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Abstract—Marine mammals are found in every sea worldwide
and are at the highest level of the marine food chain. They
communicate among themselves through sounds. It is complicated
to study and to characterize these populations because they
spend most of their time below the surface. Nevertheless, it is
possible to analyze, characterize and classify different cetacean
species through the use of bioacoustics. Our study focuses on the
Pantropical spotted dolphin (Stenella attenuata), in particular on
the influence of nautical tourism, i.e. whale-watching boats, in
the Caribbean Sea on dolphin communications. The objective
of this study was to observe the correlation between dolphin
behaviours and whistles. The most appropriate methods had to
be implemented in order to analyze ethoacoustic data. To achieve
this, we compared a manual method with an automatic whistle
detector. Then, we used different methods of projection (ACP and
t-SNE) to reduce the dimension of acoustic data. We concluded by
clustering the sounds versus the behavioural classes. The results
showed that our automatic method was effective as different
clusters were identified : pantropical spotted dolphin do not
communicate in the same manner when they are surrounded by
whale-watching boats, or during socialization. Therefore, acoustic
survey is an efficient non-intrusive way to characterize the form
of communication and to evaluate impacts of noise on cetaceans.
Our method is effective and provides opportunities for acoustic
surveys of anthropophonic pollution.

Index Terms—Ethoacoustics, t-SNE, Bayesian Non Parametric
model, non linear reduction of dimensionality, PCA, whistles,
cetacean, clustering, Stenella attenuata

I. INTRODUCTION

One of the best approaches of studying animals that pro-
duce signals and live in an inaccessible environment is the
use bioacoustics. Acoustic monitoring is a method used to
study marine mammals, that gives us information to better
understand cetacean life, such as their behaviour, movement
or reproduction [1]. There are other methods to estimate
and examine local species richness, but they are costly and
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invasive [2]. This richness is represented by many species that
reveal their presence through acoustic signals which can be
recorded and analyzed. However, the principal problem of this
method is the storage and analysis of this data, so automated
analysis for captured sound is almost essential. The bioacoustic
discipline is already developed in scientific research, whereas
ethoacoustic is a method that combines acoustic, biology and
ethology that allow us to establish a correlation between
signals produced by animals and their behaviours. If we are
able to access animal sounds, we will be able to access their
ecology, and finally biodiversity conservation [3]. In this study
we focused on the influence of whale-watching boats, in the
Caribbean Sea, on the pantropical spotted dolphin (Stenella
attenuata: Sa). The objective of the study was to identify
the presence or not of a correlation between their behaviours
and their whistles, and to develop a method to extract and
analyze whistle characteristics. The number of whale-watching
boats in the Caribbean Sea strongly increases every year
[4]. Increases in maritime traffic, water scooters (jet skies)
and whale watching may have consequences on marine life
[5]. Whale-watching is a tourism activity, which consists to
observe marine mammals in their natural habitat. However,
for this activity, a boat is necessary and these approaches are
not regulated. Currently, 25 whale-watching companies are
present on the Martinique coast [4]. This study takes place
in Martinique, a french island located in the Caribbean Sea
(GPS position: 14 48’03N; 061 19’92 and 14 27’30N ; 061
07’70W). Marine fauna is abundant in these waters, partic-
ularly marine mammals [4]. Pantropical spotted dolphin Sa
is the main observed species. Protecting cetacean populations
is fundamental. Therefore, it is critical to minimalize whale-
watching development and to organize monitoring campaigns
to maintain local tourism and the biodiversity of Martinique.
To protect this population, we must know the ecology of
this species, especially how they communicate. The purpose
of this study was to analyze the impact of whale-watching
on the whistle communication of pantropical spotted dolphin.
Whistles produced in function of their behaviour and the
number of boats present were compared.
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Figure 1. Presentation of the study area and material (1: Hydrophone (in its
protection), 2: recorder and 3: headphone).

II. DATA COLLECTION

Recording samples were collected between 2013 and 2017.
All recordings were conducted during morning sessions, on
the West coast of Martinique (Fig. 1). The materials used:
one hydrophone (H2a-XLR, Aquarian Audio Products) (1)
connected to a recorder (2), and an audio headset (3) (Fig.
1). Acoustic recordings were realized at a depth of 15 m,
in stereo with a sample rate of 48.1 kHz. Recordings were
executed continuously from the detection of dolphins until they
leaved. When a group of cetaceans is detected, a respectful
approach was realized according to the "Charter of responsible
approach and observation of marine mammals in Martinique".
In addition to recordings, environmental data was collected
such as the date, number of animals, specifying the number
of adults and juveniles, as well as the behavioural state of
the dolphins. Behavioural states are classified into five main
categories: rest, socialization, hunting, harassment and motion
(Table. I).

Table I
BEHAVIORAL STATES CATEGORIES AND THEIR DESCRIPTIONS

Behaviors Characteristics
Resting Slow velocity, directed movement, closely grouped
Hunting Fast swimming velocity, followed a heading

Socializing Interactive behavioral event, breach,body contact, chases
Motion Constant direction, splashing, Fast and medium velocity

Harassment Avoidance behavior, different subgroups, dive intervals vary

III. DATA ANALYSIS

A. Whistle tracking and feature extraction

As appose to manual extraction, an automatic method for
selecting and categorizing whistles was used in order to obtain
ample results and avoid user bias. Our algorithm is a spectral
tracker [6]. The aim of this detector is to extract, quantify and
date all whistles from a record sample. It is composed of two
different parts. The first part is a binarization of the recording,
and the second part is an algorithm that detects all whistle
trajectories. This detector was implemented in 2012 [6]. The
method presents two advantages: fast detection and increased
precision in comparison to the manual method (visualizing and
listening). All steps of the algorithm were conducted within
the Octave Programming environment. The first step of the

Figure 2. Spectrogram of 13 seconds containing signals from Sa, and a
representation of whistles identified from our detector.

algorithm is to represent the original audio signal in a time-
frequency representation referred to as a spectrogram. Then,
the detector analyzes each pixel from the spectrogram, and
transforms it in a matrix containing 0s and 1s (binarization),
where a value of one corresponds to a high amplitude. Thus,
selected points have a higher intensity than the background
noise of the ecosystem. In the last step, the algorithm will
retain only points forming continuous trajectories on the
spectrogram (Fig. 2). This last manipulation ignores ambient
discontinues noise. Thus, the algorithm excludes noises such
as motor noise, or wave sounds, in order to identify only
signals of interest: dolphin whistles. To exclude this noise,
the algorithm does not include the speed variation trajectory.

After the whistle detector, a number of acoustic parameters
for each whistle was extracted:

• Minimum, maximum, median and mean frequency
• Whistle duration
• Whistle velocity (minimum, maximum, median, mean of

velocity)
• Whistle acceleration (minimum, maximum, median,

mean of acceleration)
For each whistle analyzed, 13 parameters were identified.

Therefore, the whistles were described within these 13 dimen-
sions.

B. Dimensional reduction and clustering

In order to represent the 13 dimensions, the dimensionality
reduction technique t-SNE (Distributed Stochastic Neighbour
Embedding) was implemented. This nonlinear dimensionality
reduction is particularly well suited for the visualization of
high-dimensional datasets [7]. Reduced dimensionality allows
for a better visualization. In this case, data are represented
in multiple dimensions, because each parameter (Start and
end frequencies, duration, etc...) represents a dimension. Thus,
it is possible to visualize our data in a map, and take into
consideration all acoustic parameters. The representation can
be in 2 or 3 dimensions. The t-SNE algorithmic process
considers the similarity and dissimilarity of a data set : it cre-
ates a probability distribution over pairs of high-dimensional
objects. Similar points have a high probability to be close on
the map, whereas dissimilar points have a small probability
of being close. This representation should produce different
ethoacoustic clusters.



After the previous method, it is possible to take the coordi-
nates (abscissa and ordinate) of t-SNE to highlight clusters.
This method allows us to validate the clusters found with
t-SNE. Clustering has various applications for classification
[8], allowing us to prove group compatibility according to a
specific criterion [9].

In this study, we decided to do a Bayesian non para-
metric clustering (BNP). Different clustering methods have
been investigated for cetacean bioacoustics in [10], and they
concluded BNP was optimal for bioacoustic data.

Then, we calculated NMI (Normalized Mutual Information
scores), which is a measure of mutual dependence between two
distributions, particularly between the true and the estimated
clusters. NMI is a normalization of the mutual information
(MI) score that scales the results between 0 (no mutual
information) and 1 (perfect correlation between these two
distributions) [11]. Essentially, cluster consistency is quantified
using NMI [12].
The numerator (I) is the mutual information between X and
Y, relative to clusters with a similar composition within the
two partitions. The denominator depends on the entropy of
each partitioning. In our case, X can be the distribution of
clustering, and Y is the behavioural state (Equation. 1).

NMI(X,Y ) =
I(X,Y )√
H(X)H(Y )

(1)

Thus, NMI compares ethoacoustic clusters (found visually
with t-SNE) versus theoretical clusters (found automatically
with Bayesian non parametric clustering). The t-SNE (Dis-
tributed Stochastic Neighbor Embedding) and clustering were
conducted using Python programming language.

IV. RESULTS

147 minutes of recordings were analyzed, resulting in the
detection of 2851 whistles. To increase the values of NMI,
we used the 500 largest whistles and the 500 longest whistles.
Whistle duration decreases according to the distance from the
animal. Reception and intensity are positively correlated to
distances from the dolphin. If the animals are too far away,
some parts of the whistle are not detected. In fact, the whistle
intensity is low if dolphins are far from the hydrophone, and
therefore whistle duration is low too; explaining the fact that
the further away from the boat, the shorter the whistle. By
selecting the longest whistles, we indirectly chose dolphins
close to the hydrophone.
On Figure 3, we present t-SNE coordinates, and different
labels: behaviours are represented by different colors, while
the clusters are represented by shapes (found with the Clus-
tering method). "slow", "medium" and "fast" represents the
swimming velocity of dolphins. The objective is to maximize
the normalized mutual information score by finding the op-
timal number of clusters k. With a k =2, NMI is maximal
(NMI=0.30). So, for this data set, the optimal number of
clusters that maximizes the information is two. The cluster
1 is composed of slow socialization and medium harassment.
These behaviours are different from the others. We are able

Figure 3. visualizing Dolphin Sa whistles (500 longest) in two-dimensions
with t-SNE as a function of velocity and behaviours (with 13 important
features), according to BNP clustering.

to deduct the presence of correlations between distributions
of theoretical clusters (true) and distributions of ethoacoustic
clusters.

V. DISCUSSION

A. Comparison between the manual and the automatic method

In order to validate the automatic whistle extraction tech-
nique, manual validation was realized. Using the same records,
489 pantropical spotted dolphin whistles were identified man-
ually by listening to the recordings and looking at the spectro-
gram. This step was made using the Program Spectrogram 5.0
(Electronics Lab, USA). Within the automatic method, series
of objects were automatically recognized and parameters were
extracted. Whereas in the manual method, records were ana-
lyzed both visually and through listening, as the user collected
parameters manually. Thus, for the exact same records, a user
detected 489 whistles, whereas the automatic method recog-
nized 2851 whistles (window size 512). Manual identification
is time-consuming, detecting more than 489 whistles can take
more than four weeks instead of one day with the automatic
method, plus it is prone to error. It’s necessary to automatize
the selection and the categorization of sounds. In many studies,
animal sounds were detected and classified according to the
auditory perception of human observers [13]. In fact, manual
methods are difficult to repeat and to compare with other
studies and species, due to operator bias. But, manual methods
may be used to evaluate the automatic detector.

In [8], authors tested different normalization methods, and
we have tested one of them. Thus, the value attributed to
each feature (maximal, minimal, mean, median frequencies
and duration) was log-transformed and normalized with a z-
score transformation µ represents the mean and σ the standard
deviation :

−→
f s = ln(

−→
F s) (2)

−→
Z fs =

−→
fs − µfs

σfs
(3)



Derivatives (features 9 to 18) were also normalized with a
different z-score transformation :

−→
Z ds =

ds
σs

(4)

In this function, ds is the value of the feature (the derivative)
and σs is the standard deviation. We removed the mean
(compared to the first function) to keep the sign of the
derivative (ascendant or descendant whistles). However, after
this normalization, the clusters were the same. Allowing us
to conclude this kind of normalization did not modified our
results.

B. Influence of surface behaviours on Sa whistles

There are many diverse factors that influence whistle vari-
ation in cetacean, therefore identifying exactly which factors
impact cetacean whistles and how remains mostly misunder-
stood [14]. In this study we tested the behavioural influence on
dolphin communication. There are variations of whistle struc-
ture when the behaviour changed, particularly for harassment
and socialization (Fig.3). Studies conducted on other dolphin
species have already proved this affirmation [15]

Different studies have conducted analysis of dolphin be-
haviours in the presence of boats [16]–[18]. Conclusions of
these studies implied a faster swim, and less surface-time.
Thus, we can correlate behaviours to acoustic features. [19]
proved that whistle occurrence and production rates increased
when boats were present in the area. [20] noted that Bottlenose
dolphins emitted whistles with higher start frequencies in
the presence of several boats. Therefore, it is possible to
hypothesize, that when dolphins are harassed, they try to
use the same acoustic communication when socializing (high
frequencies and high production rates). But, it should be noted
that acoustic emissions differ from one species to the next.
Some studies observed different whistle types when comparing
different populations of the same species [21], [22], and the
authors noticed that intra-species variation of whistles between
different regions was significant. These variations could be
due to behavioural context. Additionally, some studies demon-
strated there is an individual dolphin signature which transmits
identity information for the dolphin in question [23]. Due
to intra and inter-species variations, we can conclude it is
rather difficult to compare two different species. Therefore,
it is necessary to identify particular sounds produced for each
behaviour, before studying variations between species. Only
after will it be possible to compare vocalizations for each
species, for a specific behaviour. Difficulty arises because
there are variations between species, between populations and
among individuals.
In conclusion, this study, developed for the first time, a new
method of bioacoustic data mining on dolphin whistles. This
method was applied to humpback whale vocalizations [24].
Our detector is efficient, allowing us to identify and interpret
the vocal diversity of various marine mammals including
dolphins and whales. Automation and classification of signals

are fundamental concepts, over the first phase to gain time and
accuracy.
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