using a simple greedy algorithm. We start with a matrix
B̂ containing a single vector equal to the average of the
columns of B. We then update it by iteratively adding
the column in B which maximizes the angle with the
current conical hull of the columns in B̂. We stop when
the angle is below a given threshold. In our experiments
with M = 14000 PSFs and I = 5, we could obtain a very
good approximation of the hull with only 20 components
instead of 14000, making the projection algorithm relevant
even for very large images.

APPENDIX D
BSS-DEBLURRING

Here, we propose a method called BSS-deblurring, where
BSS stands for Blind Sparse+Smooth. Given a blurred image
u0, the method provides an estimate of the associated
operator and a deblurred image. It consists of two separate
steps: first the operator is estimated using isolated micro-
beads in the image. This estimate is then used inside an
original variational problem.
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a) Identifying the operator: We assume that the user is
able to select P patches out of u0 supported on (ωp)1≤p≤P
that contain isolated micro-beads. The patches pp are as-
sumed to be well centered and without background, which
can be achieved using the previously proposed methods.

Our aim is to estimate a discrete operator H : RN → RN
of the form:

Hu =
∑

1≤i≤I

∑
1≤j≤J

Γ[i, j]hi ? (aj � u)

where the pairs of orthogonal bases ((hi)i, (aj)j) are known
and the coefficients (Γ[i, j])i,j are unknown.

By projecting the patch pp onto the PSFs basis (hi)i,
we obtain the coefficient cp,i = 〈pp,hi〉 which is a noisy
estimate of the interpolation map αi at the position zp:

Hδzp =
∑

1≤i≤I

∑
1≤j≤J

Γ[i, j]αi(zp)hi ≈
∑

1≤i≤I

cp,ihi.

We propose to identify Γ by solving the following bi-linear
inverse problem:

argmin
Γ∈C

〈Γ,Γ0〉=1

g∈RP
+

1

2

∑
1≤p≤P

∥∥∥∥∥∥
∑

1≤i≤I

∑
1≤j≤J

gpΓi,jαj − cp,i

∥∥∥∥∥∥
2

2

, (10)

where gp is the unknown amplitude of the bead at position
zp and C is the conical hull of the sampled operators. The
additional linear constraint 〈Γ,Γ0〉 = 1 is related to an
intrinsic identifiability problem in blind deblurring problems:
the operator can be multiplied by a constant factor and the
signal by its inverse, leading to the same result. Letting Γ0

denote a reference vector in C, we can avoid this caveat. A
nice geometrical choice consists in choosing the so-called
circumcenter of the cone [39]. We do not discuss this choice
further since the proposed method is in essence heuristic.

We solve this problem using an alternating minimization
algorithm: we first solve the problem w.r.t. g with fixed
Γ and then solve the problem w.r.t. Γ with fixed g. The
individual minimization problems are convex and can be
solved with accelerated projected gradient descents.

If the amplitudes g were known, the problem (10) would
boil down to a constrained least square problem of size I ×
J . Since each patch pp yields I coefficients, the condition
P ≥ J should be enough to ensure the identification. It is
remarkable that such a low value (typically 5) is enough to
identify the operator! Higher values of P would however
make the method more robust to noise.

To validate the proposed approach, we randomly select an
operator in the conical hull C, and apply it to a grid of 25
Dirac masses (for a field of view of 2304 × 2304 pixels).
A significant amount of noise is added to the image and
the true locations of the beads are randomly perturbed (with
Gaussian random variable of variance 0.5). We then estimate
the operator and display the result in Fig. 8.

We finally apply the method to the image used in the
blind-deblurring example in Fig. 6. We display the recon-
structed operator in Fig. 9.

(a) SNR 1.5dB (b) (c) SNR 17.6dB

Fig. 8: Identification of an operator in simulated images. a)
Noisy crops used for identification. b) Impulse responses of
the true operator at some locations. c) Estimated operator.
Notice that the method is able to denoise the PSFs very
efficiently.

Fig. 9: Identification of a real operator with 38 micro-beads.
Top: 3 patches used for the estimation. Bottom: estimated
PSFs.

b) Sparse+Smooth-deblurring: Let u0 ∈ RN denote
a blurry image and H : RN → RN a discrete integral
operator. We aim at deblurring an image composed of a
sparse component u1 (e.g. scattered micro-beads), and a
smooth component u2 (e.g. auto-fluorescent background).
In order to recover u1 and u2, we propose to solve the
following original variational problem:

inf
u1∈RN

+ ,u2∈RN
+

1

2
‖H(u1+u2)−y‖22+γ1‖u1‖1+γ2‖∆u2‖22.

The term 1
2‖H(u1 + u2)− y‖22 is the data fitting term, the

term γ1‖u1‖1 promotes the sparsity of the u1 component
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and the term γ2‖∆u2‖22 promotes the smoothness of u2.
The non-negative parameters γ1 and γ2 allow to balance each
term and have been tuned manually so as to obtain a visually
pleasant result. This problem can be solved efficiently using
accelerated proximal gradient descent algorithm [37].

To test the proposed algorithm, we evaluate its perfor-
mance on synthetic micro-beads images with a spatially
invariant Gaussian PSF with variance σ = 10−2. We
add a second order polynomial to simulate the background
and random white Gaussian noise. The blurry-noisy im-
age is displayed in Fig. 10a. The value of the proposed
methodology comes from two distincts features: a more
accurate model of microscope and a better deblurring model
with the Sparse+Smooth prior. To disentangle the respective
contributions of each aspect, we conduct two experiments.

We first show the impact of an accurate model. We apply
the Sparse+Smooth algorithm with a PSF smaller than the
true one (σ = 0.5 × 10−2) in Fig. 10d, with the true PSF
(σ = 10−2) in Fig. 10e, and with a PSF larger than the true
one (σ = 2×10−2) in Fig. 10d. As can be seen in Fig. 10e,
10f and 10d, only the algorithm run with the correct PSF
is able to correctly localize all sources, even when they are
close together. This shows the importance of describing the
microscope response accurately.

Second, we compare the Sparse+Smooth deblurring al-
gorithm with other standard approaches implemented in
DeconvolutionLab2 [34] using the true PSF (σ = 10−2).
We have selected the following popular methods: the reg-
ularized inverse filtering in Fig. 10g, the Richardson-Lucy
TV algorithm in Fig. 10h, and FISTA algorithm with `1

penalization of the Haar wavelet coefficients in Fig. 10g. In
all experiments we tuned the parameters manually so as to
obtain the best results from a perceptual point of view. The
Sparse+Smooth algorithm seems to be by far the preferable
approach to detect point sources over a smooth background.

(a) Original image

(b) Blurry noisy image.

(c) True image.

(d) SS with smaller PSF.

(e) SS with true PSF.

(f) SS with larger PSF.

(g) Regularized inverse filtering.

(h) Richardson-Lucy TV.

(i) FISTA.

Fig. 10: Validation of the Sparse+Smooth deblurring al-
gorithm on a synthesized image. We first challenge the
algorithm with inaccurate models of PSFs (the exact PSF, a
smaller one and a larger one). As can be seen, only the true
PSF produces near exact results, but the algorithm behaves
nicely even with some inaccuracies. We also compare the
Sparse+Smooth deblurring algorithm with three popular
methods proposed in DeconvolutionLab2 [34]. Here, the
proposed model performs significantly better.
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