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Abstract 38 

In the crowded cell, a strong selective pressure operates on the proteome to limit the 39 

competition between functional and non-functional protein-protein interactions. We 40 

developed an original theoretical framework in order to interrogate how this competition 41 

constrains the behavior of proteins with respect to their partners or random encounters. Our 42 

theoretical framework relies on a two-dimensional (2D) representation of interaction energy 43 

landscapes with 2D energy maps that reflect in a synthetic way the propensity of a protein to 44 

interact with another protein. We investigated the propensity of protein surfaces to interact 45 

with functional and arbitrary partners and asked whether their interaction propensity is 46 

conserved during the evolution. Therefore, we performed several thousands of cross-docking 47 

simulations to systematically characterize the whole energy landscapes of 74 proteins 48 

interacting with different sets of homologs, corresponding to their functional partner's family 49 

or arbitrary protein families. Then, we systematically compared the energy maps resulting 50 

from the docking of a given protein with the different protein families of the dataset. 51 

Strikingly, we show that the interaction propensity not only of the binding site but also of the 52 

rest of the protein surface is conserved for docking partners belonging to the same protein 53 

family. Interestingly, this observation holds for docked proteins corresponding to true but also 54 

to arbitrary partners. Our theoretical framework enables the characterization of the energy 55 

behavior of a protein in interaction with hundreds of selected partners and opens the way for 56 

further developments to study the behavior of proteins in a specific environment. 57 
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Introduction 58 

Biomolecular interactions are central for many physiological processes and are of utmost 59 

importance for the functioning of the cell. Particularly protein-protein interactions have 60 

attracted a wealth of studies these last decades [1–5]. The concentration of proteins in a cell 61 

has been estimated to be approximately 2-4 million proteins per cubic micron [6]. In such a 62 

highly crowded environment, proteins constantly encounter each other and numerous non-63 

specific interactions are likely to occur [7–10]. For example, in the cytosol of S. cerevisiae a 64 

protein can encounter up to 2000 different proteins [11]. In this complex jigsaw puzzle, each 65 

protein has evolved to bind the right piece(s) in the right way (positive design) and to prevent 66 

misassembly and non-functional interactions (negative design) [12–16]). 67 

Consequently, positive design constrains the physico-chemical properties and the evolution of 68 

protein-protein interfaces. Indeed, a strong selection pressure operates on binding sites to 69 

maintain the functional assembly including the functional partner and the functional binding 70 

mode. For example, homologs sharing at least 30% sequence identity almost invariably 71 

interact in the same way [17]. Conversely, negative design prevents proteins to be trapped in 72 

the numerous competing non-functional interactions inherent to the crowded environment of 73 

the cell. Many studies were reported on the relationship between the propensity of proteins for 74 

promiscuous interactions and their abundances or surface properties [18–21]. Particularly, it 75 

has been shown that the misinteraction avoidance shapes the evolution and physico-chemical 76 

properties of abundant proteins, resulting in a slower evolution and less sticky surfaces than 77 

what is observed for less abundant ones [18,22–26]. The whole surface of abundant proteins 78 

is thus constrained, preventing them to engage deleterious non-specific interactions that could 79 

be of dramatic impact for the cell at high concentration [25]. Recently, it has been shown in E. 80 

coli that the net charge as well as the charge distribution on protein surfaces affect the 81 
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diffusion coefficients of proteins in the cytoplasm [19,27]. Positively charged proteins move 82 

up to 100 times more slowly as they get caught in non-specific interactions with ribosomes 83 

which are negatively charged and therefore, shape the composition of the cytoplasmic 84 

proteome [27]. 85 

All these studies show that both positive and negative design effectively operate on the whole 86 

protein surface. Binding sites are constrained to maintain functional assemblies (i.e. 87 

functional binding modes and functional partners) while the rest of the surface is constrained 88 

to avoid non-functional assemblies. Consequently, these constraints should shape the energy 89 

landscapes of functional but also non-functional interactions so that non-functional 90 

interactions do not prevail over functional ones. This should have consequences (i) on the 91 

evolution of the propensity of a protein to interact with its environment (including functional 92 

and non-functional partners) and (ii) on the evolution of the interaction propensity of the 93 

whole surface of proteins, non-interacting surfaces being in constant competition with 94 

functional binding sites. We can hypothesize that the interaction propensity of the whole 95 

surface of proteins is constrained during evolution in order to (i) ensure that proteins correctly 96 

bind functional partners, and (ii) limit non-functional assemblies as well as interactions with 97 

non-functional partners. 98 

In this work, we focus on protein surfaces as a proxy for functional and non-functional 99 

protein-protein interactions. We investigate their interaction energy landscapes with native 100 

and non-native partners and ask whether their interaction propensity is conserved during 101 

evolution. With this aim in mind, we performed large-scale docking simulations to 102 

characterize interactions involving either native or native-related (i.e. partners of their 103 

homologs) partners or arbitrary partners. Docking simulations enable the characterization of 104 

all possible interactions involving either functional or arbitrary partners, and thus to simulate 105 
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the interaction of arbitrary partners which is very difficult to address with experimental 106 

approaches. Docking algorithms are now fast enough for large-scale applications and allow 107 

for the characterization of interaction energy landscapes for thousand of protein couples. 108 

Typically, a docking simulation takes from a few minutes to a couple of hours on modern 109 

processors [28–30], opening the way for extensive cross-docking experiments [31–35]. 110 

Protein docking enables the exploration of the interaction propensity of the whole protein 111 

surface by simulating alternative binding modes. Here, we performed a cross-docking 112 

experiment involving 74 selected proteins docked with their native-related partners and their 113 

corresponding homologs, as well as arbitrary partners and their corresponding homologs. We 114 

represented the interaction energy landscapes resulting from each docking calculation with a 115 

two dimensional (2D) energy map in order to (i) characterize the propensity of all surface 116 

regions of a protein to interact with a given partner (either native-related or not) and (ii) easily 117 

compare the energy maps resulting from the docking of a same protein with different sets of 118 

homologous partners, thus addressing the evolution of the propensity of a protein to interact 119 

with homologous partners either native or arbitrary. 120 
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Results 121 

 122 

The interaction propensity of the whole surface of the human ubiquitin carboxyl-123 

terminal hydrolase 14 is conserved for homologous protein ligands, be they functional 124 

partners or random encounters 125 

If positive and negative design constraint the propensity of the whole surface of proteins to 126 

interact with their functional partners or random encounters, this should shape the evolution 127 

of interaction energy landscapes of functional protein pairs but also of random encounter 128 

pairs. Consequently, we expect that the interaction energy landscape involving a protein pair 129 

(functional or arbitrary) is conserved for a homologous pair. Testing this hypothesis involves 130 

being able to characterize the interaction propensity of the whole surface of a protein. 131 

Therefore we designed a procedure based on a two-dimensional (2D) representation of 132 

docking energy landscapes with 2D energy maps which reflect the propensity of a protein (i.e. 133 

the receptor) to interact with the docked partner (i.e. the ligand) (Materials and Methods, Fig 134 

1A-C). The procedure is asymmetrical and the resulting energy map provides the distribution 135 

of all docking energies over the whole receptor surface thus reflecting the propensity of the 136 

receptor to interact with the docked ligand. Fig 2 represents the energy maps computed for the 137 

receptor 2AYN_A, the human ubiquitin carboxyl-terminal hydrolase 14 (family UCH) 138 

docked with (i) its native partner (1XD3_B, ubiquitin-related family), a homolog of its partner 139 

(defined as a native-related partner) (1NDD_B) and (ii) two arbitrary homologous ligands 140 

(1YVB_A and 1NQD_B from the papain-like family). For all four ligands, either native-141 

related or arbitrary partners, docking calculations lead to an accumulation of low-energy 142 

solutions (hot regions in red) around the two experimentally known binding sites of the 143 

receptor. The first one corresponds to the interaction site with the native partner, ubiquitin 144 
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(pdb id 2ayo). The second one corresponds to its homodimerisation site (pdb id 2ayn). This 145 

indicates that native-related but also arbitrary partners tend to bind onto the native binding 146 

sites of native partners as observed in earlier studies [34,36]. Indeed, the low energy solutions 147 

tend to accumulate systematically in the vicinity of the two native interaction sites. Whereas 148 

the low energy solutions obtained for both ligand families accumulate around the native 149 

binding sites of 2AYN_A, the two ligand families display clear differences in the rest of the 150 

map. Indeed, the energy maps obtained with the ligands of the ubiquitin-like family both 151 

reveal two sharp hot regions around the native sites and a subset of well-defined cold regions 152 

(i.e. blue regions corresponding to high energy solutions) placed in the same area in the map’s 153 

upper-right quadrant. In contrast, the energy maps obtained for the ligands of the papain-like 154 

family display a large hot region around the two native binding sites of the receptor, 155 

extending to the upper-left and bottom-right regions of the map and suggesting a large 156 

promiscuous binding region for these ligands. The interaction propensity of the two binding 157 

sites of 2AYN_A but also of the other regions of its surface seems to be conserved for 158 

homologous ligands and specific to each ligand family whether the ligands correspond to 159 

native-related partners or not (Fig 2). 160 

Generalization to a large set of proteins 161 

We asked whether this observation could be generalized to a large set of proteins. Therefore 162 

we built a database comprising 74 protein structures divided into 12 families of homologs (S1 163 

Table and Materials and Methods). Each family displays different degrees of structural 164 

variability and sequence divergence in order to see the impact of these properties on the 165 

conservation of the interaction propensity inside a protein family. Each family has at least one 166 

native-related partner family (S1 Fig). For a protein A, we refer as native-related partners its 167 

native partner (when its three dimensional (3D) structure is available) and native partners of 168 
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proteins that are homologous to the protein A. Arbitrary pairs refer to pairs of proteins for 169 

which no interaction has been experimentally characterized in the Protein Data Bank neither 170 

for their respective homologs [37]. Docking calculations are performed with the ATTRACT 171 

software [30]. Each protein (namely the receptor) is docked with the 74 proteins (namely the 172 

ligands) of the dataset (Fig 3A and Materials and Methods) and the 74 corresponding energy 173 

maps are calculated (Fig 3B and Materials and Methods). The 74 resulting energy maps are 174 

compared together with a Manhattan distance and all the energy map distances are stored in 175 

an energy map distance (EMD) matrix (Fig 3C and Materials and Methods). Each matrix 176 

entry (i,j) corresponds to the distance di,j between the energy maps of ligands i and j docked 177 

with a receptor k (Fig 3C and Materials and Methods). Consequently, a small distance di,j 178 

between ligands i and j docked with a receptor k, reflects a high similarity of their energy 179 

maps. In other words, the interaction propensity of the surface of the receptor k is similar for 180 

both ligands i and j. One should notice that energy maps computed for two unrelated 181 

receptors are not comparable since their surfaces are not comparable as well. Therefore, the 182 

procedure is asymmetrical and receptor-centered. It only compares energy maps calculated for 183 

different ligands docked with the same receptor. In order to prevent any bias from the choice 184 

of the receptor, each of the 74 proteins plays alternately the role of receptor and ligand. 185 

Consequently, the protocol presented in Fig 3 is repeated for the entire dataset where each 186 

protein plays the role of the receptor and is docked with the 74 proteins that play the role of 187 

ligands, thus resulting in 74 EMD matrices. In order to quantify the extent to which the 188 

interaction propensity of a receptor is conserved for homologous ligands, we evaluated to 189 

what extent distances calculated between homologous ligand pairs were smaller than 190 

distances calculated between random pairs. Fig 4 represents the boxplots of energy map 191 

distances calculated between random ligand pairs or between homologous ligand pairs docked 192 

with their native-related receptor or with the other receptors of the dataset. Homologous 193 
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ligands display significantly lower energy map distances than random ligand pairs (Wilcoxon 194 

test p = 0) indicating that energy maps produced by homologous ligands are more similar than 195 

those produced by non-homologous ligands. Interestingly, this observation holds whether the 196 

receptor-ligand pair is a native pair or not. This suggests that the interaction propensity of a 197 

receptor is conserved for homologous partners be they native-related or not. 198 

 199 

Energy maps are specific to protein families 200 

The results presented above prompted us to assess the extent to which the interaction 201 

propensity of a receptor is specific to the ligand families it interacts with. If so, a receptor 202 

should lead to energy maps that are specific to the different ligand families and we should be 203 

able to retrieve homology relationships of ligands solely from the comparison of their energy 204 

maps. Therefore, we tested our ability to predict the homologs of a given ligand based only on 205 

the comparison of its energy maps with those of the other ligands. In order to prevent any bias 206 

from the choice of the receptor, the 74 EMD matrices are averaged in an averaged distances 207 

matrix (ADM) (see Materials and Methods). Each entry (i,j) of the ADM corresponds to the 208 

averaged distance between two sets of 74 energy maps produced by two ligands i and j. A low 209 

distance indicates that the two ligands display similar energy maps whatever the receptor is. 210 

We computed a receiver operating characteristic (ROC) curve from the ADM (see Materials 211 

and Methods) which evaluates our capacity to discriminate the homologs of a given ligand 212 

from non-homologous ligands by comparing their respective energy maps computed with all 213 

74 receptors of the dataset. The true positive set consists in the homologous protein pairs 214 

while the true negative set consists in any homology-unrelated protein pair. The resulting 215 

Area Under the Curve (AUC) is equal to 0.79 (Fig 5). We evaluated the robustness of the 216 

ligand’s homologs prediction depending on the size of the receptor subset with a bootstrap 217 
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procedure by randomly removing receptor subsets of different sizes (from 1 to 73 receptors). 218 

The resulting AUCs range from 0.77 to 0.79, and show that from a subset size of five 219 

receptors, the resulting prediction accuracy no longer significantly varies (risk of wrongly 220 

rejecting the equality of two variances (F-test) >5%), and is robust to the nature of the 221 

receptor subset (S2 Fig). Finally, we evaluated the robustness of the predictions according to 222 

the number of grid cells composing the energy maps. Therefore, we repeated the procedure 223 

using energy maps with resolutions ranging from 144x72 to 48x24 cells. S2 Table presents 224 

the AUCs calculated with different grid resolutions. The resulting AUCs range from 0.78 to 225 

0.8 showing that the grid resolution has a weak influence on the map comparison. All 226 

together, these results indicate that homology relationships between protein ligands can be 227 

detected solely on the basis of the comparison of their energy maps. In other words, the 228 

energy maps calculated for a receptor docked with a set of ligands belonging to a same family 229 

are specific to this family. Interestingly, this observation holds for families displaying 230 

important sequence variations (S1 Table). For example, the AUC computed for the UCH and 231 

ubiquitin-related families are 0.98 and 0.88 respectively despite the fact that the average 232 

sequence identity of these families does not exceed 45% (S3 Fig and S1 Table). This indicates 233 

that energy maps are similar even for homologous ligands displaying large sequence 234 

variations. 235 

 236 

We then specifically investigated the energy maps of each family in order to see whether 237 

some ligands behave energetically differently from their family members. On the 74 ligands, 238 

only five (2L7R_A, 4BNR_A, 1BZX_A, 1QA9_A, 1YAL_B) display energy maps that are 239 

significantly different from those of their related homologs (Z-tests p-values for the 240 

comparison of the averaged distance of each ligand with their homologs versus the averaged 241 
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distance of all ligands with their homologous ligands ≤ 5%). In order to identify the factors 242 

leading to differences between energy maps involving homologous ligands, we computed the 243 

pairwise sequence identity and the root mean square deviation (RMSD) between the members 244 

of each family. Interestingly, none of these criteria can explain the energy map differences 245 

observed within families (Fisher test p of the linear model estimated on all protein families 246 

>0.1) (see Fig 6B-C for the ubiquitin-related family, S4-S14B-C Fig for the other families, 247 

and S3 Table for details). Fig 6A represents a subsection of the ADM for the ubiquitin-related 248 

family (i.e. the energy map distances computed between all the members of the ubiquitin-like 249 

family and averaged over the 74 receptors). Low distances reflect pairs of ligands with similar 250 

energy behaviors (i.e. producing similar energy maps when interacting with a same receptor) 251 

while high distances reveal pairs of ligands with different energy behaviors. 2L7R_A 252 

distinguishes itself from the rest of the family, displaying high-energy map distances with all 253 

of its homologs. RMSD and sequence identity contribute modestly to the energy map 254 

distances observed in Fig 6A (Spearman correlation test pRMSD = 0.01 and pseq = 0.02 (S3 255 

Table, Fig 6B-C)). Fig 6D shows a projection of the electrostatic potential calculated with 256 

APBS [38] on the surface of the seven ubiquitin-related family members (for more details, see 257 

S15 Fig and Materials and Methods). Fig 6E represents the electrostatic maps distances 258 

computed between all members of the family. 2L7R_A clearly stands out, displaying a 259 

negative electrostatic potential over the whole surface while its homologs harbor a remarkable 260 

fifty-fifty electrostatic distribution (Fig 6D). The negatively charged surface of 2L7R_A is 261 

explained by the absence of the numerous lysines that are present in the others members of 262 

the family (referred by black stars, Fig 6D). Lysines are known to be essential for ubiquitin 263 

function, enabling the formation of polyubiquitin chains on target proteins. Among the seven 264 

lysines of the ubiquitin, K63 polyubiquitin chains are known to act in non-proteolytic events 265 

while K48, K11, and the four other lysines polyubiquitin chains are presumed to be involved 266 
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into addressing proteins to the proteasome [39]. 2L7R_A is a soluble UBL domain resulting 267 

from the cleavage of the fusion protein FAU [40]. Its function is unrelated to proteasomal 268 

degradation, which might explain the lack of lysines on its surface and the differences 269 

observed in its energy maps. Interestingly, the differences observed for the energy maps of 270 

1YAL_B (Papain-like family) (S4 Fig) and 4BNR_A (eukaryotic proteases family) (S5 Fig) 271 

regarding their related homologs can be explained by the fact that they both display a highly 272 

charged surface. These two proteins are thermostable [41,42], which is not the case for their 273 

related homologs, and probably explains the differences observed in their relative energy 274 

maps. The V-set domain family is split into two major subgroups according to their averaged 275 

energy map distances (S6A Fig). The first group corresponds to CD2 proteins (1QA9_A and 276 

its unbound form 1HNF_A) and differs significantly from the second group (Z-test p = 0.03 277 

and p = 0.05 respectively). The second group corresponds to CD58 (1QA9_B and its unbound 278 

form 1CCZ_A) and CD48 proteins (2PTT_A). Interestingly, CD2 is known to interact with its 279 

homologs (namely CD58 and CD48) through an interface with a striking electrostatic 280 

complementarity [43]. The two subgroups have thus evolved distinct and specific binding 281 

sites to interact together. We can hypothesize that they have different interaction propensities 282 

resulting in the differences observed between their corresponding energy maps. These five 283 

cases illustrate the capacity of our theoretical framework to reveal functional or biophysical 284 

specificities of homologous proteins that could not be revealed by classical descriptors such 285 

as RMSD or sequence identity. 286 

The AUC of 0.79 calculated previously with energy maps produced with the docking of either 287 

native-related or arbitrary pairs indicates that energy maps are specific to ligand families. To 288 

see whether this observation is not mainly due to the native-related pairs, we repeated the 289 

previous test while removing that time all energy maps computed with native-related pairs 290 

and calculated the resulting ADM. We then measured our ability to retrieve the homologs of 291 
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each ligand by calculating the ROC curve as previously. The resulting AUC is still equal to 292 

0.79, revealing that our ability to identify a ligand’s homologs is independent from the fact 293 

that the corresponding energy maps were computed with native-related or arbitrary pairs (Fig 294 

5). This shows that the energy maps are specific to protein families whether the docked pairs 295 

are native-related or not. Consequently, the propensity of the whole protein surface to interact 296 

with a given ligand is conserved and specific to the ligand family whether the ligand is native-297 

related or not. This striking result may reflect both positive and negative design operating on 298 

protein surfaces to maintain functional interactions and to limit random interactions that are 299 

inherent to a crowded environment. 300 

 301 

The interaction propensity of all surface regions of a receptor is evolutionary conserved 302 

for homologous ligands 303 

To see whether some regions contribute more to the specificity of the maps produced by 304 

homologous ligands, we next dissected the effective contribution of the surface regions of the 305 

receptor defined according to their docking energy value, in the identification of ligand’s 306 

homologs. We discretized the energy values of each energy map into five categories, leading 307 

to a palette of five energy classes (see Fig 1D and Materials and Methods). These five-classes 308 

maps highlight low-energy regions (i.e. hot regions in red), intermediate-energy regions (i.e. 309 

warm, lukewarm and cool regions in orange, light-green and dark-green respectively) and 310 

high-energy regions (i.e. cold regions in blue). We first checked that the discretization of the 311 

energy maps does not affect our ability to identify the homologs of each of the 74 ligands 312 

from the comparison of their five-classes maps. The resulting AUC is 0.77 (Table 1), showing 313 

that the discretization step does not lead to an important loss of information.  314 
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 315 

Then, we evaluated the contribution of each of the five energy classes separately in the 316 

ligand’s homologs identification by testing our ability to retrieve the homologs of the 74 317 

ligands from their one-class energy maps (either hot, warm, lukewarm, cool or cold) (see 318 

Materials and Methods). Table 1 shows the resulting AUCs. Interestingly, the information 319 

provided by each energy class taken separately is sufficient for discriminating the homologs 320 

of a given ligand from the rest of the dataset (Table 1). The resulting AUCs range from 0.76 321 

to 0.79 for the warm, lukewarm, cool and cold classes and are comparable to those obtained 322 

with all classes taken together (0.77). This shows (i) that warm, lukewarm, cool, and cold 323 

regions alone are sufficient to retrieve homology relationships between ligands and (ii) that 324 

the localization on the receptor surface of a given energy class is specific to the ligand 325 

families. Hot regions are less discriminative and lead to an AUC of 0.73. In order to see how 326 

regions of an energy class are distributed over a receptor surface, we summed the one-class 327 

maps of the corresponding energy class calculated for this receptor into a stacked map (S16 328 

Fig – see Materials and Methods for more details). A stacked map reflects the tendency of a 329 

surface region (i.e. map cells) to belong to the corresponding energy class. Fig 7 shows an 330 

example of the five stacked maps (i.e. for cold, cool, lukewarm, warm and hot regions) 331 

computed for the receptor 1P9D_U. Intermediates regions (i.e. warm, lukewarm and cool 332 

regions) are widespread on the stacked map while cold and hot regions are localized on few 333 

small spots (three and one respectively) no matter the nature of the ligand. S17 Fig shows for 334 

the receptor 1P9D_U the 12 cold and hot stacked maps computed for each ligand family 335 

separately. We can see that some cold spots are specific to ligand families and that their area 336 

distribution is specific to families while all 12 ligand families display the same hot spot in the 337 

map’s upper-right quadrant. These observations can be generalized to each receptor. On 338 

average, intermediate regions are widespread on the stacked maps and cover respectively 744, 339 
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1164 and 631 cells for cool, lukewarm and warm regions, while cold and hot regions cover no 340 

more than respectively 104 and 110 cells respectively (S18 Fig). Interestingly, hot regions are 341 

more colocalized than cold ones and are restricted to 2 distinct spots on average per stacked 342 

map, while cold regions are spread on 3.7 spots on average (t-Test p = 7.42e-13). These 343 

results show that ligands belonging to different families tend to dock preferentially on the 344 

same regions and thus lead to similar hot region distributions on the receptor surface. This 345 

observation recalls those made by Fernandez-Recio et al. [36], who showed that docking 346 

random proteins against a single receptor leads to an accumulation of low-energy solutions 347 

around the native interaction site and who suggested that different ligands will bind 348 

preferentially on the same localization. 349 

 350 

We can hypothesize that hot regions present universal structural and biochemical features that 351 

make them more prone to interact with other proteins. To test this hypothesis, we computed 352 

for each protein of the dataset, the 2D projection of three protein surface descriptors (see 353 

Materials and Methods and S15 Fig): the Kyte-Doolittle (KD) hydrophobicity [44], the 354 

circular variance (CV) [45] and the stickiness [25]. The CV measures the density of protein 355 

around an atom and is a useful descriptor to reflect the local geometry of a surface region. CV 356 

values are comprised between 0 and 1. Low values reflect protruding residues and high values 357 

indicate residues located in cavities. Stickiness reflects the propensity of amino acids to be 358 

involved in protein-protein interfaces [25]. It is calculated as the log ratio of the residues 359 

frequencies on protein surfaces versus their frequencies in protein-protein interfaces. For each 360 

receptor, we calculated the correlation between the docking energy and the stickiness, 361 

hydrophobicity or CV over all cells of the corresponding 2D maps. We found a significant 362 

anti-correlation between the docking energy and these three descriptors (correlation test p 363 
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between docking energies and respectively stickiness, hydrophobicity and CV < 2.2e-16, see 364 

S4 Table)). Fig 8 represents the boxplots of the stickiness, hydrophobicity and CV of each 365 

energy class (see S15 Fig and Materials and Methods section for more details). We observe a 366 

clear effect of these factors on the docking energy: cold regions are the less sticky, the less 367 

hydrophobic and the most protruding while hot ones are the most sticky, the most 368 

hydrophobic and the most planar (Tukey HSD test [46], p of the differences observed 369 

between each energy classes < 2.2e-16). One should notice that stickiness has been defined 370 

from a statistical analysis performed on experimentally characterized protein interfaces and 371 

therefore between presumed native partners. The fact that docking energies (physics-based) 372 

calculated either between native-related or arbitrary partners is anti-correlated with stickiness 373 

(statistics-based) defined from native interfaces, strengthens strongly the concept of stickiness 374 

as the propensity of interacting promiscuously and provides physics-based pieces of evidence 375 

for sticky regions as a proxy for promiscuous interactions. 376 

We show that not only the area distribution on a receptor surface of hot regions but also those 377 

of intermediate and cold regions are similar for homologous ligands and are specific to ligand 378 

families (AUC ranging from 0.73 to 0.79) whether the ligands are native-related or not. This 379 

tendency is even stronger for intermediate and cold regions. Interestingly, the information 380 

contained in the cold regions that cover on average no more than 5.0% of the energy maps is 381 

sufficient to identify homology relationships between ligands. 382 
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Discussion 383 

In this study, we address the impact of both positive and negative design on thousands of 384 

interaction energy landscapes by the mean of a synthetic and efficient representation of the 385 

docking energy landscapes: two-dimensional energy maps that reflect the interaction 386 

propensity of the whole surface of a protein (namely the receptor) with a given partner 387 

(namely the ligand). We show that the distribution on the protein surface of all regions, 388 

including cold, intermediate and hot regions are similar for homologous ligands and are 389 

specific to ligand families whether the ligands are native-related or arbitrary. This reveals that 390 

the interaction propensity of the whole surface of proteins is constrained by functional and 391 

non-functional interactions, reflecting both positive and negative design operating on the 392 

whole surface of proteins, thus shaping the interaction energy landscapes of functional 393 

partners and random encounters. These observations were made on a dataset of 74 protein 394 

structures belonging to 12 families of structural homologs. 54 out of the 74 proteins of the 395 

dataset have at least one known partner in the dataset. For the 20 remaining proteins, we were 396 

not able to find evidences that they indeed interact with a protein of the dataset. However, we 397 

showed that the interaction propensity of a receptor is conserved for homologous ligands 398 

independently from the fact that these ligands correspond to native partners or not. Indeed, we 399 

showed that ligand homology relationships could be retrieved from their energy maps 400 

whether the maps were computed with native-related pairs or not (the corresponding AUCs 401 

calculated with and without native pairs both equal to 0.79).  402 

Most studies that aim at depicting protein interactions focus on the functional ones and on the 403 

characterization of the native assembly modes [14,47–51]. Nevertheless, the importance of 404 

non-specific interactions and non-native assembly modes in protein interactions is no longer 405 

in doubt [7,19,21,27,52–55]. Experimental and in-silico studies showed the impact of non-406 
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specific interactions on the in-cell mobility of proteins [7,19,21,27]. In addition, an important 407 

literature describes the relationship between the physico-chemical properties of proteins and 408 

their ability for non-specific interactions [7,19,21,25,53]. In particular, Wang et al showed 409 

that the propensity for non-specific interactions is determined by multiple factors such as the 410 

protein charge, the conformational flexibility and the distribution of hydrophobic residues on 411 

the protein surface [19]. Finally, recent studies have demonstrated the importance of non-412 

native assembly modes and non-interacting regions in the protein association process [54] and 413 

showed that it is relevant to consider them for predicting protein partners and binding 414 

affinities [56,57]. Particularly, Marin-Lopez et al developed a method based on the sampling 415 

of the conformational space of the encounter complexes formed during the binding process 416 

and showed that ΔG can be predicted accurately from the scoring of all encounter complexes 417 

sampled during a docking simulation, suggesting that the knowledge of the native pose is not 418 

necessary [57]. All these works highlight the importance of taking into account the whole 419 

surface of proteins as well as all the binding modes of a protein pair. This calls for the 420 

development of new methods that enable the systematic and physical characterization of the 421 

whole surface of a protein in interaction with a given partner. Here, we address the energy 422 

behavior of not only known binding sites, but also of the rest of the protein surface, which 423 

plays an important role in protein interactions by constantly competing with the native 424 

binding site. We show that the interaction propensity of the rest of the surface is not 425 

homogeneous and displays regions with different binding energies that are specific to ligand 426 

families. This may reflect the negative design operating on these regions to limit non-427 

functional interactions [14,16,58]. We can hypothesize that non-interacting regions participate 428 

to favor functional assemblies (i.e. functional assembly modes with functional partners) over 429 

non-functional ones and are thus evolutionary constrained by non-functional assemblies. The 430 

fact that cold regions seem to be more specific to ligand families than hot ones may be 431 
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explained by the fact that they are on average more protuberant and more charged. They thus 432 

display more variability than hot ones. Indeed, there is more variability in being positively or 433 

negatively charged and protuberant (with an important range of protuberant shapes) than in 434 

being neutral and flat. S19 Fig presents the electrostatic potential distribution of all energy 435 

classes. Cold regions display a larger variability of electrostatic potential (F-test, p < 2.2e-16) 436 

than hot regions that are mainly hydrophobic thus displaying neutral charge distributions in 437 

average. Consequently, a same hot region may be attractive for a large set of ligands while a 438 

cold region may be unfavorable to specific set of ligands, depending on their charges, shapes 439 

and other biophysical properties.  440 

Moreover, we show that hot regions are very localized (4.9% of the cells of an energy map) 441 

and tend to be similar no matter the ligand. Similarly to protein interfaces that have been 442 

extensively characterized in previous studies [47,48,48–50], hot regions are likely to display 443 

universal properties of binding, i.e. they are more hydrophobic and more planar, and thus 444 

more “sticky” than the other regions. They may provide a non-specific binding patch that is 445 

suitable for many ligands. However, we can hypothesize that native partners have evolved to 446 

optimize their interfaces (positive design) so that native interactions prevail over non-native 447 

competing ones. Then positive design results in conserved binding sites and coevolved 448 

interfaces in order to maintain the charge and shape complementarity between functional 449 

partners. Indeed, we have previously shown that the docking of native partners lead to more 450 

favorable binding energies than the docking of non-native partners when the ligand is 451 

constrained to dock around the receptor’s native binding site [33,59]. All these results suggest 452 

a new physical model of protein surfaces where protein surface regions, in the crowded 453 

cellular environment, serve as a proxy for regulating the competition between functional and 454 

non-functional interactions. In this model, intermediate and cold regions play an important 455 

role by preventing non-functional assemblies and by guiding the interaction process towards 456 
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functional ones and hot regions may select the functional assembly among the competing 457 

ones through optimized interfaces with the native partner. This model recalls the transitive 458 

model proposed by Marin-Lopez et al where a path connecting what they call “productive” 459 

(near-native) and “non-productive” (non-native) assemblies can be defined [57]. This path 460 

consists in distinct conformational states where each one is a macro-state of the binding 461 

process involving either the native binding site of each partner, a single native binding site or 462 

no native ones. The initial steps consist in macro-states which do not involve native binding 463 

sites. Macro-states appearing later during the assembly process would play a mechanistic role 464 

by drawing near the binding sites of the two partners. The latest stage would correspond to 465 

near-native conformations where van der Waals and de-solvation energies play a major role in 466 

the energy of interaction of the corresponding complexes while the electrostatic forces 467 

contribute mostly in the energy of non-native assemblies [60,61]. Figure S21 shows the 468 

effective electrostatic and van der Waals contributions in the total docking energy for the 469 

different surface regions (i.e. cold, intermediate and hot regions). Interestingly, our results 470 

concur with the observations made in [60,61] since we show that the contribution of 471 

electrostatic in the total docking energy is more important in cold regions while van der 472 

Waals energies predominate in hot ones. Characterizing the relationship between the macro-473 

states defined by Marin-Lopez et al and the surface regions of different energy levels could 474 

provide at the same time a structural, physical and readable characterization of the binding 475 

process of two interacting proteins. In particular, it would be interesting to compare the 476 

properties of the different macro-states (involving or not the native binding sites of the two 477 

proteins) identified for functional and arbitrary pairs to see whether functional pairs displays 478 

specific features that would have resulted from an optimization of the binding process.  479 

 480 
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In this work, we used and extended the application of the 2D energy map representation 481 

developed in [36] to develop an original theoretical framework that enables the efficient, 482 

automated and integrative analysis of different protein surface features. Many other surface 483 

representations have been developed to characterize protein surface properties [62–67]. These 484 

representations include 2D projections or more sophisticated methods such as for example 485 

using 3D Zernike descriptors as a representation of the protein surface shape [68,69] which is 486 

a powerful tool to compare surface properties of either homologous or unrelated proteins 487 

since it does not require any prior alignment. 2D maps provide the area distribution of a given 488 

feature on the whole protein surface and their discretization enables the study of a given 489 

surface property (e.g. protuberance, planarity, stickiness, positively charged regions, or cold 490 

and hot regions for example). The advantage with the 2D energy maps is that they are easy to 491 

build and manipulate and their straightforward comparison enables (i) the study of 492 

relationships between different surface properties through the comparison of their area 493 

distributions on a protein surface and (ii) the highlight of the evolutionary constraints exerted 494 

on a given feature by comparing its area distribution on the surfaces of homologous proteins. 495 

Particularly, this enables the identification and characterization of hot regions on a protein 496 

surface which can be either specific or conserved for all ligands and opens up new 497 

possibilities for the development of novel methods for protein binding sites prediction and 498 

their classification as functional or promiscuous in the continuity of previous developments 499 

based on arbitrary docking [33,34,36,59].  500 

 501 

Finally, our framework provides a proxy for further protein functional characterization as 502 

shown with the five proteins discussed in the Results section Energy maps are specific to 503 

protein families. The comparison of their respective energy maps enables us to reveal 504 
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biophysical and functional properties that could not be revealed with classical monomeric 505 

descriptors such as RMSD or sequence identity. Indeed, our framework can reflect the energy 506 

behavior of a protein interacting with a subset of selected partners either functional or 507 

arbitrary, thus revealing functional and systemic properties of proteins. This work goes 508 

beyond the classical use of binary docking to provide a systemic point of view of protein 509 

interactions, for example by exploring the propensity of a protein to interact with hundreds of 510 

selected ligands, and thus addressing the behavior of a protein in a specific cellular 511 

environment. Particularly, exploring the dark interactome (i.e. non-functional assemblies and 512 

interactions with non-functional partners) can provide a wealth of valuable information to 513 

understand mechanisms driving and regulating protein-protein interactions. Precisely, our 2D 514 

energy maps based strategy enables its exploration in an efficient and automated way. 515 
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Materials and Methods 516 

 517 

Protein dataset 518 

The dataset comprises 74 protein structures divided into 12 families of structural homologs 519 

which were selected from the protein docking benchmark 5.0. (see S1 Table for a detailed list 520 

of each family). We decided to systematically remove all Antibody/Antigens complexes since 521 

they display specific evolutionary properties. Indeed, they did not co-evolve to interact and 522 

we can hypothesize that the evolutionary constraints operating on their interaction energy 523 

landscapes are different from those of other complexes. Each family is related to at least one 524 

other family (its native-related partners family) through a pair of interacting proteins for 525 

which the 3D structure of the complex is characterized experimentally (except the V set 526 

domain family: the two native partners are homologous and belong to the same family) (S1 527 

Fig). Each family is composed of a monomer selected from the protein-protein docking 528 

benchmark 5.0 [70] in its bound and unbound forms, which is called the master protein. Each 529 

master protein has a native partner (for which the 3D structure of the corresponding complex 530 

has been characterized experimentally) in the database, which is the master protein for 531 

another family, except the V set domain family, which is a self-interacting family. When 532 

available, we completed families with interologs (i.e. pairs of proteins which have interacting 533 

homologs in an other organism) selected in the INTEREVOL database [71] according to the 534 

following criteria: (i) experimental structure resolution better than 3.25 Å, (ii) minimum 535 

alignment coverage of 75% with the rest of the family members and (iii) minimum sequence 536 

identity of 30% with at least one member of the family. Since we were limited by the number 537 

of available interologs, we completed families with unbound monomers homologous to the 538 
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master following the same criteria and by searching for their partners in the following protein-539 

protein interactions databases [72–77]. We consider that all members of a family correspond 540 

to native-related partners of all members of their native-related partner family. To address the 541 

impact of conformational changes of a protein on its interaction energy maps, we added 542 

different NMR conformers. We show that energy maps involving pairs of conformers are 543 

significantly more similar than those obtained for other pairs of homologous ligands 544 

(unilateral Wilcoxon test, p < 2.2e-16) showing that the conformational changes in a protein 545 

(lower than 3Å) have a low impact on the resulting energy maps (S20 Fig). 546 

 547 

Docking experiment and construction of energy maps 548 

A complete cross-docking experiment was realized with the ATTRACT software [30] on the 549 

74 proteins of the dataset, leading to 5476 (74 x 74) docking calculations (Fig 1A). 550 

ATTRACT uses a coarse-grain reduced protein representation and a simplified energy 551 

function comprising a pseudo Lennard-Jones term and an electrostatic term. The calculations 552 

took approximately 20000 hours on a 2.7GHz processor. Prior to docking calculations, all 553 

PDB structures were prepared with the DOCKPREP software [78]. 554 

During a docking calculation, the ligand Li explores exhaustively the surface of the receptor 555 

Rk (whose position is fixed during the procedure), sampling and scoring thousands of 556 

different ligand docking poses (between 10000 and 50000 depending on the sizes of the 557 

proteins) (Fig 1A). For each protein couple Rk-Li, a 2D energy map is computed which shows 558 

the distribution of the energies of all docking solutions over the receptor surface. To compute 559 

these maps, for all docking poses, the spherical coordinates (φ, θ) (with respect to the 560 

receptor center of mass (CM)) of the ligand CM are represented onto a 2D map in an equal-561 
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area 2D sinusoidal projection (Fig 1B) (see [36] for more details). Each couple of coordinates 562 

(φ, θ) is associated with the energy of the corresponding docking conformation (Fig 1B). A 563 

continuous energy map is then derived from the discrete one, where the map is divided into a 564 

grid of 36 x 72 cells. Each cell represents the same surface and, depending on the size of the 565 

receptor, can span from 2.5 Å2 to 13Å2. For each cell, all solutions with an energy score 566 

below 2.7 kcal/mol-1 from the lowest solution of the cell are retained, according to the 567 

conformations filtering protocol implemented in [33]. The average of the retained energy 568 

scores is then assigned to the cell. If there is no docking solution in a cell, a score of 0 is 569 

assigned to it. Finally, the energies of the cells are smoothed, by averaging the energy values 570 

of each cell and of the eight surrounding neighbors (Fig 1C). 571 

For each map, the energy values are discretized into five energy classes of same range leading 572 

to a discrete five-colors energy map (Fig 1D). The range is calculated for each energy map 573 

and spans from the minimum to the maximum scores of the map cells. The range of the 574 

energy classes of the map Rk-Li is equal to (maxE – minE)/5, where maxE and minE 575 

correspond to the maximal and minimal energy values in the Rk-Li map. Each five-classes 576 

energy map is then split into five one-class maps, each one representing an energy class of the 577 

map (Fig 1E). The continuous, five-classes and one-class energy maps are calculated for the 578 

5476 energy maps. 579 

 580 

Comparison of energy maps and identification of ligand’s homologs 581 

Since, we cannot compare energy maps computed for two unrelated receptors, the procedure 582 

is receptor-centered and only compares energy maps produced with different ligands docked 583 

with the same receptor. The referential (i.e. the receptor) is thus the same (in other words all 584 

grid cells are comparable) for all the energy maps that are compared. For each receptor Rk, we 585 
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computed a 74x74 energy map distance (EMD) matrix where each entry (i,j) corresponds to 586 

the pairwise distance between the energy maps Rk-Li and Rk-Lj resulting from the docking of 587 

the ligands Li and Lj on the receptor Rk (Fig 3). The pairwise distance dMan(Rk-Li, Rk-Lj) 588 

between the energy maps is calculated with a Manhattan distance according to equation (1) 589 

 590 

!!"# !!!! ,!!!! =  !!" − !!"!"
!!!

!"
!!!   (1) 591 

 592 

where anm and bnm are the cells of row index n and column index m of the energy maps Rk-Li 593 

and Rk-Lj respectively. Low distances reflect pairs of ligands that induce similar energy maps 594 

when they are docked on the same receptor. The procedure presented in Fig 3 is repeated for 595 

each receptor of the database resulting in 74 EMD matrices. The 74 EMD matrices are 596 

averaged into an averaged distances matrix (ADM). Each entry (i,j) of the ADM reflects the 597 

similarity of the Rk-Li and Rk-Lj energy maps averaged over all the receptors Rk in the dataset. 598 

In order to estimate the extent to which family members display similar energy maps when 599 

they are docked with the same receptor, we tested our ability to correctly identify the 600 

homologs of the 74 ligands from the only comparison of its energy maps with those of the 601 

other ligands. Because, energy maps are receptor-centered, we cannot compare the energy 602 

maps computed for two unrelated receptors. The procedure consists in the comparison of 603 

energy maps produced with different ligands docked with a same receptor. Two ligands (i,j) 604 

are predicted as homologs according to their corresponding distance (i,j) in the ADM. Values 605 

close to zero should reflect homologous ligand pairs, while values close to one should reflect 606 

unrelated ligand pairs. A Receiver Operating Characteristic (ROC) curve and its Area Under 607 

the Curve (AUC) are computed from the ADM. True positives (TP) are all the homologous 608 

ligand pairs and predicted as such, true negatives (TN) are all the unrelated ligand pairs and 609 

predicted as such. False positives (FP) are unrelated ligand pairs but incorrectly predicted as 610 
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homologous pairs. False negatives (FN) are homologous ligand pairs but incorrectly predicted 611 

as unrelated pairs. ROC curves and AUC values were calculated with the R package pROC 612 

[79]. The ligand’s homologs identification was also realized using the five-classes energy 613 

maps or the one-class energy maps taken separately. The five energy class regions display 614 

very different sizes, with median ranging from 63 and 66 cells for the cold and hot regions to 615 

633 cells for the yellow one. To prevent any bias due to the size of the different classes, we 616 

normalized the Manhattan distance by the size of the regions compared in the map. The rest 617 

of the procedure is the same than those used for continuous energy maps (Fig 3). 618 

To visualize the area distribution of the regions of a given energy class for all ligands on the 619 

receptor surface, the 74 corresponding one-class maps are summed into a stacked map where 620 

each cell’s intensity varies from 0 to 74 (S16 Fig). To remove background-image from these 621 

maps, i.e. cells with low intensity (intensity < 17) and the areas of small size (< 4 cells), we 622 

used a Dirichlet process mixture model simulation for image segmentation (R package 623 

dpmixsim) [80]. 624 

 625 

2D projection of monomeric descriptors of protein surfaces 626 

We computed KD hydrophobicity [44], stickiness [25], CV [45] maps of each protein of the 627 

dataset, in order to compare their topology with the energy maps. Prior to all, proteins 628 

belonging to the same families were structurally aligned with TM-align [81] in order to place 629 

them in the same reference frame, making their maps comparable. Particles were generated 630 

around the protein surface with a slightly modified Shrake-Rupley algorithm [82]. The 631 

density of spheres is fixed at 1Å2, representing several thousands particles per protein. Each 632 

particle is located at 5Å from the surface of the protein. The CV, stickiness and KD 633 
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hydrophobicity values of the closest atom of the protein are attributed to each particle. We 634 

also generated electrostatic maps reflecting the distribution of the contribution of the 635 

electrostatic potential on a protein surface. The electrostatics potential was computed with the 636 

APBS software suite [38] using the CHARMM force field [83]. In this case the procedure is 637 

different as the electrostatic potential is calculated at each particle position, using the 638 

multivalue executable from the APBS software suite. 639 

The CV was calculated following the protocol described in [45] on the all-atom structures. 640 

Stickiness and hydrophobicity were calculated on ATTRACT coarse-grain models. After 641 

attributing a value to each particle, the position of their spherical coordinates is represented in 642 

a 2-D sinusoidal projection, following the same protocol as described in Fig 1 and Materials 643 

and Methods section Docking experiment and construction of energy maps. The map is then 644 

smoothed following the protocol in Fig 1. 645 
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Fig. 1. 2D asymmetrical representation of docking energy landscapes and resulting 1 

energy maps. (A) Three-dimensional (3D) representation of the ligand docking poses around 2 

the receptor. Each dot corresponds to the center of mass (CM) of a ligand docking pose and is 3 

colored according to its docking energy score. (B) Representation of the CM of the ligand 4 

docking poses after an equal-area 2D sinusoidal projection. CMs are colored according to the 5 

same scale as in A. (C) Continuous energy map (see Materials and Methods for more details). 6 

(D) Five-class map. The energy map is discretized into five energy classes (E) One-class 7 

maps. Top to bottom: one-class maps that highlight respectively hot, warm, lukewarm, cool 8 

and cold regions. 9 

 10 

Fig. 2. Interaction propensity for the receptor 2AYN_A and four different ligands. 2D 11 

energy maps for the receptor 2AYN_A (ubiquitin carboxyl-terminal hydrolase (UCH) family) 12 

docked with the ligands 1XD3_B (native partner), 1NDD_B (homolog of the native partner), 13 

1YVB_A and 2NQD_B (arbitrary partners). The star indicates the localization of the 14 

experimentally determined interaction site for the ubiquitin, the circle-cross indicates the 15 

homodimerization site of 2AYN_A.  16 

 17 

Fig. 3. Experimental Protocol. (A) A receptor protein is docked with all proteins of the 18 

dataset (namely the ligands) resulting in 74 docking calculations. (B) For each docking 19 

calculation, an energy map is computed as well as its corresponding five-classes and one-20 

class energy maps, with the procedure described in Fig 1 and Materials and Methods. (C) An 21 

energy map distance (EMD) matrix is computed, representing the pairwise distances between 22 

the 74 energy maps resulting from the docking of all ligands with this receptor. Each cell (i,j) 23 
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of the matrix represents the Manhattan distance between the two energy maps resulting from 24 

the docking of ligands i and j with the receptor. A small distance indicates that the ligands i 25 

and j produce similar energy maps when docked with this receptor. In other words, it reflects 26 

that the interaction propensity of this receptor is similar for these two ligands. To prevent any 27 

bias from the choice of the receptor, the whole procedure is repeated for each receptor of the 28 

database, leading to 74 EMD matrices.  29 

 30 

Fig. 4. Boxplots of energy map pairwise distances between homologous ligand pairs 31 

from native-related partner families, homologous ligand pairs from arbitrary partner 32 

families and random ligand pairs. For each receptor, we computed (i) the average of energy 33 

map distances of pair of homologous ligands belonging to its native-related partner 34 

family(ies), (ii) the average of energy map distances of pair of homologous ligands belonging 35 

to its non-native-related partner families, and (iii) the average of energy map distances of 36 

random pairs. P-values are calculated with a unilateral Wilcoxon test. 37 

 38 

Fig. 5. Receiver operating characteristic (ROC) curve and its Area Under the Curve 39 

(AUC). ROC are calculated on the averaged distance matrix (ADM) including either all pairs 40 

(blue) or only arbitrary pairs (red) (see Materials and Methods for more details).  41 

 42 

Fig. 6. Ubiquitin-related family. (A) Energy map distances matrix. It corresponds to the 43 

subsection of the ADM for the ubiquitin-related family (for the construction of the ADM, see 44 

Materials and Methods). Each entry (i,j) represents the pairwise energy map distance of the 45 

ligand pair (i,j) averaged over the 74 receptors of the dataset. (B) Pairwise sequence identity 46 
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matrix between all members of the family. (C) Pairwise root mean square deviation (RMSD) 47 

matrix between all members of the family. (D) Electrostatic maps and cartoon representations 48 

of the seven members of the family. An electrostatic map represents the distribution of the 49 

electrostatic potential on the surface of a protein (for more details, see S15 Fig and Materials 50 

and Methods). On the electrostatic maps, lysines positions are indicated by stars. Cartoon 51 

structures are colored according to the distribution of their electrostatic potential. (E) 52 

Electrostatic map distances matrix. Each entry (i,j) of the matrix represents the Manhattan 53 

distance between the electrostatic maps of the proteins (i,j). 54 

 55 

Fig. 7. Stacked maps of 1P9D_U after the filtering of cells with too low intensity and 56 

areas of too small size. The protocol to generate stacked maps is presented in S16 Fig. (A-E) 57 

Stacked map for cold, cool, lukewarm, warm and hot regions respectively. The cell intensity 58 

in a stacked map of a given energy class indicates the number of times the cell has been 59 

associated to this energy class in all the corresponding one-class maps. One should notice that 60 

stacked maps of two different energy classes can overlap because a map cell can be associated 61 

to different energy classes depending on the docked ligands. S17 Fig presents cold and hot 62 

stacked maps of 1P9D_U computed for each ligand family. 63 

 64 

Fig. 8. Boxplots of three descriptors of the protein surface. (A) the stickiness values, (B) 65 

the Kyte-Doolittle hydrophobicity and (C) the CV values, depending on the energy class. The 66 

stickiness, hydrophobicity and CV values are calculated for each protein following the 67 

protocol described in Materials and Methods. For each of these criteria, p-values between the 68 

median values of two “successive” energy classes were computed using the Tukey HSD 69 

statistical test [46]. 70 
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Table 1. AUC obtained with different types of energy maps. 

type of 
map 

continuous 
energy maps 

five-classes 
energy maps 

hot energy 
maps 

warm energy  
maps 

lukewarm 
energy maps 

cool energy 
maps 

cold energy  
maps 

AUC 0.79 0.77 0.73 0.76 0.76 0.76 0.79 

	
The AUC are calculated from the ADM with the continuous energy maps (Fig 1C), the five-classes 
energy maps (Fig 1D) and the one-class energy maps (Fig 1E) (see Materials and Methods for more 
details). 
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