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Abstract 

 

A cell constantly adapts to its environment. Cell decisions to survive, to proliferate or to 

migrate are dictated not only by soluble growth factors, but also through the direct interaction 

of the cell with the surrounding extracellular matrix. Integrins and their connections to the 

actin cytoskeleton are crucial for monitoring cell attachment and the physical properties of the 

substratum. Cell adhesion dynamics are modulated in complex ways by the polymerization of 

branched and linear actin arrays, which in turn reinforce ECM-cytoskeleton connection. This 

review describes the major actin regulators, Ena/VASP proteins, formins and Arp2/3 

complexes, in the context of signaling pathways downstream of integrins. We focus on the 

specific signaling pathways that transduce the rigidity of the substrate and which control 

durotaxis, i.e. directed migration of cells towards increased ECM rigidity. By doing so, we 

highlight several recent findings on mechanotranduction and put them into a broad integrative 

perspective that is the result of decades of intense research on the actin cytoskeleton and its 

regulation. 
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Introduction 

 

Cell adhesion is a critical process that governs many facets of cell physiology. Cell 

adhesion is particularly crucial to embryonic development, as well as to adult life, when 

tissues are repaired by wound healing or when circulating immune cells adhere to the walls of 

blood vessels and transmigrate across the endothelium to reach sites of infection [1-3]. It 

allows cells to adapt their behavior to the extracellular environment. Cell adhesion determines 

whether a cell remains static or starts to migrate [4-7]. It also controls proliferation and 

survival [8]. In cancer, cell adhesion to the extracellular matrix (ECM) allows the 

dissemination of tumor cells into the organism as distant metastases [9, 10]. These various 

examples illustrate the importance for the cell to control the dynamic remodeling of its 

adhesion structures. 

Cell adhesions connect the ECM to the intracellular actin cytoskeleton through 

heterodimeric transmembrane receptors of the integrin family [11 , 12]. Through the 

combination of diverse  and  subunits, integrins recognize various ECM components, such 

as fibronectin, collagen or vitronectin [2]. On rigid substrates, cells develop adhesion 

structures called focal adhesions (FAs), which are of daunting complexity since they are 

dynamically remodeled during cell spreading and migration and can extend to several 

hundred proteins [13, 14]. The challenge is to understand the mechanisms by which different 

arrays of the actin cytoskeleton produce and transmit the forces coupling adhesion structures 

to membrane protrusions [5]. The tensile actomyosin cytoskeleton pulls on the ECM, whereas 

actin polymerization pushes the membrane forward. These opposite push-pull forces are both 

required for the cell to sense its environment and in particular its compliance or rigidity [15-

17]. Biophysical properties of the environment are thus mechanotransduced into the cell 

through the actin cytoskeleton. Mechanotransduction determines cell decisions to migrate, 

survive and proliferate.  

This intricate coupling of actin polymerization with cell adhesions will be detailed in 

this review in several sections. We will first describe the processes coupling adhesive 

structures to actin polymerization. We will then describe the molecular players ultimately 

controlling actin polymerization and the signaling pathways that integrins use to impinge on 

them. In a last part, we will discuss our current understanding of how forces are transduced 

into biochemical signals regulating actin dynamics in the cell through adhesive structures. 
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Integrin-based Adhesions and the Actin Context 

 

Maturation of Cell Adhesions 

 

One can distinguish three adhesion structures. The Nascent Adhesion (NA) is created 

at the very edge of protrusions, the Focal Complex (FC) forms in the lamellipodium width 

and the FA, which is an elongated structure (Fig.1). The FA is more than 1 µm, whereas the 

FC is less than 1 µm long [18]. These different adhesion structures derive from one another. 

As the plasma membrane protrudes, the peripheral NAs first become FCs within the 

protrusion and subsequently FAs [19]. At one end of the spectrum, the peripheral NAs at the 

lamellipodial edge contains signature proteins of the lamellipodial actin network suggesting 

interactions with the branched actin networks that push the plasma membrane [20]. At the 

other end, FAs are associated with bundles of linear actin filaments. FCs are intermediate 

structures [19, 21]. 

NAs are characterized by a fast turnover. Their half-life is less than a minute. The ones 

that do not make a FC simply disassemble and disappear [22-24]. The formation of NAs and 

FCs depends on signaling by the small GTPases Rac1 and Cdc42, whereas the formation of 

FAs depends on RhoA [25, 26]. FAs are significantly more stable with a half-life of 30 min 

[22]. Finally, FAs that do not disassemble will further mature into very stable fibrillar 

adhesions involved in the remodeling of ECM [18]. 

Adhesion initiation requires an inside-out signaling that converts integrins from a low- 

to a high-affinity state for ECM components (reviewed in [27]). This activation of integrins is 

associated with the recruitment of talin and kindlin to the integrin β-tail. Talin and kindlin-2 

are recruited to the tails of β integrins through their FERM domain (Fig.2) [12]. Talin 

activates integrins through the small GTPase Rap1 and its effector RIAM [28]. Talin also 

makes the initial connection between ECM bound integrins and actin filaments through its C-

terminal domain [12, 29]. 

Integrins are clustered during maturation of cell adhesions, increasing the complexity 

of their molecular composition and connection to the actin cytoskeleton (Fig.3) [30]. 

Adhesion maturation requires the contractile force developed by acto-myosin [31]. FA growth 
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relies on further recruitment of cytoskeletal linkers through tension-dependent exposure of 

cryptic binding sites [32]. For example, myosin contractility is sufficient to expose vinculin 

binding sites on talin [33]. Cell adhesions thus initially associate with pushing branched actin 

arrays and then become associated with pulling contractile actin bundles. 

 

Various Types of Stress Fibers 

 

A thick bundle of linear actin is usually referred to as a Stress Fiber (SF). In a SF, 

actin filaments are held together by cross-linking proteins, such as α-actinins. The actin 

filaments are stabilized through their interaction with tropomyosins, and rendered good tracks 

for myosin motor activity [34]. Cells contain different types of SFs depending on their 

contractile properties and association to adhesion sites (Fig.1). 

Thick SFs develop in between two FAs on the ventral side of the cell as a result of 

myosin-based contractility [35, 36]. This is under control of the RhoA pathway, which 

sequentially activates the Rho-kinase (ROCK) and the Myosin Light Chain Kinase [37-39]. 

The resulting actomyosin contractility of ventral SFs inhibits the elongation of their 

extremities attached to FAs, ensuring their tension [40]. Dorsal SFs are orthogonal to the 

leading edge and are connected to a single peripheral FA [40-43]. Although dorsal SFs are not 

contractile bundles, they transmit forces to FAs applied by contractile transverse arcs (TAs) 

[42, 44]. These observations suggest that the force responsible for orientating dorsal SF and 

the elongation of their single FA is provided by TAs. Transverse arcs constitute a third SF 

structure, made of contractile actin, even though they are not directly connected to FAs [36, 

42]. These arcs arise from myosin-induced reorganization of the lamellipodial actin network 

as it debranches [42, 44]. The retrograde flow of transverse arcs may “comb” dorsal SFs 

through transient connections and hence exert a pulling force that elongates those dorsal SFs 

attached to a single FA [44, 45]. Behind the lamellipodium, at the level of the lamella, the cell 

is maintained flat by the tension of transverse arcs. The prominent ventral SFs originate from 

the myosin-based stitching of a transverse arc to two dorsal SFs, the single FA of each dorsal 

SF becoming the two ends of the ventral SF (Fig.1) [44]. 

 

Coupling Actin Polymerization to Cell Adhesion in Protrusions 



 6 

 

The extension of lamellipodia during cell spreading and migration involves 

concomitant formation of adhesions to the underlying ECM, and later maturation and 

turnover of these adhesions [46-50]. In fact, membrane protrusion is required for NA 

formation [23]. Several studies pinpoint an essential role of Focal Adhesion Kinase (FAK) in 

the coupling between cell adhesion and actin polymerization [51-53]. 

The current model is that lamellipodial protrusions and cell adhesions are intimately 

coupled by feedforward and feedback mechanisms [49, 54, 55]. For continued migration, cell 

adhesions must initiate a membrane protrusion that will be kept adherent thanks to the 

generation of new NAs at the edge of the protruding lamellipodium. The cell thus ‘hops’ from 

one adhesion to the next. For efficient cell adhesion, spreading and migration, integrin 

binding sites located in ECM proteins should no more than 50 – 70 nm apart [56]. 

Similarly, the lifetime of a protrusion results from sustained Rac1-dependent 

activation of Arp2/3-mediated actin polymerization that is also subjected to feedforward and 

feedback regulation [5, 57]. Constant growth of actin filaments at the lamellipodial edge 

combined with myosin-II mediated contraction at the rear results in a global retrograde 

movement of the actin network [58, 59]. The retrograde flow with respect to the plasma 

membrane is converted to a net forward membrane movement provided that the actin network 

is connected to cell adhesions (Fig.1). The coupling of actin polymerization with cell 

adhesions is called the molecular clutch [60].  

FCs elongate into FAs in the direction of the retrograde flow at the transition between 

lamellipodia and lamella actin arrays [22, 23, 61]. This transition from branched actin 

networks to more linear arrays subjected to myosin-based contractions corresponds to a 

transition from a fast retrograde flow in the lamellipodia to a slower flow in the lamella [62, 

63]. The slowing down of the actin retrograde flow is regarded as a consequence of the 

molecular clutch [23]. The force that actin polymerization exerts on integrin-mediated 

adhesions has been observed in the case of β3-integrins. Using a fluid lipid bilayer to display 

mobile RGD peptides, RGD bound β3-integrins were propelled by actin polymerization and 

clustered as a result [64]. This force sensed by β3-integrins is likely important for the stability 

of FAs, since fibroblasts depleted of β3-integrins have unstable FAs and lose directional 

persistence [65].  
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Cells can migrate using only lamellipodia as in fish keratocytes [66] or only filopodia 

[67].  Filopodia are finger-like extensions at the leading edge of migrating cells. Most often, 

filopodia are contained within lamellipodial protrusions, but filopodia extension is supported 

by linear actin arrays [68]. Interestingly, in the leading edge of the lamellipodium, β1 

integrins are clustered at the location that will give rise to a filopodium. Filopodia accumulate 

β1 integrins at their tip and are thus regarded as the most advanced front of cell adhesions 

[69]. Filopodia can be formed independently of the Arp2/3 complex [67, 70]. But filopodia 

appear to guide subsequent lamellipodial protrusions [71, 72]. Similarly, cell spreading, 

initiated by filopodia-ECM interactions, is likely to involve integrin signaling to trigger the 

lamellipodia formation required to extend the cell surface [73-75].  

We will now introduce the main molecular players that regulate actin polymerization 

with respect to cell adhesion. 

 

The Ena/VASP Elongators 

At the cell front, Ena/VASP proteins localize at all sites of active actin polymerization, 

whether actin is branched, as in the lamellipodial edge, or not, as in filopodia tips and FAs 

[76-79]. They are well established to promote the elongation of actin filaments by interacting 

with their barbed ends in a processive manner, and they might also nucleate new actin 

filaments on their own [80-83]  

In the human genome, there are 3 Ena/VASP members, VASP, Mena and EVL. These 

3 proteins contain the same modules, so-called Ena/VASP Homology domains, EVH1 and 2 

(Fig.2). These proteins all function as tetramers and appear even more active if they are 

clustered onto a surface [83-85]. The EVH1 domain recruits Ena/VASP proteins to different 

locations depending on the exposure of FPPPP motifs [86]. The FPPPP containing proteins 

vinculin, zyxin, LPP, RIAM, Lamellipodin (referred to as the MRL proteins) recruit or 

regulate Ena/VASP proteins at the lamellipodial edge [87-92].  

VASP is prominent in late FCs and mature FAs [77, 93]. Inactivation of Ena/VASP 

family proteins does not fully inhibit SF formation [94]. However, zyxin-VASP complexes 

are involved in the elongation and thickening of SFs [95] and once SFs are fully developed, 

they are implicated in their maintenance and repair [96]. 
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The processive elongation of filament barbed ends by VASP can balance the barbed 

end capping activity exerted by talin and vinculin and might thus fine-tune the elongation rate 

of stress fibers, which in turn controls force transmission across FAs [97-99] (Fig.4A).  

The amount of Ena/VASP proteins at the lamellipodial edge scales with protrusion 

speed [78, 82]. Counter-intuitively, protrusion speed does not translate into efficient cell 

migration, since high levels of Ena/VASP proteins yields decreased cell persistence [57, 94]. 

MRL proteins that recruit and cluster Ena/VASP proteins [100], also play a critical role in the 

inside-out activation of integrins as part of the Rap1-MRL-talin pathway [12]. This 

mechanism of integrin activation at the tip of integrin-containing filopodia creates “sticky 

fingers” [71, 73]. 

 

Formins 

Formins are dimeric proteins that polymerize linear actin filaments while remaining 

attached to their growing barbed ends [101]. In the presence of profilin, formins tremendously 

speed up the elongation of actin filaments, but they can also nucleate new actin filaments 

[102-104]. In the human genome, the formin family is composed of 15 proteins. The 

diaphanous related formins (DRFs), such as mDia1 and 2, have become prototypic concerning 

their regulation. An intramolecular interaction between the N-terminus Diaphanous Inhibitory 

Domain (DID) and the C-terminus domains Diaphanous Autoregulatory Domain (DAD) is 

released by active Rho GTPases [105]. Different formins bind different GTPases. mDia1 is 

activated by RhoA, FMNL1, FMNL2, FMNL3 are activated by Cdc42, and FMNL2 and 

FHOD1 are regulated by Rac1 [106]. The formins mDia1, FHOD1, FMN1 and 

FMNL2/FMNL3 were identified among the thousands of proteins that compose the integrin 

adhesome [107, 108], suggesting that they can potentially be involved in the polymerization 

of linear actin arrays during the maturation of NAs, which depends on Rac1 and Cdc42, and 

later during the maturation of Fas, which depends on RhoA.  

Several lines of evidence support a role for formins in the maturation of FAs, even 

though formins are not clearly enriched in adhesion structures. The DRF formins were the 

first formins identified as being involved in FA maturation and SF formation. The 

simultaneous activities of both mDia1 and the kinase ROCK, which enhances myosin-II 

contractility, are required for a proper organization of ventral SFs [109]. mDia1 inhibition 

specifically decreases the number and thickness of SFs [110]. mDia1 depletion was later 
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shown to reduce the thickness and the velocity of actin growth from dorsal SFs, as well as the 

flow velocity of transverse arcs, which give rise to ventral SFs [42, 44]. In vitro, integrin 

complexes containing FA proteins are unable to support actin polymerization when purified 

from cells overexpressing the dominant negative DID domain of mDia1, unlike controls 

[111]. The formation of transverse arcs rather depends on mDia2 [112].  

The formin FHOD1, which bundles actin filaments, plays a role in the regulation of 

actin dynamics and organization in NAs [113]. FHOD1 can be activated by the kinases Src 

and ROCK in addition to the GTPase Rac1 (Fig.4B). Src- and ROCK-mediated 

phosphorylations of the DAD domain decrease the affinity of the auto-inhibitory interaction 

[114-116]. FHOD1 is localized in the lamellipodium together with αvβ3 integrin clusters in 

NAs [115, 117]. Inhibition of FHOD1 activity impairs cell spreading and migration because 

of reduced actin assembly in NAs and lower traction forces exerted by NAs [116 Gupta, 2013 

#152]. FHOD1 also accumulates in transverse arcs and growing contractile SFs [113]. 

Consistently, the expression of a constitutively active form of FHOD1 induces the formation 

of SFs [115].  

In immune cells, formins are especially important. The immunological synapse is a 

structure that allows T cells to recognize antigens at the surface of antigen-presenting cells 

[118]. The formation of this specialized structure involves the aggregation of integrin 

microclusters and actin nucleation by formins in the T cell [119]. Elongation of formin-bound 

actin filaments could be one way of organizing integrin microclusters. 

Adhesion of immune cells to the ECM also requires formins. The efficient adhesion of 

T cells to the ECM requires mDia1-mediated actin polymerization [120]. In macrophages, 

FMNL1, and in particular its γ isoform, were shown to be important for the formation of 

podosome adhesive structures and for cell migration [121]. In neurotrophils, adhesion to 

fibronectin is triggered by TNF stimulation and this regulated adhesion also depends on the 

activity of formins [122].  

Formins are also involved in phagocytosis. CR3-mediated phagocytosis is mediated by 

the complement receptor C3ib, which is an integrin, the αMβ2 integrin. It induces a strong 

and fast burst of actin polymerization that depends on mDia1 activity, as well as on Arp2/3 

[123, 124]. In this process, mDia1 is known to have a dual role, since it couples actin 

polymerization to microtubules. This coupling to microtubule can be direct or indirect 

through CLIP170 [125], EB1 and APC [126-128]. 
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Interaction of the Arp2/3 complex with FA proteins 
 

The Arp2/3 complex is a stable multiprotein complex composed of 7 subunits, two of 

which are structurally related to actin, namely Arp2 and Arp3. It nucleates new actin 

filaments from the side of pre-existing filament, in a process called branching nucleation. In 

the cell, the Arp2/3 complex generates branched actin networks when activated by Nucleating 

Promoting Factors (NPFs). The pushing force induced by branched actin networks is critical 

for lamellipodial protrusions [129]. Quantitative proteomic studies of FAs have revealed the 

presence of the Arp2/3 complex together with subunits of the WAVE complex, a NPF that 

activates the Arp2/3 complex at the leading edge of the cell [108]. The Arp2/3 complex might 

be recruited by several FA proteins. 

 

Arp2/3 Interaction with Vinculin 

 

The first direct interaction of the Arp2/3 complex with a FA component was reported 

for vinculin [20]. Vinculin is an early component of cell adhesions that is recruited by talin to 

NAs, as soon as tension is exerted [33, 97, 130, 131]. Vinculin is an actin filament binding 

protein, which thus reinforces the link between integrins and the actin cytoskeleton in 

response to force [131, 132]. The binding of vinculin to talin releases an intramolecular 

interaction that exposes an actin binding site in the C-terminal end of vinculin (Fig.2), which 

blocks the barbed end elongation of actin filaments [99].  

 The Arp2/3 complex interacts with the so-called linker region connecting the head to 

the tail of vinculin (Fig.5) [20]. The linker region is invisible in the X-ray structure of 

autoinhibited vinculin, indicating that it is likely flexible and exposed even in the 

autoinhibited conformation [133]. In the cell, however, the vinculin-Arp2/3 interaction is 

regulated, since it is induced by EGF stimulation, which stimulates lamellipodial protrusions 

[20]. The mechanism regulating the interaction is not yet understood. Vinculin is not only 

important for FA formation, but also for lamellipodial protrusion. Consistent with an essential 

role of the interaction of vinculin with the Arp2/3 complex in this process, a point mutation 

that abrogates Arp2/3 binding renders vinculin unable to rescue the defect in lamellipodial 

protrusions observed in vinculin-null fibroblasts [20]. 
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Purification of vinculin from tissue revealed an intriguing hybrid complex where only 

some subunits of the Arp2/3 complex, namely ARPC2, ARPC3, Arp2 and Arp3, were 

associated with vinculin [134]. The loss of ARPC1, ARPC4 and ARPC5 would render this 

hybrid Arp2/3 complex unable to bind pre-existing actin filaments, and so unable to induce an 

actin branched junction; rather the presence of vinculin might recruit the hybrid complex to 

cell adhesions [135]. In line with this suggestion, the depletion of ARPC1B, which is only 

present in canonical Arp2/3 complexes, and which is critical for lamellipodium formation 

[16], favors the hybrid complex and FA growth [134]. It is anticipated, but not yet formally 

demonstrated, that the hybrid vinculin-Arp2/3 complexes nucleate linear actin filaments. In 

which case, these filaments should have their pointed ends associated with the FA, suggesting 

that they should be antiparallel to the actin filaments, whose barbed ends abut the FA through 

the capping provided by talin and vinculin [98, 99]. Antiparallel filaments are perfect 

substrates for myosin-II to develop contractility. 

In retrospect, the original interaction reported by DeMali and colleagues is compatible 

with the more recent discovery of the vinculin-Arp2/3 hybrid complex, because of the nature 

of the Arp2/3 subunits analyzed in their co-immunoprecipitations. It will be important to 

design ways to decipher the nature of interacting proteins in the cell, because the hybrid 

complex is likely to harbor a very different activity than the canonical Arp2/3 complex. The 

DeMali view is that a transient, regulated interaction with vinculin recruits the Arp2/3 

complex to NAs and so promotes membrane protrusion [20]. The Chorev view, in contrast, is 

that of a stable hybrid vinculin-Arp2/3 complex, which would nucleate linear actin filaments 

at FAs [134]. 

 

Arp2/3 Interaction with Kindlin-2 

 

The kindlin family of proteins binds to the  integrin tail and activates their binding to 

the ECM [136-138]. The family is composed of 3 proteins (kindlin-1, kindlin-2 and kindlin-3) 

each containing a FERM domain (Fig.2). Kindlin FERM domains are composed of the 3 

typical F1, F2 and F3 subdomains, preceded by an N-terminus F0 subdomain [139]. The F0 

subdomain of kindlin-2 was shown to interact with actin filaments and to be required for cell 

spreading [140]. Kindlin can thus contribute to the link of NAs to the actin cytoskeleton. A 

characteristic feature of kindlin FERM domains is the insertion of a PH domain within the F2 
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subdomain. PH domains bind to lipids and thus the PH domain promotes kindlin interaction 

with the plasma membrane [141, 142].  

Kindlin-2 was recently reported to interact with the Arp2/3 complex (Fig.5) [143]. The 

binding involves the F1 subdomain of the kindlin FERM domain and in particular the 

arginine-100 and leucine-141 residues. In a knock-out/rescue system, a kindlin-2 form, where 

these two residues are substituted by alanine, is unable to support lamellipodium formation 

downstream of Rac1 [143]. The kindlin-Arp2/3 interaction thus appears to be required for the 

Arp2/3 function in powering membrane protrusions, as it was reported for the vinculin-

Arp2/3 interaction. Interestingly, the kindlin-2 interaction with the Arp2/3 complex exists in 

unattached cells, suggesting that it would be an early event, perhaps allowing  inactive Arp2/3 

complex to be recruited at NAs when cells attach and spread. This early role does not rule out, 

however, a later role in the activation of the Arp2/3 complex or in the coupling of already 

active Arp2/3 complexes at the actin branched junctions with NAs. 

 

Arp2/3 Interaction with FAK 

 

FAK is a non-receptor tyrosine kinase that senses cell adhesion. FAK is autoinhibited 

because of an intramolecular interaction that masks the kinase domain with its N-terminal 

FERM domain (Fig.2). The binding of the FERM domain of FAK to the tails of engaged β-

integrins relieves the autoinhibition and results in FAK autophosphorylation on the tyrosine 

397 residue within the FERM domain [144]. FAK directly binds to the Arp2/3 complex 

through its FERM domain (Fig.5) [74]. The Arp2/3 interaction specifically involves the F1 

subdomain of the FAK FERM domain, as we have already seen in the case of kindlin-2 [143, 

145, 146]. As in the case of kindlin-2, FAK interacts with Arp2/3 in suspended cells and in 

early adherent cells, suggesting that the Arp2/3 binding site on the FERM domain is not 

masked by the autoinhibitory interaction of the inactive FAK. On the contrary, the interaction 

appears inhibited when FAK is active and autophosphorylated [74]. 

In a knock-out rescue system, the FAK-Arp2/3 interaction was shown to be required 

for lamellipodial protrusions [53]. If knock-out cells are reconstituted with mutant FAK that 

does not associate with the Arp2/3 complex, the formation and turn-over of NAs is defective. 

In this case, membrane ruffles driven by actin polymerization are formed instead of the 

regular lamellipodial protrusions, which require a positive feedback between membrane 
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protrusions and cell adhesions. In wild type cells, active FAK interacting with integrins 

destabilizes NAs, promoting their turnover. On the contrary, the high density of Arp2/3 

complexes in the protrusion would promote FAK-Arp2/3 interactions, resulting in FAK 

inactivation. Inactivating FAK would thereby promote the maturation of a fraction of 

stabilized NAs (Fig.5). Haptotaxis, the ability of cells to migrate up a gradient of immobilized 

ECM, is severely impaired when the Arp2/3 complex is inactivated or when FAK cannot 

interact with the Arp2/3 complex [53, 67]. Consistently, FAs are not required for cells to 

haptotax, but FAK signaling at NAs/FCs is [147]. Haptotaxis mediated by lamellipodial 

protrusions is initiated by filopodia, which orient lamellipodial extensions [72]. 

 

Signaling from Integrins to Actin Polymerization 

 

The best established signaling pathways connecting integrins to actin polymerization 

involve the small GTPases Rac1 and Cdc42 [148]. In vivo, these two GTPases are key for cell 

migration, for example, of melanoblasts in mouse skin [149, 150]. In addition to the formins 

activated by these GTPases, the Arp2/3 complex can be activated at the lamellipodial edge by 

the NPFs WAVE and N-WASP, respective effectors of Rac1 and Cdc42 [129]. The non-

receptor tyrosine kinase FAK is critical for NPF activation (Fig.6) [151-154]. Integrin-

dependent auto-phosphorylation of FAK on tyrosine 397 recruits Src, which in turn 

phosphorylates FAK on additional tyrosine residues [155, 156]. 

The FAK-Src complex recruits p130Cas and phosphorylates it on multiple tyrosine 

residues (Fig.2) [157, 158]. Some of these phosphotyrosines represent docking sites for the 

SH2-containing adaptor protein Crk [158]. The p130Cas-Crk complex further recruits the 

Dock180-ELMO guanine exchange factor, this activates Rac1 and thus promotes 

lamellipodial protrusions, where FAK accumulates [159-162]. Another substrate of the FAK-

Src complex is paxillin [163-165]. Paxillin is recruited to NAs through a direct interaction 

with kindlin-2 (Fig.6) [143, 166]. When phosphorylated on tyrosine 118, paxilllin recruits the 

Crk adapter, which also recruits the Dock180-ELMO guanine exchange factor [167-169]. But 

Paxillin also recruits the α- or β-PIX guanine exchange factors for Rac1 and Cdc42 (reviewed 

in [170]). Paxillin is thus a critical protein for cell migration and cell invasion in Src-

transformed cells [171-173]. 
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The major NPF for lamellipodium formation is the WAVE protein, which is 

embedded into a multiprotein complex that regulates its activity (Fig.6) [174, 175]. Active 

Rac1 is not sufficient to activate the WAVE complex, which further requires to bind 

Phosphatidylinositol (3,4,5)-trisphosphate (PIP3) [176, 177]. FAK directly associates with and 

activates Phosphatidyl Inositol 3-Kinase (PI3K) that produces PIP3 and this promotes cell 

migration [178, 179]. Activation of the WAVE complex depends on tyrosine and serine 

phosphorylations by Src and Erk MAP kinases [176, 180-183]. Interestingly, FAK also 

activates Erk [184, 185]. 

The N-WASP NPF, downstream of Cdc42, is also activated downstream of integrins, 

and is required for cell adhesion, migration and invasion (Fig.6) [186, 187]. N-WASP 

activation during early cell spreading also depends on the FAK-Src-p130Cas axis [162]. FAK 

is thus undoubtedly a central node connecting integrin-mediated adhesions to the 

polymerization of branched actin through both the Rac1-WAVE and the Cdc42-NWASP 

pathway. 

Signaling from integrins to actin polymerization can be more direct, since the Abi1 

subunit of the WAVE complex directly interacts with the tail of α4 integrins at the 

lamellipodial edge (Fig.6) [188]. α4β1 integrins bind to an alternatively spliced region of 

fibronectin, and were shown to be important for the migration of many cell types [189-192]. 

α4β1 integrins accumulate at the leading edge of lamellipodia and regulate the directionality 

of lamellipodial protrusions through their interaction with paxillin by phosphorylation [193, 

194].  

 

Mechanotransduction 

 

The physical properties of the environment are sensed by the cell and trigger 

appropriate responses. For example, cells undergo directed migration towards stiffer 

substrates in a process called durotaxis and proliferate faster when they are attached to rigid 

substrates [16, 195]. Because the actin cytoskeleton exerts pushing or pulling forces, through 

actin polymerization or actomyosin contractility respectively, it is a prime candidate to sense 

the physical parameters of the environment through the opposing forces this environment 

produces. Talin and p130Cas are two established mechanosensors. They are stretchable 

proteins that exposes cryptic binding sites or reveal cryptic activities upon exposure to forces. 
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Maturation of Adhesions in Response to Forces 

In the lamellipodium, the actin retrograde flow is thought to apply the necessary drag 

force that switches β integrins into the “extended open” conformation of high affinity for 

ECM [4, 22, 196]. This mechanical clutch results in traction forces applied on the substratum 

and allows the net forward movement of the cell [132]. Talin, which connects integrin tails to 

the actin cytoskeleton, is stretched when myosin-II pulls on the actin cytoskeleton [33]. Talin 

stretching exposes vinculin binding sites [32]. Vinculin recruitment to talin reinforces the 

connection between cell adhesions and the actin cytoskeleton by opening up vinculin 

molecules, which exposes new actin binding sites [24, 33, 130, 197].  

Following the formation of the mechanosensitive talin-vinculin complex, force-

dependent maturation of FAs and reinforcement of adhesion develops through the further 

recruitment of vinculin partners, such as VASP and the actin cross-linker α-actinin [22, 130, 

198, 199]. Elongation of FAs depends on the activation of myosin-II by forces acting through 

RhoA, as well as the FAK-dependent phosphorylation of paxillin [25, 165]. The actin 

retrograde flow is mechanically coupled to the ECM by multiple layers of FA proteins that 

slide with respect to each other. The degree of force transmission in this sliding interface is 

tuned by the regulation of multiple protein interactions [4, 200, 201].  

 

Regulation of Actin Polymerization at Force Loaded Cell Adhesions 

External forces applied to SFs have been known for decades to regulate their 

morphology. For instance, cell stretching promotes the thickening of those SFs that reorient in 

the direction of the exerted force [202]. The VASP binding protein zyxin plays a central 

function in this mechanosensitive adaptation of SFs to mechanical cues. Zyxin recruitment to 

FAs is required for the thickening of SFs in response to the cyclic stretching of cells [203]. 

Using fluorescently labeled actin molecules, it was shown that force-dependent recruitment of 

zyxin to FAs coincides with the incorporation of new actin monomers into SFs at the level of 

FAs [204]. In agreement, laser cuts of SFs, to release the tension on FAs, accelerates zyxin 

detachment from FAs [205] and results in its random recruitment along the SFs [206]. 

Similarly, inhibiting myosin-II releases tension on FAs and prevents both zyxin recruitment 

and actin polymerization at FAs [204]. Zyxin is also critical to repair SFs. The high tension of 

SFs sometimes results in their breakage [96]. Zyxin together with VASP and α-actinin are 
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recruited to these sites and promote repair by the elongation of free barbed ends and cross-

linking of actin filaments.  

Formins are involved in the force-dependent actin polymerization at FAs. In a seminal 

experiment, a glass micropipette was used to pull on FAs, which in consequence grew in a 

RhoA dependent manner [31]. The expression of a constitutively active mutant of mDia1 

lacking the RhoA binding domain rescues FA growth under load when RhoA is inhibited, 

suggesting that mDia1 is an essential effector of RhoA in this process. mDia1 involvement 

was confirmed in myoblasts, where actin polymerization was induced by applying load to 

beads coated with β1 integrin ligands [207]. Interestingly, in this setting, mDia1 recruitment 

by the bead was visualized, whereas it is usually impossible to observe mDia1 recruitment at 

FAs. Using Atomic Force Microscopcopy (AFM) with a fibronectin coated cantilever, it was 

shown that formins were required for initial integrin-mediated adhesion and that a complex 

cross-talk between integrins containing 51 and V is required for adhesion to fibronectin, 

and its reinforcement [208].  

 

Mechanosensitive Membrane Protrusions 

Lamellipodial protrusions depend on biochemical signals, such as growth factor 

stimulation, but also on the stiffness of the ECM. Such membrane protrusions have only 

recently been recognized as mechanotransducing structures [17]. Lamellipodia formation and 

the ensuing responses, such as cell cycle progression on stiff substrates, are driven by cortical 

branched actin specifically polymerized through the activation of ARPC1B-containing Arp2/3 

complexes [129]. The suppression of lamellipodial protrusions at high cell density through the 

inhibition of the Rac1-WAVE-Arp2/3 pathway is also the mechanism by which cell 

monolayers undergo so-called cell jamming at confluence, which down-regulates both cell 

migration and cell cycle progression [209]. 

 Mechanotransduction from lamellipodial protrusions requires the adaptor protein 

p130Cas. For this function, the central substrate domain (SD) of p130Cas is critical. The SD 

domain binds many partners, including scaffolding molecules such as Crk, tyrosine kinases, 

the serine/threonine kinase JNK, GEFs and tyrosine phosphatases [210]. The SD is 

stretchable: upon stretching, it exposes tyrosine residues, which are normally masked, and 

these residues are phosphorylated by Src [211, 212]. p130Cas is a dimer, which can interact 

with vinculin and FAK through its N-terminal SH3 domain in nascent adhesions [213-215].  
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p130Cas is turned on by phosphorylation of tyrosine 410 in the SD domain when 

adhesions containing FAK and vinculin experience traction forces. p130Cas spontaneously 

cycles back to the off state when tyrosine 12 in the SH3 domain is phosphorylated. This 

prevents binding to vinculin and FAK, thus uncoupling p130Cas from adhesions experiencing 

pulling forces [216, 217]. Thanks to this mechanism, p130Cas mechanotransduces the initial 

adhesion, and then remains associated at the protruding cell edge to promote actin 

polymerization during cell spreading and migration [218-220].  

When the SD domain of p130Cas is phosphorylated in response to stretching, it 

recruits Crk/C3G complexes, which subsequently activate the Rap1 GTPase and the MAP 

Kinase Erk [212, 221] (reviewed in [214]). Active Rap1 activates actin polymerization 

through the recruitment of RacGEF1, in addition to activating integrins [222].  

 p130Cas becomes more activated when the substrate is stiffer [220, 223]. Indeed, the 

Src family kinase Fyn, one of the binding partners of the p130Cas SD domain, is more active 

on stiffer substrates and catalyzes the phosphorylation of p130Cas [220]. If this mechanism 

contributes to durotaxis, it is likely not the only one. For example, slight differences in 

stiffness can be amplified by a positive feedback loop that involves myosin-II. Mechano-

dependent phosphorylation of p130Cas results in increased myosin-II activity [224], which in 

turn can increase the amount of unfolded phosphorylated p130Cas when the leading edge 

protrudes in the direction of stiffer substrates. This mechanism would explain increased Crk 

recruitment and Rac1-dependent lamellipodium formation in the right orientation [225]. 

Filopodia, which sense rigidity of the substrate, are also likely to contribute to the 

mechanotransduction of durotaxis. The tips of filopodia are stabilized by stiff substrates and 

they induce lamellipodial extensions in between them [75]. Again the mechanism requires 

myosin-II mediated contractility. The base of filopodia appears to be a preferred site of FA 

signaling [72]. Substrate stiffness is probed through pre-activated integrins at filopodium tips 

[71]. The ECM-integrin clutch may be stabilized by the actin retrograde flow within 

filopodia. Matrix rigidity sensed through filopodia is mechanotransduced through p130Cas 

for a fine-tuned regulation of lamellipodium formation in time and space [226].  

 

Concluding Remarks 
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The major actin regulators discussed in this review are well known. Their activity has 

been studied in vitro and in vivo. Ena/VASP proteins are clear components of cell adhesions. 

In contrast, in most cases, we still do not understand at which subcellular locations formins 

function in adhesion-related processes. The Arp2/3 complex is a clear driver of membrane 

protrusions when activated by NPFs. The interactions of the Arp2/3 complex with all 3 FA 

components, kindlin-2, FAK and vinculin, appears to be required for membrane protrusions, 

but the exact role of these interactions remains to be determined. Do they positively regulate 

the Arp2/3 activity in protrusions? Or negatively where the actin arrays are linear? Do these 

interactors simply recruit the Arp2/3 complex to pass it over to the next? 

It is particularly difficult to establish how precisely actin is regulated in relation to cell 

adhesions. Many signaling intermediates, probably the most important ones, have been 

identified in the last 30 years. However, understanding the functions of actin regulators and 

signaling intermediates in the maturation of cell adhesions, the coupling between cell 

adhesion and membrane protrusion and the continuous remodeling of actin arrays remain 

major challenges. Mechanotransduction represents a particularly intriguing case of signaling. 

We know now that cryptic binding sites are exposed by stretching proteins such as talin or 

p130Cas, and this is likely a general way to convert mechanical signals into biochemical ones. 

One can predict that the next major steps towards a mechanistic understanding of these events 

will come from elaborate in vitro reconstitutions, such as the ones where purified proteins are 

spatially segregated using micropatterns and temporally activated through tensile elements of 

the cytoskeleton. 

Mechanotransduction from the substratum is the best understood case and much 

remain to be understood even in this favorable case. Similar mechanical interplay occurs in 

cell-cell junctions of coherent tissues [227]. Force mapping is more difficult in this situation 

where several cells are simultaneously involved [228]. Some molecular components are used 

in both cell-cell and cell-substratum adhesions, such as vinculin or the Arp2/3 complex. But 

the primary means to recruit this module differ - talin for cell-substratum adhesions, -catenin 

for cell-cell adhesions - and the force-response relationships probably also differ. More and 

more mechanotransduction processes involving the actin cytoskeleton are likely to emerge in 

the coming years. For example, when cells migrate in physically constrained environments, 

the induced deformation of the nucleus is an active response involving actin polymerization 

[229]. So the field has many exciting research avenues ahead. 
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Figure legends  

 

Figure 1: Relationships between integrin-based adhesions and the actin cytoskeleton. 

NAs are formed at the leading edge of the lamellipodium, where they couple branched actin 

networks and the ECM. As the cell migrates, NAs disassemble or elongate into FCs at the 

junction with the lamella. FCs further mature into FAs [18]. The elongation of non-contractile 

linear filaments (brown) induces filopodia when barbed ends of filaments push the plasma 

membrane, or dorsal SFs when barbed ends connect to FCs [230]. At the 

lamella/lamellipodium interface, myosin-mediated reorganization of debranching actin 

network results in contractile actin bundles (green). Maturation of dorsal SFs, resulting in 

their thickening, is based on actin polymerization and concomitant with maturation of FCs 

into FAs. Fusion of transverse arcs with dorsal SFs results in ventral SFs connected to FAs at 

each end [42, 44].  

 

Figure 2: Domain organization of several FA proteins that regulate actin polymerization 

or perform mechanotransduction. 

Domain names are in black and major binding partners are in grey. VASP: EVH1, Ena/VASP 

homology 1; PRD, Proline-rich domain; G, G-actin binding domain; F, F-actin binding 

domain; TD, tetramerization domain. Vinculin: Vh, vinculin head; D1-D4, vinculin head 

subdomains; D5/Vt, vinculin tail; ABD, actin binding domain. Kindlin-2: FERM, four-point-

one ezrin radixin moesin; F0-F3, FERM subdomains; PH, pleckstrin homology. FAK: 

phosphorylated tyrosine residues are in yellow; FAT, focal adhesion targeting. Talin: IBS, 

integrin binding site; PTB, phosphotyrosine binding domain; 0-3, FERM subdomain F0-F3; 

VBS, vinculin binding site (11 VBSs are indicated in red); DD, dimerization domain. 

p130Cas: SH3, Src homology domain 3; SD, substrate domain (unfolded); Ser, Serine-rich 

domain; SBD, Src binding domain; CCH, Cas-family C-terminal homology domain. 

 

Figure 3: Recruitment of FA proteins during FA maturation. 

The binding of activated integrins to the ECM results in the formation of NAs that further 

mature into FCs and FAs. Proteins that have been localized to adhesion sites (residential 
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proteins) are distinguished from the associated proteins that are only known to regulate cell 

adhesions. The function of FA proteins is represented by colored flags. 

 

Figure 4: Polymerization of linear actin filaments downstream of integrins. 

 (A) Actin elongation by VASP. In NAs and FAs, talin stretching exposes VBSs that recruit 

vinculin (Vinc) and activates its capping activity [97]. In mature FAs, the actin cross-linker α-

actinin, recruited by tails of β-integrins and vinculin, induces the recruitment of zyxin. VASP 

is recruited both by zyxin and vinculin [87-89]. (B) Actin polymerization by the mDia1 and 

FHOD1 formins. mDia1 is activated by RhoA, which is activated in line with FA formation. 

FHOD1 is activated by phosphorylation events catalyzed by Src and the RhoA effector 

ROCK. FHOD1 is also activated by Rac1, which depends on FAK-Src signaling [231]. + and 

– signs respectively indicate barbed and pointed ends of actin filaments. PM: plasma 

membrane 

 

Figure 5: Interaction of the Arp2/3 complex with FA proteins. 

Branched actin networks of the leading edge are produced by the activation of specific Arp2/3 

complexes by NPFs [16]. The Arp2/3 complex interacts with Kindlin-2, a protein that 

activates integrins [143]. The Arp2/3 complex interacts with FAK, a kinase that is activated 

by integrin-mediated adhesion [53, 74]. The Arp2/3 complex, however, preferentially binds to 

the inactive conformation of FAK. The Arp2/3 complex interacts with vinculin through its 

linker region, which is not a cryptic binding site [20, 134]. PM: plasma membrane 

 

Figure 6: Signaling and mechanotransduction pathways that activate Arp2/3 

downstream of integrins. 

Vinculin is recruited as a result of force-dependent stretching of talin. Talin bound to both the 

β-tail of integrins and actin filaments exposes one of the cryptic VBSs (enlargement in the left 

dashed circle) upon actomyosin contraction [214]. Src activates FAK bound to the β-tail of 

integrins, and then FAK recruits p130Cas. Dimerization of p130Cas allows mechanosensing 

through the anchoring of p130Cas dimers to vinculin and FAK. The tension applied on the 

adhesive structure unfolds the substrate domain (SD), resulting in multiple phosphorylation of 

p130Cas tyrosines by FAK-Src (enlargement in the right dashed circle) [214]. Alternatively, 

monomeric p130Cas could be mechano-activated through the binding of the C-terminal 
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domain to an unknown protein [232]. The interaction of Crk with the activated SD of 

p130Cas in turn recruits the Guanine Exchange Factor ELMO/Dock180, which activates 

Rac1. Paxillin (Pax), recruited by FAK in FAs or by kindlin-2 in NAs, also recruits the Crk-

ELMO/Dock180 complex. The activation of the WAVE complex requires binding of Rac1 to 

its Sra1 subunit, interaction with PIP3, formed from PIP2 by PI3K, and phosphorylation 

events catalyzed by Src and Erk. The N-WASP NPF is activated by the paxillin-dependent 

activation of Cdc42. Single red arrows represent phosphorylation events, double black arrows 

represent interactions. 
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