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Abstract 

The Breast Cancer susceptibility protein 2 (BRCA2) is involved in mechanisms that maintain 

genome stability, including DNA repair, replication and cell division. These functions are 

ensured by the folded C-terminal DNA binding domain of BRCA2 but also by its large re-

gions predicted to be disordered. Several studies have shown that disordered regions of 

BRCA2 are subjected to phosphorylation, thus regulating BRCA2 interactions through the 

cell cycle. The N-terminal region of BRCA2 contains two highly conserved clusters of phos-

phorylation sites between amino acids 75 and 210. Upon phosphorylation by CDK, the cluster 

1 is known to become a docking site for the kinase PLK1. The cluster 2 is phosphorylated by 

PLK1 at least at 2 positions. Both of these phosphorylation clusters are important for mitosis 

progression, in particular for chromosome segregation and cytokinesis. In order to identify the 

phosphorylated residues and to characterize the phosphorylation sites preferences and their 

functional consequences within BRCA2 N-terminus, we have produced and analyzed the 

BRCA2 fragment from amino acid 48 to amino acid 284 (BRCA248-284). Here, we report the 

assignment of 
1
H, 

15
N, 

13
CO, 

13
C and 

13
C NMR chemical shifts of this region. Analysis of 

these chemical shifts confirmed that BRCA248-284 shows no stable fold : it is intrinsically dis-

ordered, with only short, transient -helices. 

 

 
 

Keywords. BRCA2, mitosis, breast cancer, intrinsically disordered protein, phosphorylation, 

NMR. 
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Biological context 

BReast CAncer susceptibility 2 (BRCA2) is a tumor suppressor gene identified in 1994, com-

monly mutated in hereditary breast and ovarian cancers (Wooster et al. 1994). BRCA2 was 

initially characterized as a DNA repair protein involved in the recruitment and loading of the 

recombinase RAD51, which, in turn, drives the homologous recombination process at DNA 

double-strand breaks (DSB) (Thorslund et al. 2007, Moynahan et al. 2010, Jensen et al. 2010). 

Two decades later, BRCA2 is mainly described as a key platform protein for genome stability 

contributing to DNA repair, telomere maintenance, stressed replication fork stabilization 

(Fradet-Turcotte et al. 2016) and mitosis (Daniels et al. 2004, Mondal et al. 2012, Choi et al. 

2012, Venkitaraman et al. 2014, ). These functions are ensured by the folded C-terminal DNA 

binding domain of BRCA2 (Yang et al. 2002) and the large regions predicted to be disordered 

that contain several protein binding motifs. Among them, two short fragments were already 

structurally characterized in complex with their partner: one of the repeated BRC motifs 

BRC4 bound to RAD51 (Pellegrini et al. 2002) and BRCA2 fragment between amino acid 21 

and amino acid 39 interacting with PALB2 (Oliver et al. 2009). Both of these BRCA2 seg-

ments form α-helices upon binding to their partner. Here, we focus on the N-terminal region 

of BRCA2, which contains 1000 amino acids with a structure that remain elusive. It is pre-

dicted to be disordered (Figure 1.B) and contains two clusters of phosphorylation (Figure 

1.A) identified by mass spectrometry (https://www.phosphosite.org/) between amino acid 75 

and amino acid 80 for cluster 1, and amino acid 190 and aa 210 for cluster 2. These two clus-

ters are very well conserved from mammals to fishes and their biological relevance is still 

unclear. The cluster 1 was reported to be phosphorylated by Cyclin-Dependant Kinase (CDK) 

at position T77 during late S-phase to mitosis (Yata, et al. 2014). This phosphorylation gener-

ates a genuine Polo-Like Kinase 1 (PLK1) docking site (Takaoka et al. 2014, Yata et al. 2014) 

suggested to promote further phosphorylation by PLK1 both on BRCA2 itself (Lin et al. 

2003, Takaoka et al. 2014) and on BRCA2 partners such as RAD51 (Yata et al. 2014). How-

ever, biochemical data are missing to describe to which extent this BRCA2 phosphorylation 

by CDK influences later phosphorylation kinetics by PLK1. The cluster 2 is phosphorylated 

by PLK1 during mitosis (Lin et al. 2003). This regulates BRCA2 interaction with P300/CBP-

associated factor (P/CAF) (Lin et al. 2003). It also creates a supplementary PLK1 docking site 

that ensures chromosome segregation (Ehlen et al. BioRxiv). Furthermore, phosphorylation of 

S193 by PLK1 leads to the recruitment of BRCA2 at the Flemming body, an important step 

that warrants a complete cytokinesis (Daniels et al. 2004, Takaoka et al. 2014). While these 

phosphorylation events have been observed to dynamically regulate these BRCA2 functions 

throughout the cell cycle, little is known about the structure of the BRCA2 N-terminal region 

and the phosphorylated residues are only partially identified. Here, we report the assignment 

of the 
1
H, 

15
N, 

13
Cα 

13
Cβ and 

13
CO NMR chemical shifts of the WT BRCA248-284 fragment. 

 

Methods and experiments 

Protein expression and purification 

Five fragments spanning the human WT BRCA2 N-terminal phosphorylation clusters were 

designed: a fragment from amino acid 53 to amino acid 131 (BRCA253-131), a fragment from 

amino acid 53 to amino acid 228 (BRCA253-228), a fragment from amino acid 48 to amino acid 

218 in which all cysteines are mutated into alanines (BRCA248-218(C4A)) a fragment from ami-

no acid 190 to amino acid 284 (BRCA2190-284) and a fragment from amino acid 48 to amino 

acid 284 with the first four cysteines mutated into alanines (BRCA248-284(C4A)) (Figure 2.A). 

All fragments were expressed in Escherichia coli BL21 (DE3) Star using a pETM13 vector 

(BRCA253-228, BRCA248-218(C4A) and BRCA248-284(C4A)), a pGEX-6P-1 vector (GE Healthcare, 

BRCA2190-284) or a pET-41b vector (BRCA253-131). cDNA of BRCA253-131, BRCA253-228, 

BRCA248-218(C4A) and BRCA248-284(C4A) were optimized for expression in E. coli (Genscript). 

https://www.phosphosite.org/
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Bacteria were grown in M9 medium supplemented with 
15

NH4Cl (0.5 g/L) and 
13

C-glucose (2 

g/L) as sole sources of nitrogen and carbon. Recombinant expression was induced at an opti-

cal density of 0.6-0.8 using 1 mM isopropyl β-D-1-thiogalactopyranoside during 4 hours at 

37°C. Cells were harvested by centrifugation, resuspendend in lysis buffer (20 mM Tris, 150 

mM NaCl, 1 mM EDTA, 5 mM DTT, 1 mM PMSF, pH 8) and lysed by sonication. The solu-

ble fraction was obtained upon centrifugation of the whole cell lysate at 20,000 g during 15 

min at 4°C. BRCA253-131, BRCA253-228 and BRCA2190-284 were produced with a N-terminal 

GST tag followed by either a TEV cleavage site (ENLYFQG) or a PreScission cleavage site 

(LEVLFQGP) and purified by Gluthatione Sepharose affinity chromatography. The tag was 

cleaved by the TEV protease (BRCA253-131 and BRCA253-228) or the PreScission protease 

(BRCA2190-284). The BRCA253-131 and BRCA2190-284 samples were then boiled at 95°C during 

10 min to remove the GST tag, centrifuged 10 minutes at 16,000g, and the supernatant was 

later injected on a gel filtration column (Highload 16/60 Superdex 75pg; GE Healthcare) 

equilibrated with buffer A (50 mM HEPES, 1 mM EDTA, 2 mM dithiothreitol, pH 7.0). The 

influence of boiling on structure was verified by 
1
H-

15
N HSQC NMR (data not shown). 

BRCA253-228 precipitates after cleavage, and therefore was pelleted by centrifugation (10 

minutes, 16,000g), then resuspended into buffer A supplemented with 8 M urea and finally 

diluted 10 times with buffer A containing 10 mM -mercaptoethanol before injection on a gel 

filtration column (Highload 16/60 Superdex 75pg; GE Healthcare) equilibrated with 50 mM 

HEPES, 1 mM EDTA, 5 mM tris(2-carboxyethyl)phosphine (TCEP), pH 7.0. BRCA248-

218(C4A) and BRCA248-284(C4A) were expressed with a N-terminal octa-histidine tag and purified 

by Ni-NTA affinity chromatography. The tag was cleaved using the TEV protease and the 

sample was injected on a gel filtration column (Highload 16/60 Superdex 75 pg; GE 

Healthcare) equilibrated with buffer A at pH 7.0 or buffer A at pH 6.4 for assignment of 

BRCA248-218(C4A). Samples were concentrated to 200-400 M for assignment experiments 

(BRCA253-131, BRCA248-218(C4A) and BRCA2190-284) and to 50 M for BRCA253-228 and 

BRCA248-284(C4A) characterization. 

 

NMR Spectroscopy 

NMR experiments were performed on uniformly 
15

N and 
13

C labelled fragments in buffer A at 

pH 7.0 for BRCA253-131, BRCA248-218(C4A), BRCA2190-284 and BRCA248-284(C4A) (H2O:D2O 

ratio 90:10), in buffer A at pH 6.4 (H2O:D2O ratio 95:5) for BRCA248-218(C4A) and in 50 mM 

HEPES, 1 mM EDTA, 5 mM TCEP, pH 7.0 (H2O:D2O ratio 95:5) for BRCA253-228. All sam-

ples were supplemented with 50 M Sodium trimethylsilylpropanesulfonate (DSS). NMR 

experiments were recorded at 283 K on a 600 MHz Bruker Advance II spectrometer and a 

700 MHz Bruker Advance Neo spectrometer, both equipped with a triple resonance cryogeni-

cally cooled probe. Spectra were referenced using DSS 
1
H chemical shifts (Wishart el al. 

1995) and  
1
H, 

13
C and 

15
N resonance frequencies were assigned using 2D 

1
H-

15
N SOFAST-

HMQC, 3D BEST-HNCACB, CBCA(CO)NH, BEST-HNCO, BEST-HN(CA)CO and 

HN(CO)(CA)NH experiments. The data were processed using Topspin 3.6 (Bruker) and ana-

lyzed with CCPNMR Analysis (Vranken et al. 2005). The assignments were deposited in the 

BioMagResBank (http://www.bmrb.wisc.edu/) under the following codes: 50077 for 

BRCA248-218(C4A), 50078 for BRCA253-131 and 50079 for BRCA2190-284. 

 

Assignments and data deposition 

To facilitate the assignment of the human BRCA2 region from amino acid 48 to amino acid 

284, we designed and produced three overlapping fragments: BRCA253-131 centered on the 

phosphorylation cluster 1, BRCA253-228 containing the two phosphorylation clusters and 

BRCA2190-284 that contains only the cluster 2 (Figure 2.A). BRCA253-131 and BRCA2190-284 

were purified in sufficient amounts and were stable enough for NMR analysis. However, 

http://www.bmrb.wisc.edu/
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BRCA253-228 was prone to aggregation due to the oxidation of its four solvent-exposed 

cysteines. These cysteines are not conserved within BRCA2 from fishes to human. Therefore, 

we designed the construct BRCA248-218(C4A), which corresponds to the fragment from amino 

acid 48 to amino acid 218 with all cysteines mutated into alanines (C132A, C138A, C148A 

and C161A; see Figure 2A). The 
1
H-

15
N HSQC spectra of BRCA253-228 and BRCA248-218(C4A) 

overlap to a large extent: we observed differences only in the vicinity of the mutated residues 

and N-ter or C-ter ends (Figure 2.B). This shows that the alanine mutations did not modify the 

average structural ensemble of the peptide. Then, we assigned the 
1
H, 

15
N, 

13
Cα, 

13
Cβ and 

13
CO chemical shifts of the fragments BRCA253-131, BRCA248-218(C4A) and BRCA2190-284 using 

a series of 3D heteronuclear NMR experiments. We obtained high assignment coverages 

along the sequences of fragments BRCA253-131, BRCA248-218(C4A) and BRCA2190-284: 94 %, 

97% and 96% of 
1
H-

15
N pairs, 87 %, 98 % and 95% of 

13
Cα, 99%, 96 % and 97 % of 

13
Cβ 

and 96 %, 98 %, 95 % of 
13

CO resonances were assigned, respectively. Figure 3 shows a very 

good crosspeak superimposition between the 
1
H-

15
N spectra of every fragment and that of 

BRCA248-284(C4A). The narrow range of backbone amide 
1
H chemical shifts (between 7.5 and 

8.5 ppm) for all BRCA2 fragments reveals their disordered behavior. Furthermore, only the 

crosspeaks corresponding to the N-terminal or C-terminal residues of each fragment differ 

from those of the largest construct of BRCA2, i.e. BRCA248-284(C4A). The secondary structure 

analysis, based on 
13
Cα and 

13
Cβ chemical shifts and the neighbor corrected structural pro-

pensity method (Tamiola et al. 2010, Tamiola et al. 2012), confirms the absence of a stable 

fold for BRCA253-131, BRCA248-218(C4A) and BRCA2190-284 (Figure 4). We observed α-helical 

propensities of about 25 % around residues 100-110 and 255-260. We concluded that the 

fragment of BRCA2 from amino acid 48 to amino acid 284 is disordered and that its shorter 

segments BRCA253-131, BRCA248-218(C4A) and BRCA2190-284 have the same structural proper-

ties when isolated or within BRCA248-284(C4A). From this set of data, it is now possible to mon-

itor phosphorylation reactions within the two conserved BRCA2 clusters of phosphorylation 

using 
1
H-

15
N and 

1
H-

13
C NMR spectroscopy. 
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Figure 1. The N-terminal BRCA2 fragment includes 2 phosphoclusters well-conserved 

from mammals to fishes. (A) BRCA2 is composed of i) a 1000 residues long N-terminal 

region containing the PALB2 binding site (from amino acid 21 to amino acid 39) and a DNA 

binding domain (DBD) (from amino acid 250 to amino acid 500) (Von Nicolai et al. 2016), ii) 

an intermediate region made of 8 successive BRC repeats (from amino acid 1002 to amino 

acid 2085 and iii) a folded C-terminal DBD (from amino acid 2500 to amino acid 3200. The 

N-terminal region of the protein contains several phosphorylation sites 

(https://www.phosphosite.org/) organized in two phosphorylation clusters. Alignment of 30 

BRCA2 sequences from fishes to mammals revealed that 4 of these positions are 100% con-

served: Ser76, Thr77, Ser193 and Thr207. We focused on the BRCA2 region from amino acid 

48 to amino acid 284, which includes these 4 phosphosites. In this region, residues identified 

as phosphorylated in more than one mass spectrometry study are indicated in red if conserved 

in all 30 sequences, in orange if conserved in more than 80% and yellow if conserved in less 

than 80% of the sequences. (B) The disorder propensity and conservation of the BRCA2 re-

gion from amino acid 48 to amino acid 284 are displayed as a function of the sequence. The 

disorder propensity was calculated using SPOT-Disorder (Hanson et al. 2016). A score of 1 

corresponds to a predicted disorder propensity of 100%. The conservation score was calculat-

ed using Jalview 1.0 (Clamp et al. 2004). A score of 11 corresponds to a position identical in 

100% of the sequences, while a score of 1 indicates that only one chemical criteria (size, hy-

drophobicity, global charge) is common to all the variants.  
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Figure 2. Overlapping BRCA2 constructs were used to analyze the two phosphorylation 

clusters. (A) Five constructs were designed for this study, containing either phosphorylation 

cluster 1 (BRCA253-131) or cluster 2 (BRCA2190-283) or both (BRCA253-228, BRCA248-218(C4A) 

and BRCA248-284(C4A)). BRCA253-228 comprises 4 cysteines (C132, C138, C148, C161). In 

construct BRCA248-218(C4A) and BRCA248-284(C4A), the four cysteines are mutated into alanines. 
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(B) The 
1
H-

15
N SOFAST-HMQC spectra of BRCA253-228 (pink) at 50 M in buffer A contain-

ing TCEP and BRCA248-218 C4A (green) at 50 M in buffer A containing DTT are superimpos-

able, peaks overlap for residues spanning the whole sequence except around the mutated posi-

tions (labelled in black) and close to the N-terminal or C-terminal ends (labelled in grey). 

These spectra were recorded at 283 K and pH 7.0 on a Bruker 700 MHz spectrometer. 

. 
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Figure 3. Superimposition of the constructs spanning the BRCA2 region from amino 

acid 48 to amino acid 284 confirms the intrinsically disordered behavior of this region.  
The 

1
H-

15
N SOFAST-HMQC spectra of (A) BRCA253-131 (orange), (B) BRCA2 48-218(C4A) 

(green) and (C) BRCA2190-284 (blue) are superimposed over BRCA248-284(C4A) in the different 

panels. All peptides are at 50 M in buffer A and spectra were recorded at 283 K and pH 7.0 

on a Bruker 700 MHz spectrometer. Only chemical shifts of residues close to the extremities 

vary between shorter constructs and BRCA248-284(C4A). In order to simplify the figure, peaks 

corresponding to these residues are not labelled, however, they can easily be highlighted by 

comparaison of chemical shift values available on the BMRB.  
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Figure 4. Analysis of the secondary propensity BRCA253-131 (orange), BRCA2 48-218(C4A) 

(green) and BRCA2190-284 (blue) based on the Cα and Cβ chemical shifts. 

(A) Analysis of experimental Cα and Cβ chemical shifts compared to predicted values for a 

disordered region (http://nmr.chem.rug.nl/ncIDP) (Tamiola et al. 2010). (B) Analysis based 

on the calculator available on the website http://linuxnmr02.chem.rug.nl/ncSPC/ (Tamiola, 

2012) and the library of Tamiola, Acar and Mulder (2010), with an average window of 5 resi-

dues.  
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