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Time-stepping and Krylov methods for
large-scale instability problems

J.-Ch. Loiseau, M. A. Bucci, S. Cherubini, and J.-Ch. Robinet

Abstract With the ever increasing computational power available and the develop-
ment of high-performances computing, investigating the properties of realistic very
large-scale nonlinear dynamical systems has been become reachable. It must be
noted however that the memory capabilities of computers increase at a slower rate
than their computational capabilities. Consequently, the traditional matrix-forming
approaches wherein the Jacobian matrix of the system considered is explicitly as-
sembled become rapidly intractable. Over the past two decades, so-called matrix-
free approaches have emerged as an efficient alternative. The aim of this chapter is
thus to provide an overview of well-grounded matrix-free methods for fixed points
computations and linear stability analyses of very large-scale nonlinear dynamical
systems.

1 Introduction

Simulation of very large-scale linear or non-linear systems is a critical issue in many
scientific fields. Fluid dynamics is full of examples where accurate and efficient
methods having a reasonable computational cost and memory footprint are required.
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The study of flow stability is no exception, especially when one is interested in flows
where the degree of spatial inhomogeneity is more and more important (one, two or
three inhomogeneous directions). Historically, hydrodynamic stability analysis has
always evolved according to the progress of computers, but also with the develop-
ment of increasingly efficient numerical methods.

Before the 1980s, only problems where the flow has a single inhomogeneous
spatial direction (generally perpendicular to the advection direction) could be dis-
cussed. The first discretization methods used were naturally the spectral or spectral
collocations methods [61, 60] which offer a reasonable trade-off between computa-
tional cost and resolvability. One of the earliest examples of using such a method
for linear stability analysis purposes can be found in [41]. Approximately at the
same time, computation of the eigenvalue spectrum for a 1D flow were carried out
[42, 31, 52], most often by shooting methods or Newton method coupled with con-
tinuation methods [51, 20]. One needs to wait until the mid-70s before eigenvalue
solvers based on QR or QZ decompositions [11, 12, 53] start to be used in the study
of a broad class of flows [58, 30, 54, 53]. With the increased computational power,
the 1980s and especially the 90s are marked by the rapid development of these
methods for flows of increasing complexity. Various libraries are developed, the
most famous ones being LAPACK [3], MKL [1] and ARPACK [64]. These libraries
incorporate many iterative algorithms allowing for the full or partial computation of
the eigenspectrum for flows with two inhomogeneous spatial directions, see [77, 78]
for a review.

Most of the work carried out during this period consisted of linearizing the gov-
erning equations, discretizing them using methods such as spectral methods, finite-
differences or finite elements and eventually solving the resulting eigenproblem
often with an Arnoldi algorithm [5, 57, 64]. The constant increase in geometric
complexity of the flows addressed eventually led to a reformulation of the stabil-
ity analyses and to the integration of these methods into existing simulation codes
(e.g. FreeFem++ [34], Nek5000 [26] or Nektar++ [43]). This evolution led to the
increase importance of the numerical part (which was initially of theoretical na-
ture). A glaring example of the weight of the numerics and resolution methods for
very large-scale nonlinear dynamical systems can be illustrated in the computation
of base flows, fixed point of the governing equations, which, unlike parallel and
geometrically simple flows, can no longer be analytically obtained or simply ap-
proximated. Accurate computation of these equilibrium solutions is thus necessary.
Fixed points solvers such as the selective frequency damping [2], Newton [59] and
quasi-Newton [76], or more recently RPM (Recursive Projection Method) [71] and
Boostconv [18] are now commonly used to compute these equilibrium solutions.

Regarding the computation of the eigenpairs of the linearized Navier-Stokes op-
erator, different strategies have been proposed over the years. When one tries to
compute the stability of a fully three-dimensional flow, the computation and the
manipulation of the Jacobian operator is a key problem mainly related to its dimen-
sion, of the order 106-108. In the literature, two major approaches have emerged.
The first one, known as ”matrix-forming”, explicitly assembles the Jacobian matrix
The advantage of such an approach is that it is simple to compute the adjoint oper-
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ator, which in this case is the hermitian of the discrete Jacobian matrix. However,
this approach currently runs into computational difficulties for three-dimensional
flows. Indeed, eigenvalue solvers typically require the computation of the inverse of
the Jacobian, whose computational cost becomes almost out of reach. In the sec-
ond approach, called ”matrix-free”, the Jacobian matrix is not explicitly assembled.
Instead, one only needs to be able to evaluate the matrix-vector product so as to
generate a Krylov sequence from which the spectral properties of the Jacobian are
approximated. This method has the advantage of making stability analyses of very
large-scale problems doable. One of its major drawbacks however is that one needs
to write the continuous adjoint equations if interested into receptivity, sensitivity or
non-modal stability problems.

The aim of this chapter is to take the point of view of the latter approach and
to describe the main principles for both modal and non-modal analyses within a
matrix-free and time-stepper computational framework. In that aspect, it follows
the works of [79] and [21]. The different algorithms enabling the computation of
the fixed points and the analysis of their modal and non-modal stability properties
will be presented in detail. Advantages and limitations of each method will also be
presented and illustrated by simple examples. The second objective is to give the
reader a guide on how to use the different methods in order to implement them into
an existing CFD code. For that purpose, the chapter is organized as follows: first,
the theoretical frameworks of fixed points computation and modal and non-modal
stability analyses are presented. The other sections present the different algorithms
one needs to use for such analyses, taking care to compare their performances and to
illustrate them on representative cases. Finally, the chapter ends with a conclusion
and perspectives highlighting the most recent evolution of these methods and their
possible extensions to more complex dynamics, especially to very large-scale time-
periodic nonlinear dynamical systems.

2 Theoretical framework

Our attention is focused on the characterization of very high-dimensional nonlinear
dynamical systems typically arising from the spatial discretization of partial differ-
ential equations such as the incompressible Navier-Stokes equations. In general, the
resulting dynamical equations are written down as a system of firt order differential
equations

Ẋ j = F j ({Xi(t); i = 1, · · · ,n} , t)

where the integer n is the dimension of the system, and Ẋ j denotes the time-
derivative of X j. Using the notation X and F for the sets

{
X j, i = 1, · · · ,n

}
and{

F j, i = 1, · · · ,n
}

, this system can be compactly written as

Ẋ =F(X, t), (1)
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where X is the n× 1 state vector of the system and t is a continuous variable de-
noting time. Alternatively, accounting also for temporal discretization gives rise to
a discrete-time dynamical system

X j,k+1 = G j
({

Xi,k; i = 1, · · · ,n
}
,k
)

or formally
Xk+1 = G (Xk,k) (2)

where the index k now denotes the discrete time variable. If one uses first-order
Euler extrapolation for the time discretization, the relation between F and G is
given by

G(X) = X+∆tF (X) ,

where ∆t is the time-step and the explicit dependences on t and k have been dropped
for the sake of simplicity.

In the rest of this section, the reader will be introduced to the concepts of fixed
points and linear stability, two concepts required to characterize a number of prop-
erties of the system investigated. Particular attention will be paid to modal and non-
modal stability, two approaches that have become increasingly popular in fluid dy-
namics over the past decades. Note that the concept of nonlinear optimal pertur-
bation, which has raised a lot attention lately, is beyond the scope of the present
contribution. For interested readers, please refer to the recent work by [44] and ref-
erences therein.

Finally, while we will mostly use the continuous-time representation (1) when
introducing the reader to the theoretical concepts exposed in this section, using the
discrete-time representation (2) will prove more useful when discussing and imple-
menting the different algorithms presented in §3.

2.1 Fixed points

Nonlinear dynamical systems described by Eq. (1) or Eq. (2) tend to admit a number
of different equilibria forming the backbone of their phase space. These different
equilibria can take the form of fixed points, periodic orbits, torus or strange attractors
for instance. In the rest of this work, our attention will be solely focused on fixed
points.

For a continuous-time dynamical system described by Eq. (1), fixed points X∗
are solution to

F (X) = 0. (3)

Conversely, fixed points X∗ of a discrete-time dynamical system described by
Eq. (2) are solution to

G (X) = X. (4)
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It must be emphasized that both Eq. (3) and Eq. (4) may admit multiple solutions.
Such a multiplicity of fixed points can easily be illustrated by a dynamical system
as simple as the following Duffing oscillator

ẋ = y

ẏ =−1
2

y+ x− x3.
(5)

Despite its apparent simplicity, this Duffing oscillator admits three fixed points,
namely

• a saddle at the origin X∗ = (0,0),
• two linearly stable spirals located at X∗ = (±1,0).

All of these fixed points, along with some trajectories, are depicted on figure 1 for
the sake of illustration. Such a multiplicity of fixed points also occurs in dynami-
cal systems as complex as the Navier-Stokes equations. Determining which of these
fixed points is the most relevant one from a physical point of view is problem-
dependent and left for the user to decide. Note however that computing these equi-
librium points is a prerequisite to all of the analyses to be described in this chapter.
Numerical methods to solve Eq. (3) or Eq. (4) will be discussed in §3.1.

2.2 Linear stability analysis

Having computed a given fixed point X∗ of a continuous-time nonlinear dynamical
system given by Eq. (1), one may ask whether it corresponds to a stable or unstable
equilibrium of the system. Before pursuing, the very notion of stability needs to
be explained. It is traditionally defined following the concept of Lyapunov stability.
Having computed the equilibrium state X∗, the system is perturbed around this state.
If it returns back to the equilibrium point, the latter is deemed stable, otherwise, it
is regarded as unstable. It has to be noted that, in the concept of Lyapunov stability,
an infinite time horizon is allowed for the return to equilibrium.

Fig. 1 Phase portrait of the
unforced Duffing oscillator
(5). The red dots denote the
three fixed points admitted by
the system. The blue (resp.
orange) thick line depicts
the stable (resp. unstable)
manifold of the saddle point
located at the origin. Grey
lines highlight a few trajec-
tories exhibited for different
initial conditions.
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The dynamics of a perturbation x = X−X∗ are governed by

ẋ =F(X∗+x). (6)

Assuming the perturbation x is infinitesimal, F(X) can be approximated by its first-
order Taylor expansion around X = X∗. Doing so, the governing equations for the
perturbation x simplify to

ẋ =Ax, (7)

where A = ∂F/∂X is the n× n Jacobian matrix of F . Starting from an initial
condition x0, the perturbation at time t is given by

x(t) = exp(At)x0. (8)

The operator M(t)= exp(At) is known as the exponential propagator. Introducing
the spectral decomposition of A

A= VΛΛΛV−1,

Eq. (8) can be rewritten as

x(t) = V exp(ΛΛΛ t)V−1x0, (9)

where the ith column of V is the eigenvector vi associated to the ith eigenvalue
λi = ΛΛΛ ii, with ΛΛΛ a diagonal matrix. Assuming that the eigenvalues of A have been
sorted by decreasing real part, it can easily be shown that

lim
t→+∞

exp(At)x0 = lim
t→+∞

exp(λ1t)v1.

The asymptotic fate of an initial perturbation x0 is thus entirely dictated by the real
part of the leading eigenvalue λ1:

• if ℜ(λ1)> 0, a random initial perturbation x0 will eventually grow exponentially
rapidly. Hence, the fixed point X∗ is deemed linearly unstable.

• If ℜ(λ1) < 0, the initial perturbation x0 will eventually decay exponentially
rapidly. The fixed point X∗ is thus linearly stable.

The case ℜ(λ1) = 0 is peculiar. The fixed point X∗ is called elliptic and one cannot
conclude about its stability solely by looking at the eigenvalues of A. In this case,
one needs to resort to weakly non-linear analysis which essentially looks at the
properties of higher-order Taylor expansion of F (X). Once again, this is beyond
the scope of the present chapter. Interested readers are referred to [74] for more
details about such analyses.
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Illustration

Let us illustrate the notion of linear stability on a simple example. For that purpose,
we will consider the same linear dynamical system as in [69]. This system reads

d
dt

[
x1
x2

]
=

 1
100
− 1

Re
0

1 − 2
Re


︸ ︷︷ ︸

A

[
x1
x2

]
(10)

where Re is a control parameter. For such a simple case, it is obvious that the eigen-
values of A are given by

λ1 =
1

100
− 1

Re
and

λ2 =−
2

Re
.

While λ2 is constantly negative, λ1 is negative for Re < 100 and positive otherwise.
Figure 2 depicts the time-evolution of ‖x‖2

2 = x2
1 + x2

2 for two different values of
Re. Please note that the short-time (t < 100) behavior of the perturbation will be
discussed in §2.3. It is clear nonetheless that, for t > 100, the time-evolution of the
perturbation can be described by an exponential function. Whether this exponential
increases or decreases as a function of time is solely dictated by the sign of λ1,
negative for Re = 50 and positive for Re = 100. For Re = 50, the equilibrium point
X∗ =

[
0 0
]T is thus stable, while it is unstable for Re = 125.

Fig. 2 Evolution as a function
of time of ‖x‖2

2 = x2
1 + x2

2
for the toy-model (10). For
Re = 50 (resp. Re = 125),
the asymptotic fate of ‖x‖2

2
is described by a decreasing
(resp. increasing) exponential.
For Re = 50, the equilibrium
point is thus linear stable,
while it is linearly unstable
for Re = 125.

0 200 400
t

100

101
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103

‖x
‖2 2
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2.3 Non-modal stability analysis

Looking once more at figure 2, it can be seen that, although the system is linearly
stable for Re = 50, the perturbation x can experience a transient growth of its energy
for a short period of time, roughly given by 0 < t < 100 in the present case, before
its eventual exponential decay. This behavior is related to the non-normality of A,
i.e.

A†A 6=AA†, (11)

where A† is the adjoint of A. As a result of this non-normality, the eigenvectors
of A do not form an orthonormal set of vectors1. The consequences of this non-
orthogonality of the set of eigenvectors can be visualized on figure 3 where the
trajectory stemming from a random unit-norm initial condition x0 is depicted in the
phase plane of our toy-model (10). The perturbation x(t) is first attracted toward the
linear manifold associated to the least stable eigenvalue λ1, causing in the process
the transient growth of its energy by a factor 300. Once it reaches the vicinity of the
linearly stable manifold, the perturbation eventually decays exponentially rapidly
along this eigendirection of the fixed point. The next sections are devoted to the
introduction of mathematical tools particularly useful to characterize phenomena
resulting from this non-normality of A, both in the time and frequency domains,
when the fixed point considered is stable.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
x1

−10

0

10

20

x
2

Initial Condition
Stable fixed point

Fig. 3 The blue (dashed) line shows the trajectory stemming from a random unit-norm initial
condition x0. The thick black lines depict the two linear manifolds of the fixed point. The diagonal
one corresponds to λ1 = 1/100− 1/Re, while the vertical one is associated to λ2 = −2/Re. In the
present case, Re is set to 50, thus corresponding to a situation where the fixed point is linearly
stable.

1 Note that the non-normality of A also implies that its right and left eigenvectors are different.
This observation may have large consequences in fluid dynamics, particularly when addressing the
problems of optimal linear control and/or estimation of strongly non-parallel flows.
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2.3.1 Optimal perturbation analysis

Having observed that a random initial condition can experience a relatively large
transient growth of its energy over a short period of time even though the fixed
point is stable, one may be interested in the worst case scenario, i.e. finding which
initial condition x0 is amplified as much as possible before it eventually decays.
Searching for such a perturbation is known as optimal perturbation analysis and
can be addressed by two different methods:

• Optimization,
• Singular Value Decomposition (SVD).

Both approaches will be presented. Although it requires the introduction of addi-
tional mathematical concepts, the approach relying on optimization will be intro-
duced first in §2.3.1 as it is easier to grasp. The approach relying on singular value
decomposition of the exponential propagrator M= exp(At) will then be presented
in §2.3.1.

Formulation as an optimization problem

The aim of optimal perturbation analysis is to find the unit-norm initial condition
x0 that maximizes ‖x(T )‖2

2, where T is known as the target time. Note that we here
consider only the 2-norm of x(T ) for the sake of simplicity, although one could
formally optimize different norms, see [27, 28, 29, 23] for examples from fluid dy-
namics. For a given target time T , such a problem can be formulated as the following
constrained maximization problem

maximize
x0

J (x0) = ‖x(T )‖2
2

subject to ẋ−Ax = 0

‖x0‖2
2−1 = 0,

(12)

where J (x0) is known as the objective function. It must be emphasized that problem
(12) is not formulated as a convex optimization problem2. As such, it may exhibit
local maximum. Nonetheless, this constrained maximization problem can be recast
into the following unconstrained maximization problem

2 Formally, a convex optimization problem reads

minimize
x

J (x)

subject to gi (x)≤ 0, i = 1, · · · ,m
hi (x) = 0, i = 1, · · · , p,

where the objective function J (x) and the inequality constraints functions gi (x) are convex. The
conditions on the equality constraints functions hi (x) are more restrictive as they need to be affine
functions, i.e. of the form hi (x) = aT

i x+bi. See the book by Boyd & Vandenberghe [9] for exten-
sive details about convex optimization.
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maximize
x,v,µ

L(x,v,µ) , (13)

where

L(x,v,µ) = J (x0)+
∫ T

0
vT (ẋ−Ax)dt +µ

(
‖x0‖2

2−1
)

(14)

is known as the augmented Lagrangian function. The additional optimization vari-
ables v and µ appearing in the definition of the augmented Lagrangian L are called
Lagrange multipliers. Solutions to problem (13) are identified by vanishing first
variations of L with respect to our three optimization variables. The first variation
of L with respect to v and µ are simply the constraints of our original problem (12).
The first variation of L with respect to x on the other hand is given by

δxL= [∇xJ +v(T )] ·δx(0)+
∫ T

0

[
v̇−A†v

]
·δx dt+[2µx0−v(0)] ·δx(0). (15)

Eq. (15) vanishes only if

v̇ =A†v over t ∈ (0,T ) , (16)

and
∇xJ −v(T ) = 0
2µx0−v(0) = 0.

(17)

Note that Eq. (16) is known as the adjoint system3 of our original linear dynamical
system, while Eq. (17) are called compatibility conditions. Maximizing L is then a
problem of simultaneously satisfying (7), (16) and (17). This is in general done iter-
atively by gradient-based algorithms such as gradient ascent or the rotation-update
gradient algorithm (see §3). For more details about adjoint-based optimization, see
[9, 44].

Formulation using SVD

As stated previously, formulating the optimal perturbation analysis as a constrained
maximization results in a non-convex optimization problem (12). Consequently, al-
though a solution to (12) can easily be obtained by means of gradient-based algo-

3 Given an appropriate inner product, the adjoint operator A† is defined such that

〈v|Ax〉= 〈A†v|x〉,

where 〈a|b〉 denotes the inner product of a and b. If one consider the classical Euclidean inner
product, the adjoint operator is simply given by

A† =AH

where AH is the Hermitian (i.e. complex-conjugate transpose) of A. It must be noted finally that
the direct operator A and the adjoint one A† have the same eigenspectrum. This last observation
is a key point when one aims at validating the numerical implementation of an adjoint solver.
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rithms, one cannot rule out the possibility that this solution is only a local maximum
rather than the global one. In this section, we will show that recasting problem (12)
in the framework of linear algebra however allows us to obtain easily this global
optimal.

Let us first redefine our optimization problem as

maximize
x0

‖x(T )‖2
2

‖x0‖2
2

(18)

so that rather than maximizing ‖x(T )‖2
2 under the constraint that ‖x0‖2

2 = 1, we now
directly aim to maximize the energy gain G(T ) = ‖x(T )‖22/‖x0‖22. Moreover, recalling
from (8) that

x(T ) = exp(AT )x0,

our energy gain maximization problem can finally be written as

G(T ) = max
x0

‖exp(At)x0‖2
2

‖x0‖2
2

= ‖exp(AT )‖2
2

(19)

where ‖exp(AT )‖2 is a vector-induced matrix norm taking care of the optimiza-
tion over all possible initial conditions x0. Introducing singular value decomposition
(SVD), i.e.

M= UΣΣΣVH ,

it is relatively easy to demonstrate that the optimal energy gain G(T ) is given by

G(T ) = σ
2
1 , (20)

where σ1 is the largest singular value of the exponential propagator M= exp(AT ).
The optimal initial condition x0 is then given by the principal right singular vector
(i.e. x0 = v1), while the associated response is given by x(T ) = σ1u1, where u1 is
the principal left singular vector.

Illustration

As to illustrate linear optimal perturbations, let us consider the incompressible flow
of a Newtonian fluid induced by two flat plates moving in-plane in opposite direc-
tions as sketched on figure 4(a). The resulting flow, known as plane Couette flow, is
given by

U(y) = y.

Note that it is a linearly stable fixed point of the Navier-Stokes equations no matter
the Reynolds number considered. Despite its linear stability, subcritical transition to
turbulence can occur for Reynolds numbers as low as Re = 325 [55].
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Without getting too deep into the mathematical and physical details of such sub-
critical transition, part of the explanation can be given by linear optimal perturbation
analysis. The dynamics of an infinitesimal perturbation x =

[
v η
]T , characterized

by a certain wavenumber k = αex +βez, evolving in the vicinity of this fixed point
are governed by

d
dt

[
v
η

]
=

[
AOS 0
C AS

][
v
η

]
(21)

where v is the wall-normal velocity of the perturbation and η its wall-normal vortic-
ity, AOS is the Orr-Sommerfeld operator, while AS is the Squire one. The operator
C describes the existing coupling between the wall-normal velocity v and the wall-
normal vorticity η . For certain pairs of wavenumbers, this Orr-Sommerfeld-Squire
operator is highly non-normal and perturbations can exhibit very large transient
growth. This is illustrated on figure 4(a) where the evolution of the optimal gain
G(T ) as a function of the target time T is depicted for different pairs of wavenum-
bers (α,β ) at Re= 300. The maximum amplification achievable over all target times
T and wavenumbers pairs (α,β ) is Gopt ' 100. The initial perturbation x0 corre-
sponding to this optimal energy gain is depicted on figure 4(b). It corresponds to
streamwise-oriented vortices that eventually give rise to streamwise velocity streaks
due to the lift-up effect [48, 10], see figure 4(b). While this perturbation eventually
decays exponentially rapidly in a purely linear framework, it has been shown that,
even for a moderately large initial amplitude, it may eventually trigger transition to
turbulence when used as initial condition in a non-linear direct numerical simulation
of the Navier-Stokes equations [50]. For more details about subcritical transition and
extension of optimal perturbation analysis to non-linear operators, interested readers
are referred to [45].

2.3.2 Resolvent analysis

The optimal perturbation analysis (see §2.3.1) aims at finding the initial condition
x0 that maximizes the transient amplification of energy of the response x(T ) =
exp(AT )x0 at the target time t = T . It is thus an initial-value problem that can
be investigated in the time domain. Rather than considering the response of the sys-
tem to different initial conditions, one may instead wonder how the system reacts
to external noise. For that purpose, let us now consider a forced linear dynamical
system

ẋ =Ax+ f (22)

where the forcing f now models the system’s input such as the external noise. As
before, we moreover assume that all of the eigenvalues of A lie within the stable
half of the complex plane. As for the optimal perturbation analysis, one may now
consider a worst-case scenario, i.e. what is the forcing f that maximizes the asymp-
totic response of the system? Because we consider a linear dynamical system, this
question can naturally be addressed in the frequency domain.
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In the most general case, the response of the system to the forcing f(t) is given
by

x(t) =
∫ t

0
exp(A(t− τ)) f(τ) dτ (23)

which is a convolution integral. Note that, in the above expression, we assumed a
zero initial condition, i.e. x0 = 0. Such a convolution integral is also known as a
memory integral and highlights that the current state x(t) of the system depends on
the entire history of the forcing f. Because we consider linear stable systems, the
influence of the forcing on the current state decays exponentially according to the
least stable eigenvalue. Let us assume furthermore a harmonic external forcing

f(t) = ℜ
(
f̂eiωt) (24)

where ω ∈ R is the circular frequency of the forcing. The convolution integral
can now be easily computed in the frequency domain. Given our assumptions, the
asymptotic response of the system at the frequency ω is given by

x̂ = (iωI−A)−1 f̂. (25)

u(y)
h
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−2 −1 0 1 2
z

Fig. 4 Illustration of optimal perturbation analysis for the plane Couette flow at Re = 300. In all
cases, the streamwise wavenumber of the perturbation is set to α = 0. (a) Optimal gain curve for
different spanwise wavenumbers β . (b) Optimal perturbation (left) and optimal response (right) for
β = 2. Note that optimal perturbation consists of streamwise oriented vortices, while the associated
response at time T consist in high- and low-speed streaks.
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where x̂ and f̂ are the Fourier transforms of x and f, respectively. The operator
R(ω) = (iωI−A)−1 appearing in Eq. (25) is known as the Resolvent operator
and is related to the exponential propagator M(t) = exp(At) via Laplace trans-
form. This operator, acting in the frequency domain, maps the input harmonic forc-
ing f̂(ω) to the output harmonic response x̂(ω).

Finding the forcing frequency ω that maximizes the asymptotic response x of the
system can now be formalized as

R(ω) = max
f̂

‖(iωI−A)−1 f̂‖2
2

‖f̂‖2
2

= ‖R(ω)‖2
2.

(26)

Going from the time domain to the frequency domain, the norm of the exponential
propagator is replaced with that of the resolvent in order to quantify the energy am-
plification between the input forcing and the output response. As before, the optimal
resolvent gain at the frequency ω is given by

R(ω) = σ
2
1 ,

where σ1 is the largest singular value of R(ω). The associated optimal forcing f̂opt
and response x̂opt are then given by the corresponding right and left singular vectors,
respectively.

Illustration

Let us illustrate resolvent analysis using the linearized complex Ginzburg-Landau
equation, a typical model for instabilities in spatially-evolving flows. The equation
reads

∂u
∂ t

=−ν
∂u
∂x

+ γ
∂ 2u
∂x2 +µ(x)u. (27)

The spatial dependency of the solution result from the parameter µ(x) which is
defined as

µ(x) = (µ0− c2
µ)+

µ2

2
x2.

The same expression has been used in [36, 7, 16]. We take µ0 = 0.23 and all other
parameters are set to the same values as in [7]. The resulting model is linearly stable
but is susceptible to large non-modal growth. We use the same code as [16]. The
problem is discretized on the interval x ∈ [−85,85] using 220 points with a pseudo-
spectral approach based on Hermite polynomials.

Figure 5(a) depicts the evolution of the first four resolvent gains σ2
j as a func-

tion of the forcing frequency ω . Although the system is linearly stable for the set
of parameters considered, a unit-norm harmonic forcing f̂(ω) can trigger a response
û(ω) whose energy has been amplified by a factor almost 1000. The optimal forcing
and associated response for the most amplified frequency (ω '−0.55) are depicted
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on figure 5(b). It can be observed that their spatial support are disjoint. The optimal
forcing is mostly localized in the downstream region−20≤ x≤ 0, while the associ-
ated response is mostly localized in the upstream region 0≤ x≤ 20. This difference
in the spatial support of the forcing and the response is a classical feature of highly
non-normal spatially evolving flows. Such a behavior, which has been observed in
a wide variety of open shear flows, has a lot of implications when it comes to flow
control, see [7] for more details.
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Fig. 5 (left) Evolution of the first four resolvent gains σ2
j as a function of the forcing frequency

ω for the complex Ginzburg-Landau equation (27). (right) Optimal forcing f̂(ω) and associated
optimal response û(ω) for the most amplified frequency. Note that only the real parts are shown.

3 Numerical methods

In this section, different techniques will be presented to solve modal and non-modal
stability problems for very large-scale dynamical systems. Such very large-scale
systems typically arise from the spatial discretization of partial differential equa-
tions, e.g. the Navier-Stokes equations in fluid dynamics. Throughout this section,
the two-dimensional shear-driven cavity flow at various Reynolds numbers will
serve as an example. The same configuration as [72] is considered. The dynamics
of the flow are governed by

∂U
∂ t

+(U ·∇)U =−∇P+
1

Re
∇

2U

∇ ·U = 0,
(28)

where U is the velocity field and P is the pressure field. Figure 6 depicts a typi-
cal vorticity snapshot obtained from direct numerical simulation at a supercritical
Reynolds number.

Given a fixed point Ub of the Navier-Stokes equations (28), the dynamics of an
infinitesimal perturbation u evolving on top of it are governed by
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∂u
∂ t

+(u ·∇)Ub +(Ub ·∇)u =−∇p+
1

Re
∇

2u

∇ ·u = 0.
(29)

Once projected onto a divergence-free vector space, Eq. (29) can be formally written
as

u̇ =Au, (30)

where A is the linearized Navier-Stokes operator. After being discretized in space,
A is a n×n matrix. For our example, the computational domain is discretized using
158 400 grid points, resulting in a total of 475 200 degrees of freedom. From a
practical point of view, explicitly assembling the resulting matrix A would have
relatively large memory footprint. Using explicitly the matrix A to investigate the
stability properties of this two-dimensional flow is thus hardly possible on a simple
laptop at the moment despite the simplicity of the case considered. It has to be noted
however that, given an initial condition u0, the analytical solution to Eq. (30) reads

u(T ) = exp(AT )u0,

where M = exp(AT ) is the exponential propagator introduced previously. Al-
though assembling explicitly this matrix M is even harder than assembling A,
its application onto the vector u0 can easily be computed using a classical time-
stepping code solving the linearized Navier-Stokes equations (29). Such a time-
stepper approach has been popularized by [22, 6]. In the rest of this section, the
different algorithms proposed for fixed point computation, linear stability and non-
modal stability analyses will heavily rely on this time-stepper strategy. The key point
is that they require only minor modifications of an existing time-stepping code to be
put into use.

Fig. 6 Instantaneous vorticity field of the shear-driven cavity flow at Re = 7500 (based on the
cavity’s depth).
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3.1 Fixed points computation

The starting point when investigating a nonlinear dynamical system it to determine
its fixed points. As discussed in §2.1, for a continuous-time dynamical system, such
points are solution to

F (X) = 0, (31)

while one needs to solve
X−G (X) = 0 (32)

for a discrete-time nonlinear dynamical system. In this section, three different fixed
point solvers will be presented.

3.1.1 Selective Frequency Damping

Selective frequency damping is a fixed point computation technique proposed by
Åkervik et al. [2] in 2006 and largely adapted from the original work of Pruett et al.
[62, 63] on temporal approximate deconvolution models for large-eddy simulations.
It has since become one of the standard approaches for fixed point computation in
fluid dynamics due to its ease of implementation. Note that various implementations
of the original selective frequency damping method have been proposed over the
years [39, 40, 19]. Moreover, it has since been extented to compute steady states
of the Reynolds-Averaged-Navier-Stokes (RANS) equations [67] as well as for the
computation of unstable periodic orbits [70]. In the rest of this section, only the
original formulation by Åkervik et al. [2] will be described.

Let us consider a fixed point X∗ of the nonlinear system

Ẋ =F (X) .

If X∗ is linearly unstable, then any initial condition X0 6= X∗ will quickly depart
from X∗. Using standard regularization techniques from control theory, the aim of
selective frequency damping is thus to stabilize the linearly unstable fixed point
X∗. For that purpose, one can use proportional feedback control so that the forced
system now reads

Ẋ =F (X)−χ (X−Y) , (33)

where χ is the control gain and Y the target solution. This target solution is obvi-
ously the fixed point one aims to stabilize, i.e. Y = X∗, which is unfortunately not
known a priori. It has to be noted however that, for a large range of situations, the
instability of the fixed point X∗ will tend to give rise to unsteady dynamics. In such
cases, the target solution Y is thus a modification of X with reduced temporal fluc-
tuations, i.e. a temporally low-pass filtered solution. This filtered solution is defined
as

Y(t) =H(t,∆)∗X(t− τ) (34)
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where H is the convolution kernel of the applied causal low-pass filter and ∆ the
filter witdh. Using such definitions, the forced system (33) can thus be rewritten as

Ẋ =F (X)−χ (I−H)∗X. (35)

As X tends to the fixed point X∗, the low-pass filtered solution Y tends to X. Once
a steady state has been reached, one has

X = Y = X∗,

i.e. the fixed point of the controlled system (35) is the same as that of our original
system. Moreover, as the system approaches its fixed point, the amplitude of the
proportional feedback control term vanishes.

As it is formulated, computing the low-pass filtered solution (34) requires the
evaluation of the following convolution integral

Y(t) =
∫ t

−∞

H(τ− t,∆)X(τ)dτ. (36)

Note that, to be admissible, the kernel H must be positive and properly normal-
ized. Moreover, in the limit of vanishing filter width, it must approach the Dirac
delta function. To the best of our knowledge, all implementations of the selective
frequency damping thus relies on the exponential kernel

H(τ− t,∆) =
1
∆

exp
(

τ− t
∆

)
. (37)

The corresponding Laplace transform is given by

Ĥ(ω,∆) =
1

1+ iω∆
. (38)

The cutoff frequency of this filter is given by ωc = 1/∆ . Figure 7 depicts the real part
of Ĥ as a function of the frequency ω for ∆ = 1. Naturally, this cutoff frequency
needs to be tuned so that the frequency associated to the instability one aims to kill
is quenched by the filter.

For real applications, evaluating the convolution integral (36) is impractical as
it necessitates the storage of the complete time history of X. Consequently, it is
replaced by its differential form given by

Ẏ =
1
∆
(X−Y) (39)

which can be integrated in time using classical integration schemes, e.g. second-
order Euler. Combining (39) and (33) finally yields to the following extended system
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Ẋ =F (X)−χ (X−Y)

Ẏ =
1
∆
(X−Y) .

(40)

Implementing (40) into an existing time-stepping code requires only minor modi-
fications, hence making it an easy choice for fixed point computation. It must be
emphasized however that, because it relies on a low-pass filtering procedure, this
selective frequency damping method is unable to quench non-oscillating instabili-
ties, e.g. instabilities arising due to a pitchfork bifurcation. This particular point is
one of its major limitations.

3.1.2 Newton-Krylov methods

While we relied on the continuous time representation of our system in §3.1.1, we
now turn to its discrete-time counterpart. For that purpose, consider the following
nonlinear system

xk+1 = G (xk) . (41)

Our goal is thus to find a fixed point x∗ of this system. Newton-Raphson method
is a natural choice, provided the dimension of x is not too large. For large-scale
dynamical systems, one may turn to the class of Newton-Krylov methods instead.
These encompass a wide variety of different approaches, part of which have been
reviewed in [46]. In the rest of this section, a variant of the recursive projection
method (RPM) originally proposed by Shroff & Keller [71] will be presented.

Iteration (41) converges if all the eigenvalues {µk}n
1 of the Jacobian of G lie in

the unit disk and the initial iterate x0 is sufficiently close to the actual fixed point
x∗. It will however fail even if a single eigenvalue of the Jacobian lies outside the
unit disk. Note that, for our purposes, the Jacobian of G is given by the exponential
propagator

M= exp(AT ) . (42)

The basic Newton iteration reads

Fig. 7 Evolution of ℜ
(
Ĥ
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(—), i.e. the real part of
the Laplace transform of
the exponential filter, as a
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cutoff filter.
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x̃k+1 = x̃k− (I−M)−1 (x̃k−G(x̃k)) (43)

with
lim

k→+∞
x̃k = x∗,

that is, as k→+∞, the Newton iterate x̃k converges toward the fixed point x∗ of the
system under consideration. Note however that this Newton iteration requires the
inversion of a large n× n matrix, something that may be quite impractical if n is
large.

Let us now suppose that a small number m of eigenvalues lies outside the disk

Kδ = {|z| ≤ 1−δ} ,

that is
|µ1| ≥ · · · ≥ |µm|> 1−δ > |µm+1| ≥ · · · ≥ |µn|.

and denote by P the maximal invariant subspace of M belonging to {µk}m
1 while

Q denotes its orthogonal complement, i.e. P+Q = Rn. Introducing P and Q as
the orthogonal projectors onto these two subspaces, we have, for each x ∈ Rn, the
unique decomposition

x = p+q, p≡Px ∈ P, q≡Qx ∈Q. (44)

Using these two projectors, the Lyapunov-Schmidt decomposition of Eq. (41) finally
reads

pk+1 = fff (pk,qk)≡PG (pk +qk) (45)
qk+1 = ggg(pk,qk)≡QG (pk +qk) . (46)

As shown in [71], even though Eq. (41) may diverge, Eq. (46) is locally convergent
on Q in the vicinity of the fixed point x∗ = p∗+q∗. The key idea of the recursive
projection method is thus to stabilize Eq. (41) by using a Newton method within the
low-dimensional unstable subspace P while continuing to use the classical fixed-
point iteration within its orthogonal complement Q. The stabilized system then reads

pk+1 = pk +
(
I− fff p

)−1
( fff (pk,qk)−pk)

qk+1 = ggg(pk,qk) ,
(47)

where fff p is the restriction of the Jacobian M (evaluated at the current xk) onto the
unstable subspace P.

Solving directly the stabilized system (47) is quite impractical as it still requires
the inversion of the n×n matrix I− fff p. It must be noted however that fff p being the
restriction of the Jacobian M onto the low-dimensional unstable subspace P, it has
a low-rank structure. Consequently, given an orthonormal set of vectors U ∈ Rn×m

than spans P, one can write
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p = Uz

q =
(
I−UUT )x,

(48)

where z ∈ Rm (with m� n) is the projection of p onto the span of U . Different
procedures have been proposed to obtain the orthonormal set of vectors U . Here,
we use the Arnoldi or Krylov-Schur decompositions of M described in §3.2.1 and
§3.2.2, respectively. One major benefit of these decompositions is that they do not
require explicitly the matrix M but only a function that computes the corresponding
matrix-vector product.

Starting from the original system xk+1 = G(xk), the basic RPM update x̃k+1 can
finally be expressed as

x̃k+1 = xk+1−UUT (xk+1− x̃k)+U (I−H)−1UT (xk+1− x̃k) , (49)

where H=UTMU is the projection of the high-dimensional Jacobian matrix onto
the low-dimensional unstable subspace P. By doing so, one only needs to invert a
small m×m matrix at each iteration of the Newton-RPM solver.

Finally, looking at Eq. (49), RPM can be understood as a predictor-corrector.
First, a new prediction xk+1 is obtained from the original system. Then, it is cor-
rected by RPM in a two-step procedure:

1. the unstable part of the residual, UUT (xk+1− x̃k), is subtracted from the pre-
dicted iterate xk+1,

2. it is then replaced by its Newton correction, U (I−H)−1U (xk+1− x̃k), hence
resulting in the new RPM iterate x̃k+1.

Although the present fixed-point computation strategy requires substantially more
modifications of an existing time-stepper solver than the selective frequency damp-
ing procedure described in §3.1.1, it nonetheless has a number of key benefits. First,
while selective frequency damping cannot compute the linearly unstable fixed point
of a system if the associated instability is non-oscillating (i.e. associated to a real
eigenvalue), the recursive projection method can. More importantly, the recursive
projection method improves its approximation of the unstable subspace of the Jaco-
bian matrix M at each iteration. Consequently, as the procedure converges to the
fixed point x∗, one obtains as a by-product really good approximations of the lead-
ing eigenvalues and associated eigenvectors of the matrix M. Finally, the recursive
projection method can relatively easily be extended to compute linearly unstable
periodic orbits or to perform branch continuation. For more details about RPM and
illustrations, interested readers are referred to [71, 38, 15, 66] and references therein.

3.1.3 BoostConv

The Newton-Krylov method presented in §3.1.2 is a valid alternative to selective
frequency damping (see §3.1.1), particularly if a steady bifurcation occurs so that a
non-oscillatory instability needs to be quenched as to recover the unstable stationary
solution. Nevertheless, implementing RPM is not straightforward as it requires the
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Jacobian matrix (or a good approximation) of the discrete-time system considered.
Recently, [18] have introduced BoostConv, a new fixed point computation technique
somehow related to the recursive projection method.

Let us rewrite Eq. (41) as
xk+1 = xk + rk (50)

where rk is the residual vector produced at each nonlinear iteration. It can be shown
that the residual at time k and time k+1 are related by

rk+1 ' rk−Crk (51)

where C is an unknown linear operator approximately governing the dynamics of the
residual vector. The key idea of BoostConv is to define a corrected residual vector
ξξξ k such that the above equation becomes

rk+1 ' rk−Cξξξ k. (52)

Clearly, the residual rk+1 is annihilated if one has

Cξξξ k = rk. (53)

Let us now consider the two Krylov sequence of residuals

X = span{rk}m
1 and Y = span{rk− rk+1}m

1

so that
Y ' CX .

Assuming that the corrected residual ξξξ k is a linear combination of the previous
residuals stored in X , the least-square solution to Eq. (53) is given by

ξξξ k =XY†rk, (54)

where Y† is the Moore-Penrose pseudoinverse. Introducing this least-square solu-
tion into Eq. (52) yields the modified residual at time k+1

r̃k+1 = (I−YY†)rk. (55)

Looking at the above equation, our least-square trick thus allows us to annihilate
the residual within the subspace defined by the column span of Y while leaving it
untouched in the orthogonal complement. Piecing everything together, the stabilized
BoostConv iterate can finally be written as

x̃k+1 = xk+1−YY† (xk+1− x̃k)+XY† (xk+1− x̃k) . (56)

Just like the recursive projection method, BoostConv can be understood as a predictor-
corrector iterative scheme. First, a new prediction xk+1 is obtained from the original
system. Then, it is corrected by BoostConv in a two-step procedure:
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1. the unstable part of the residual YY† (xk+1− x̃k) is first subtracted from the pre-
diction xk+1

2. it is then replaced by its least-square correction XY† (xk+1− x̃k) which plays the
same role as the low-dimensional Newton correction step in RPM.

Although RPM and BoostConv appear closely related, the latter does not require
the Jacobian matrix M nor an estimate of it. It can moreover be implemented as
a black box around an existing solver since it only requires the residual rk as input
and returns the corrected one ξξξ k as output. Also, BoostConv can be easily adapted
to stabilize periodic orbits [18].

3.1.4 Comparison of the different approaches

Computing the linearly unstable fixed point of the Navier-Stokes equations for the
two-dimensional shear-driven cavity flow at Re = 4150 provides a typical bench-
mark to illustrate the performances of the three fixed points solvers presented,
namely selective frequency damping (see §3.1.1), the recursive projection method
(see §3.1.2) and BoostConv (see §3.1.3). The different methods have been setup as
follows:

• Selective frequency damping: the cutoff frequency of the low-pass filter has been
set to ωc = 3.5 while the gain is set to χ = 0.15. These parameters, chosen based
on trial and errors, provide the best performances for SFD that we have observed.

• Recursive projection method: the dimension of the Krylov subspace providing
the orthonormal basis for the leading invariant subspace of the Jacobian matrix
has been set to kdim = 10. The outer RPM iteration xk+1 = G(xk) has been setup
so that it corresponds to 100 time-steps of the Navier-Stokes solver.

• BoostConv: it has been parametrized as RPM.

Each method iterates until the norm of the Navier-Stokes solver’s residual is be-
low ε = 10−10. Figure 8 depicts the vorticity field of the linearly unstable solu-
tion to the Navier-Stokes equations computed by the recursive projection method.
Although not shown, the other two methods converge toward the same unstable
equilibrium solution. The evolution of the residual as a function of the number of
iterations performed by the nonlinear Navier-Stokes solver is reported in figure 9.
It appears quite clearly that the recursive projection method largely outperforms the
selective frequency damping and BoostConv. On the other hand, BoostConv appears
only marginally more efficient than the selective frequency damping procedure. This
comparison is however biased as it does not include the computational cost of con-
structing the orthonormal projection basis needed in the RPM solver. Given how
similar BoostConv and RPM are, this plot nonetheless highlights the importance of
correctly approximating the leading unstable subspace of the Jacobian matrix. Al-
though it has been partially addressed in the original paper [71] and in [66], this
particular point currently focuses our efforts.



24 J.-Ch. Loiseau, M. A. Bucci, S. Cherubini, and J.-Ch. Robinet

3.2 Linear stability and eigenvalue computation

The aim of linear stability analysis is to determine whether a perturbation x, gov-
erned by

ẋ =Ax,

will grow or decay exponentially rapidly as t → ∞. This asymptotic behavior is
entirely governed by the eigenspectrum of the Jacobian matrix A: if at least one of
its eigenvalues has a positive (resp. negative) real part, the linear system considered
is unstable (resp. stable), see §2.2 for more details.

It must be emphasized that, within a time-stepper framework, one does not seek
directly for the eigenpairs of the Jacobian matrix A of the continuous-time problem.
Instead, the problem considered is recast in the discrete-time framework as

xk+1 =Mxk, (57)

where M = exp(AT ) is the exponential propagator already introduced in §2.2,
§2.3.1, and §3.1.2, and where T is the sampling period. The system is then linearly
unstable if at least one eigenvalue µ of M lies outside the unit disk, i.e. |µ|> 1.

Fig. 8 Vorticity field of the
linearly unstable solution to
the Navier-Stokes equations
obtained by the recursive
projection method. Red de-
notes negative vorticity (i.e.
clockwise rotation) while blue
denotes positive vorticity (i.e.
counter clockwise rotation).
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Fig. 9 Comparison of the residual evolution obtained by selective frequency damping (see §3.1.1),
the recursive projection method (see §3.1.2) and BoostConv (see §3.1.3). The evolution of the
uncontrolled residual is also reported for the sake of completeness. The benchmark considered is
that of the two-dimensional shear-driven cavity flow at Re = 4150.
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As discussed previously, although one cannot explicitly assemble the exponential
propagator M, its action onto a given vector xk simply amounts to march in time
the linearized system from t = kT to t = (k+1)T . This ability to evaluate relatively
easily the matrix-vector product given by (57) allows us to use iterative solvers in
order to compute the eigenpairs of M. The rest of this section is thus devoted to the
presentation of two iterative eigenvalue solvers, namely the Arnoldi decomposition
and the Krylov-Schur decomposition.

3.2.1 Arnoldi decomposition

Let us denote the following sequence of vectors

Km (M,v0) =
{

v0,Mv0, · · · ,Mm−1v0
}
. (58)

Eq. (58) is known as a Krylov sequence. It eventually converges toward the eigenvec-
tor associated to the largest eigenvalue (in modulus) of M as m→ ∞. Generating
this sequence to approximate the leading eigenpair of M is known as the power
iteration method. Note that this simple method retains only the last vector of this
sequence while discarding the information contained in the first m−1 vectors.

Contrary to the power iteration method, Arnoldi decomposition uses all of the
information contained in the Krylov sequence (58) as to compute better estimates
of the leading eigenvalues of M. Readers can easily be convinced that the Krylov
sequence (58) obeys

MKm 'KmC,

where C is a m×m companion matrix representing the low-dimensional projection
of M onto the span of the Krylov sequence (58). As such, the eigenpairs of C ap-
proximate the leading eigenpairs of M. It must be emphasized however that, as
m increases, the last vectors in the Krylov sequence become almost parallel. Con-
sequently, the companion matrix C becomes increasingly ill-conditioned. In order
to overcome the loss of information from the power iteration method and the in-
creasingly ill-conditioned companion matrix decomposition, the Arnoldi method
combines them with a Gram-Schmidt orthogonalization process. The basic Arnoldi
iteration then reads

MVm = VmHm + rmeT
m, (59)

where Vm is an orthonormal set of vectors, Hm is a m×m upper Hessenberg matrix
and |rmeT

m| is the residual indicating how far Vm is from from an invariant subspace
of M. Because of its relatively small dimension, the eigenpairs (µH ,y) of the Hes-
senberg matrix, also known as Ritz pairs, can be computed using direct eigensolvers.
The Ritz pairs of Hm are related to the eigenpairs of M as follows

µM ' µH

û' Vmy.
(60)
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A detailed presentation of the basic m-step Arnoldi factorization is given in algo-
rithm (1) while figure 11 depicts its block-diagram representation to ease the under-
standing. As can be seen, Arnoldi decomposition is relatively simple to implement
within an existing time-stepper code. One has to bear in mind however that, in order
to capture (within a time-stepper framework) an eigenpair of the Jacobian matrix A
characterized by a circular frequency ω , one has to obey the Nyquist criterion and
needs at least four snapshots to appropriately discretize the associated period.

Algorithm 1 The m-step Arnoldi factorisation.
Require: M ∈ Rn×n, starting vector v ∈ Rn.

v1 = v/‖v‖;
w =Mv1;
α1 = vT

1 w;
f1← w−α1v1;
V1← (v1);
H1← (α1);
for j = 1,2, · · · ,m−1 do

β j = ‖f j‖;
v j+1← f j/β j;
V j+1←

(
V j,v j+1

)
;

Ĥ j ←
(
H j
β jeT

j

)
w←Mv j+1;
h←VT

j+1w;
f j+1← w−V j+1h;
H j+1← (Ĥ j,h);

end for

3.2.2 Krylov-Schur decomposition

Let us consider the m-step Arnoldi factorization

M U U

H

R

Fig. 10 Arnoldi decomposition – Given a matrix M ∈ Rn×n, construct an orthonormal set of
vectors V ∈ Rn×k such that H ∈ Rk×k is an upper Hessenberg matrix and only the last column of
the residual matrix R ∈ Rn×k is nonzero. Figure has been adapted from [4].
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MVm = VmHm +βvm+1eT
m (61)

introduced in §3.2.1. As discussed previously, the Ritz pair (µH ,Vmy) of Hm pro-
vides a good approximation for the eigenpair (µ, û) of the matrix M. One limitation
of the Arnoldi decomposition is however that the dimension m of the Krylov sub-
space necessary to converge the leading Ritz pairs is not known a priori. It might
hence be relatively large, thus potentially causing some numerical and/or practi-
cal problems (e.g. storage of Krylov basis Vm, forward instability of the Gram-
Schmidt process involved in the Arnoldi decomposition, etc). Two different ap-
proaches have been proposed to overcome these limitations: the Implicitly Restarted
Arnoldi Method introduced by Sorensen [73] in 1992 and the Krylov-Schur decom-
position introduced by Stewart [75] in 2001. In the present work, the latter approach
has been preferred because of its simplicity of implementation and its robustness.

The Krylov-Schur method is based on the generalization of the m-step Arnoldi
factorization (61) to a Krylov decomposition of order m

MVm = VmBm +vm+1bT
m+1 (62)

for which the matrix Bm and the vector bm+1 have no restriction. The Arnoldi de-
composition then appears as a special case of Krylov decomposition where Bm is
restricted to be in upper Hessenberg form and bm+1 = em. Another special case is
the Krylov-Schur decomposition for which the matrix Bm is in real Schur form (i.e.
quasi-triangular form with its eigenvalues in the 1× 1 or 2× 2 diagonal blocks). It
has been shown by Stewart [75] that Krylov and Arnoldi decompositions are equiv-
alent (i.e. they have the same Ritz approximations). Moreover, by means of orthog-

Fig. 11 Block-diagram representation of the basic m-step Arnoldi factorization. Note that, within
a time-stepper framework, every matrix-vector product Mvi is evaluated by marching in time the
linearized system considered.
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onal similarity transformations, any Krylov decomposition can be transformed into
an equivalent Krylov-Schur decomposition.

The core of the Krylov-Schur method is based on a two-steps procedure: (i) an
expansion step performed using a m-step Arnoldi factorization, and (ii) a contraction
step to a Krylov-Schur decomposition of order p retaining only the most useful
spectral information from the initial m-step Arnoldi decomposition. Given an initial
unit-norm vector v1, a subroutine to compute the matrix-vector product Mvi, and
the desired dimension m of the Krylov subspace, the Krylov-Schur method can be
summarized as follows:

1. Construct an initial Krylov decomposition of order m using for instance the m-
step Arnoldi factorization (61).

2. Check for the convergence of the Ritz eigenpairs. If a sufficient number has con-
verged, then stop. Otherwise, proceed to step 3.

3. Compute the real Schur decomposition Bm =QSmQT such that the matrix Sm is
in real Schur form and Q is the associated matrix of Schur vectors. It is assumed
furthermore that the Ritz values on the diagonal blocks of Sm have been sorted
such that the p ”wanted” Ritz values are in the upper-left corner of Sm, while the
m− p ”unwanted” ones are in the lower-right corner. At this point, we have the
following re-ordered Krylov-Schur decomposition

MṼm = Ṽm

[
S11 S12
0 S22

]
+vm+1

[
bT

1 bT
2
]

(63)

with Ṽm = VmQ being the re-ordered Krylov basis, S11 the subset of the Schur
matrix containing the p ”wanted” Ritz values, S22 the subset containing the m− p
”unwanted” ones, and

[
bT

1 bT
2
]
= bTQ.

4. Truncate the Krylov-Schur decomposition (63) of order m to a Krylov decompo-
sition of order p,

MṼp = ṼpS11 + ṽp+1bT
1 (64)

with Ṽp equal to the first p columns of Ṽm and ṽp+1 = vm+1.
5. Extend again to a Krylov decomposition of order m using a variation of the pro-

cedure used in the first step: the procedure is re-initialized with the starting vector
vp+1 but all the vectors in Ṽp are taken into account in the orthogonalization step.

6. Check the convergence of the Ritz values. If not enough Ritz values have con-
verged, restart from step 3.

This algorithm has two critical steps. The first one is the choice of the ”wanted”
Ritz values in the re-ordering of the Schur decomposition in step 2. Since we are
only interested in the leading eigenvalues of the linearized Navier-Stokes operator,
all the Ritz pairs being classified as ”wanted” must satisfy |µw| ≥ 1− δ (with δ =
0.05− 0.1 usually). Regarding the criterion assessing the convergence of a given
Ritz pair, starting from the Krylov decomposition (61), one can write

‖MVmy−VmBmy‖= ‖MVmy−µBVmy‖=
∣∣βeT

my
∣∣ (65)
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with (µB,y) a given eigenpair of the matrix Bm. If the right hand side
∣∣βeT

my
∣∣ is

smaller than a given tolerance, then the Ritz pair (µB,Vmy) provides a good approx-
imation to the eigenpair (µ, û) of the original matrix M. A Ritz value is generally
considered as being converged if the associated residual

∣∣βeT
my
∣∣≤ 10−6.

3.2.3 Comparison of the two approaches

Following the comparison of the fixed points solvers in §3.1.4, let us now compare
the efficiency of the time-stepper Krylov-Schur decomposition over the Arnoldi one
when computing the leading eigenvalues and eigenmodes of the linearized Navier-
Stokes operator for the shear-driven cavity flow at Re = 4150. For that purpose,
the eigenspectrum obtained using the Arnoldi decomposition with a Krylov sub-
space of dimension kdim = 256 will serve as our reference point. For the sake of
comparison, three Krylov subspaces of various dimensions, namely kdim =192, 128
and 64 have been considered for the Krylov-Schur decomposition. In all cases,
twelve eigenvalues were required to have converged with a residual ε ≤ 10−6 be-
fore the computation could stop. Finally, the sampling period has been set to T = 0.2
non-dimensional time units so that the exponential propagator (whose action is ap-
proximated by time-marching the linearized Navier-Stokes equation) is given by
M= exp(0.2A), with A being the linearized Navier-Stokes operator.

Left panel of figure 12 depicts the eigenspectra obtained using the Arnoldi de-
composition with a Krylov subspace dimension kdim = 256 and Krylov-Schur de-
composition with kdim = 128 and kdim = 64, while its right panel shows the real part
of the streamwise velocity component of some of the leading eigenmodes for the
sake of completeness. These plots highlight the existence of two families of modes:
(i) high-frequency shear layer modes (also known as Rössiter modes), and (ii) low-
frequency inner-cavity modes similar to the ones existing in lid-driven cavities. A
detailed description of the physical mechanisms underlying these instabilities is be-
yond the scope of the present work. Interested readers are referred to [8] regarding
the shear layer instability modes and [24, 25] for the inner-cavity instabilities.

Table 1 reports the growth rate σ and circular frequency ω of the leading eigen-
value for all of the cases considered. Even with a Krylov subspace four times smaller
than the reference one, it can be seen that the leading eigenvalue’s growth rate com-
puted by the Krylov-Schur decomposition differs by less than 0.02% compared to
our reference solution while the circular frequency is left unchanged at least until
the fifth digit. The major difference between kdim = 256 and kdim = 64 is the accu-
racy of the eigenvalues belonging to the branches of inner-cavity modes, see figure
12. These modes however turn out to be of limited interest in the dynamics of the
flow.

Finally, the last row of table 1 reports the total number of calls to the linearized
Navier-Stokes solver necessary to converge the required twelve eigenvalues. Com-
pared to our reference case (i.e. kdim = 256), the total number of matrix-vector mul-
tiplications is inversely proportional to the reduction factor of the dimension of the
Krylov subspace considered. Despite this increase of the number of matrix-vector
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multiplications, Krylov-Schur decomposition with a moderate subspace dimension
(e.g. kdim = 64 or 128) has nonetheless two major benefits compared to the classical
Arnoldi decomposition:

• Reduced memory footprint: having a smaller Krylov subspace implies that fewer
Krylov vectors need to be stored. This may be of crucial importance if one con-
sider very large-scale eigenvalue problems such as the ones appearing in fluid
dynamics (see [37, 49, 17, 14] for illustrations) which need to be solved on high-
performance computers.

• Partially reduced computation complexity: although table 1 underlines that a
larger number of calls to the linearized time-stepper code is required as we
decrease the size of the Krylov subspace, one must not overlook that Arnoldi
decomposition necessitates modified Gram-Schmidt orthogonalization of the
Krylov sequence to iteratively construct the upper Hessenberg matrix. For an
n× k matrix (where n is the number of degrees of freedom and k the dimension
of the Krylov subspace), the computational complexity of this step scales as nk2.
As a consequence, decreasing the size of the Krylov subspace by a factor 4 re-
duces the computational cost of the modified Gram-Schmidt orthogonalization
by a factor 16. Such a reduction becomes particularly attractive if ones needs a
very large Krylov subspace to converge the leading eigenvalues when using the
classical Arnoldi decomposition.

Finally, although Krylov-Schur decomposition does have some benefits compared to
the classical Arnoldi iteration, it must not be forgotten that the overall computational
time is dictated by the linearized time-stepper solver used to evaluate the applica-
tion of the exponential propagator M onto a given vector. Consequently, efficient
and scalable temporal integrators are key enablers for very large-scale eigenvalue
analysis arising from the discretization of partial differential equations. Discussion
on efficient and scalable temporal and/or spatial discretization is however beyond
the scope of this contribution.

Table 1 Growth rate σ and circular frequency ω of the leading eigenvalue computed for different
dimensions of the Krylov subspace. Note that only the largest Krylov subspace (i.e. kdim = 256)
uses the basic Arnoldi decomposition. All other computations have been performed with Krylov-
Schur. The total number of calls to the linearized Navier-Stokes solver (i.e. the number of Jacobian
matrix-vector multiplications) is also reported for each case.

kdim = 256 kdim = 192 kdim = 128 kdim = 64

σ 4.56757 ·10−3 4.56757 ·10−3 4.56757 ·10−3 4.56673 ·10−3

ω ±7.4938 ±7.4938 ±7.4938 ±7.4938
Matrix-vector
multiplications

256 384 512 832
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Fig. 12 Eigenspectrum and leading eigenmodes (streamwise velocity field) for the shear-driven
cavity flow at Re = 4150. Blue circles (◦◦◦) depict the eigenvalues obtained using the Arnoldi de-
composition (see §3.2.1) with a Krylov subspace of dimension kdim = 256 while orange squares
(�) and green crosses (×) depict the eigenvalues obtained using the Krylov-Schur decomposi-
tion (see §3.2.2) with a Krylov subspace of dimension kdim = 128 and kdim = 64, respectively. In
both cases, the computation stopped once the twelve eigenvalues have been converged down to
ε = 10−6.

3.3 Non-modal stability and singular value decomposition

Given the linear time-invariant dynamical system

ẋ =Ax+ f,

it has been shown in §2.2 that, for f = 0 (i.e. no external forcing), the asymptotic fate
of a random initial condition x0 is dictated by the eigenpairs of the Jacobian matrix
A. On the other hand, as shown in §2.3, its short-term dynamics are governed by
the singular triplets of the exponential propagator M = exp(AT ), where T is the
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time horizon considered. Conversely, the asymptotic response of the (stable) system
to an external forcing f is governed by the singular triplets of the so-called resolvent
operator R = (iωI−A)−1, where ω is the forcing frequency. The rest of this
section is devoted to the presentation of two different time-stepper algorithms for the
computation of the leading singular values and singular vectors of the exponential
propagator M or the resolvent operator R.

3.3.1 An optimization approach

It has been shown in §2.3 that optimal perturbation analysis could be formulated as
an optimization problem given by

maximize
x0

J (x0) = ‖x(T )‖2
2

subject to ẋ−Ax = 0

‖x0‖2
2−1 = 0,

(66)

where J (x0) is known as the objective function. Similarly, the optimal forcing prob-
lem can be formulated as

maximize
f̂

J
(
f̂
)
= ‖x̂(ω)‖2

2

subject to (iωI−A) x̂ = f̂

‖f̂‖2
2−1 = 0,

(67)

Though these optimization problems are non-convex, solutions to both of them can
be obtained by means of standard gradient-based optimization algorithms. One of
the most famous such algorithms is the conjugate gradient method originally in-
troduced by [35], see [68] and [32] for more recent presentations. In this work we
will however introduce the reader to the rotation update technique, a modification
of the classical steepest ascent method based on geometric considerations. Figure
13 provides a schematic description of this algorithm. This approach has been used
by [28, 29] and [23] in the context of p-norms optimization in fluid dynamics.

Both Eq. (66) and Eq. (67) are constrained maximization problems. As shown
in §2.3, introducing Lagrange multipliers allows us to transform these constrained
problems into equivalent unconstrained ones. For the optimal perturbation analysis,
the unconstrained maximization problem thus reads

maximize
x,v,µ

L(x,v,µ) , (68)

where

L(x,v,µ) = J (x0)+
∫ T

0
vT (ẋ−Ax)dt +µ

(
‖x0‖2

2−1
)

(69)
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is known as the augmented Lagrangian function. The additional optimization vari-
ables v and µ appearing in the definition of the augmented Lagrangian L are the
Lagrange multipliers. The gradient of the augmented Lagrange functional L with
respect to the initial condition x0 reads

∂L
∂x0

= 2µx0−v0. (70)

This expression explicitly depends on the Lagrange multiplier µ whose value is
unfortunately unknown. One can however write down a mathematical expression of
this gradient orthogonalized with respect to the input x0

∂L
∂x

⊥
=

∂L
∂x
−
〈 ∂L

∂x ,x〉
〈x,x〉

x (71)

where 〈·, ·〉 stands for the inner product. Note moreover that we dropped the sub-
script 0 for the sake of simplicity. It can now be expressed as

∂L
∂x

⊥
= (v−2µx)− 〈(v−2µx),x〉

〈x,x〉
x (72)

After simplifications, the orthogonalized gradient finally reads

∂L
∂x

⊥
= v− 〈v,x〉

〈x,x〉
x (73)

This expression now solely depends on the direct variable x and the adjoint one v,
while the dependence on the unknown Lagrange multiplier µ has been completely
removed from the optimization problem. Normalizing this new gradient such that

Gn =

√√√√ ‖x0‖2
2

〈 ∂L
∂x
⊥
, ∂L

∂x
⊥〉

∂L
∂x

⊥
(74)

now allows us to look for the update xn+1 as a simple linear combination of xn and
Gn given by

xn+1 = cos(α)xn + sin(α)Gn (75)

Since xn and Gn form an orthonormal set of vectors, the update xn+1 fulfills, di-
rectly by construction, the constraint on the amplitude of the initial perturbation. No
quadratic equation in µ , as in the case of steepest ascent method, need to be solved
anymore at each iteration of the optimization loop. To ensure the convergence of
the method to the maxima of the augmented functional L, a check needs however
to be put on the value of the angle α used for the update of the solution. Every cal-
culations presented in this work uses α = 0.5 as the initial value. If the value of the
cost function J computed at the (n+ 1)th iteration is smaller than the value of J
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at the previous one, then the update xn+1 is re-updated with a different value of α ,
typically α = α/2 until the new value of J is larger than the previous one.

Fig. 13 Schematic representation of the rotation update method. (a) Compute the gradient ∂L/∂x
of the augmented Lagrange functional. (b) Orthogonalise the gradient with respect to xn(0). (c)
Compute Gn, i.e. the orthogonalized gradient normalized such that its energy is E0. (d) Update
xn+1(0) using a linear combination xn(0) and of the orthonormalized gradient Gn.

3.3.2 Singular value decomposition

Formulating the optimal perturbation analysis as a maximization problem yields a
non-convex optimization problem. As a consequence, one cannot rule out the pos-
sibility that gradient-based algorithms get stuck on a local maximum. Hopefully, it
has been shown in §2.3 that the same problem could be formulated as a singular
value decomposition of either the exponential propagator M = exp(AT ) or the
resolvent one R= (iωI−A)−1, depending on the problem considered.

Let us consider once more the optimal perturbation problem for the sake of sim-
plicity, although the derivation to be given naturally extend to the case to the resol-
vent. Given the singular value decomposition of the exponential propagator



Time-stepping and Krylov methods for large-scale instability problems 35

M, exp(AT ) = UΣVH ,

the optimal perturbation at t = 0 is given by the right singular vector v1, i.e. the first
column of V , while the associated response at time t = T is given by the rescaled
left singular vector σ1u1, where σ1 is the associated singular value characterizing
the amplification of the perturbation. Computing directly the singular values and
singular vectors of M is a challenging task for very large scale problems. Hope-
fully, introducing the adjoint exponential propagator M† = exp

(
A†T

)
, readers can

easily be convinced that our problem can be recast as the following equivalent eigen-
value problems

M†Mv = σ
2v and MM†u = σ

2u. (76)

From a practical point of view, evaluating the action of the matrix M†M onto a
vector x can be computed in a two-step procedure:

1. Integrate forward in time the original system, x(T ) = exp(AT )x.
2. Integrate backward in time the adjoint problem using the output of the previous

step as the initial condition, i.e. evaluating exp
(
A†T

)
x(T ).

Provided an adjoint time-stepper code is available, one can thus readily solve the
optimal perturbation problem using the eigenvalue solvers described in §3.2.1 or
§3.2.2. Moreover, given that M†M is a symmetric positive-definite matrix, the
upper Hessenberg matrix in the Arnoldi iteration can be replaced by a tri-diagonal
matrix, hence resulting in the so-called Lanczos iteration [47]. Note finally that,
when applied to the resolvent operator R, the matrix-vector product R(ω)f̂ can be
evaluated as follows:

1. Integrate forward in time the system ẋ =Ax+ f(ω).
2. Perform a discrete Fourier transform of the asymptotic response to obtain û(ω).

The same procedure applies for the action of R†(ω) where one now needs to inte-
grate backward in time the adjoint system using û(ω) as the external forcing. For
more details about the computation of the optimal forcing using a time-stepper ap-
proach, readers are referred to [56].

3.3.3 Illustration

As for modal stability (see §3.2.3), let us illustrate non-modal stability on the shear-
driven cavity flow. For that purpose, the Reynolds number is set to Re = 4100, i.e.
slightly below the critical Reynolds number for the onset of linear instability. Only
the optimal perturbation analysis (time-domain) will be presented for the sake of
simplicity. For more details about the resolvent analysis (frequency domain), read-
ers are referred to [56, 13]. Figure 14 depicts the evolution in time of the optimal
perturbation’s kinetic energy. It can be seen that, although linear stability analysis
predicts that the flow is stable, perturbations can be amplified by 4 to 5 orders of
magnitude solely through non-modal effects. Once the perturbation has reached its
maximum transient amplification at t = 2, its fate is eventually dictated by the least
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stable eigenvalue of the Jacobian matrix. Note that in the present case, the Reynolds
number considered being slightly below that for the onset of instability, the eventual
decay rate of the perturbation is relatively small. The perturbation nonetheless even-
tually disappears at t → +∞. Figure 14 also clearly illustrates the different spatial
support of the optimal initial perturbation (left panel) and the associated optimal re-
sponse at t = 2 (right panel). These different spatial supports result from the strong
convective effects, which are related mathematically to the degree of non-normality
of the Jacobian matrix. Similar observation holds true regarding the optimal forcing
and optimal response when performing a resolvent analysis. Analysis of these tran-
sient (non-normal) effects may be of crucial importance when studying subcritical
transition or for control purposes.

Let us finally conclude this section by presenting the pros and cons of the SVD
and optimization approaches. As discussed earlier, formulating the optimal per-
turbation and optimal forcing analyses in an optimization framework results in a
non-convex optimization problem typically solved using gradient-based algorithms.
Consequently, one cannot rule out the possibility that the solution returned by the
optimization procedure actually corresponds to a local maxima of the problem at
hand. On the other hand, formulating these two problems as singular value decom-
positions of the appropriate operator ensure that the solution obtained is indeed the
optimal one by virtue of the Eckart-Young theorem. Moreover, singular value de-
composition allows us to compute in one go not only the optimal perturbation but
also the sub-optimal ones, something hardly possible within a classic optimization
framework. Nonetheless, the optimization formulation offers much more flexibility
than simply computing the optimal perturbation in the `2 sense. Indeed, one can
choose the objective function J (x) and the associated constraints according to the
specific problem he/she aims to solve, see for instance [28, 29, 23] for optimization
based on the `1 norm of the perturabtion.

4 Conclusions and perspectives

With the ever increasing computational power available (roughly 20 to 25% increase
annually) and the development of high-performances computing (HPC), investigat-
ing the properties of realistic very large-scale nonlinear dynamical systems has be-
come reachable. In the field of fluid dynamics, computation of fixed points of two-
dimensional flows and investigation of the spectral properties of the corresponding
linearized Navier-Stokes operator are now routinely performed on workstations or
even laptops. The traditional way to do so is to use a so-called matrix-forming ap-
proach where the Jacobian matrix of the system is explicitly assembled, whether
one aims at computing a fixed point of the equations using Newton-like methods
or at computing its leading eigenvalues and eigenmodes characterizing the linear
stability properties of the fixed point considered. It must be noted however that the
memory capabilities of computers increase at a slower rate than their computational
capabilities. As a consequence, while simulations of very large-scale systems can
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Fig. 14 Time-evolution of the optimal perturbation’s kinetic energy for the shear-driven cavity
flow at Re = 4100, i.e. below the critical Reynolds number for the onset of linear instability. The
lower panels depict the streamwise velocity of the initial optimal perturbation (left) and associated
optimal response (right) at T = 2.

now be performed (see [65] where the three-dimensional Navier-Stokes equations
have been discretized using 1013 cells), using a matrix-forming approach to com-
pute fixed points and study the stability properties of such systems becomes rapidly
intractable. This gap between CPU and memory performances sprung the develop-
ment of a new class of algorithms known as matrix-free.

In this chapter, the reader has been introduced to a number of such matrix-free
algorithms for the computation of fixed points and eigenpairs of the linearized oper-
ator. Most of these algorithms rely on the observation that existing simulation codes
do not solve explicitly the continuous-time problem

ẋ =F(x)

but rather its discrete-time counterpart

xk+1 = G(xk).

Moreover, these time-stepper simulation codes do not form explicitly the matrices
but only require to be able to compute their applications onto a given set of vectors.
Given this observation, only minor modifications of existing time-stepper codes are
required as to transform them into black- functions evaluating matrix-vector prod-
ucts, hence enabling practitioners to wrap them into powerful matrix-free iterative
fixed points and/or eigenvalues solvers. Once again in the field of fluid dynamics,
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such an approach proved successful and allowed [37, 49, 17, 14] to investigate the
stability properties of the fixed points of nonlinear dynamical systems characterized
by almost 50 millions degrees of freedom.

Time-stepper matrix-free approaches nonetheless suffer from a number of lim-
itations and drawbacks. First and foremost, these approaches rely onto an existing
simulation code to emulate the matrix-vector products required. As a consequence,
the overall performances of the fixed points and eigenvalue solvers presented herein
are essentially dictated by the efficiency of the time-stepper code considered. Sec-
ond, a number of analyses (non-modal stability, receptivity, sensitivity, ...) may re-
quire the definition of an adjoint. While such adjoint operator simply reduces to the
transconjugate operation in matrix-forming approaches, a dedicated adjoint time-
stepper solver needs to be developed within the matrix-free framework. Although
this may be quite challenging if the system is defined by a complicated set of non-
linear partial differential equations, one must note that recent developments in au-
tomatic differentiation might prove helpful (see the software TAPENADE [33] for
instance). Finally, because the eigenvalue solvers described herein rely on Krylov
techniques, one must bear in mind that only the leading subset of eigenpairs of the
Jacobian matrix can be accurately computed.

Despite these limitations, time-stepper matrix-free approaches offer a practical
and efficient computing framework for the investigation of very large-scale nonlin-
ear dynamical systems. Provided one has access to an efficient time-stepper solver,
their relative ease of implementation make the approaches described in the present
chapter a standard choice of tools whenever matrix-forming approaches are in-
tractable. Finally, these approaches can easily be combined with finite-differences
approximation of the Jacobian matrix-vector product whenever a linearized time-
stepper solver is not available, hence proving extremely versatile and applicable a
very broad class of systems.
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