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Abstract—One of the best ways of studying animals that
produce signals in underwater environments is to use passive
acoustic monitoring (PAM). Acoustic monitoring is used to
study marine mammals in oceans, and gives us information for
understanding cetacean life, such as their behaviour, movement
or reproduction. Automated analysis for captured sound is almost
essential because of the large quantity of data. A deep learning
approach was chosen for this task, since it has proven great
efficiency for answering such problematics. This study focused on
the orcas (Orcinus orca) of northern Vancouver Island, Canada,
in collaboration with the NGO Orcalab which developed a multi-
hydrophone recording station around Hanson Island to study
orcas. The acoustic station is composed of 5 hydrophones and
extends over 50 km2 of ocean. Since 2016 we are continuously
streaming the hydrophone signals to our laboratory at Toulon,
France, yielding nearly 50 TB of synchronous multichannel
recordings. The objective for this research is to do a preliminary
analysis of the collected data and demonstrate influence of
environmental factors (tidal, moon phase and daily period) on
the orcas’ acoustic activities.

Index Terms—Ethoacoustics, Deep Learning, Convolutional
Neural Networks, Orcas, Killer whales, Cetaceans, Bioacoustics,
Environmental factors, Soundscape, Big data

I. INTRODUCTION

Orca (Orcinus orca) is a top-predator of the marine food
chain [1]. The Northern Resident Killer Whale community
is composed of several “pods” composed of matrilines [2].
Several of those visit the area surrounding Hanson Island
(Canada, north of Vancouver) due to the concentration of
salmon [3]. For a more accurate description we suggest: The
Northern Resident Killer Whale community is composed of
more than 300 individuals (in 2018) organized into several
pods comprised of matrilines, each of which possess their own
dialect (a repertoire of 7-17 discrete calls). Pods that share
similar call types are classified into one of three acoustic clans.
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partly funded by FUI 22 Abyssound, ANR-18-CE40-0014 SMILES, ANR-17-
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studies on cetaceans. We thank MI CNRS MASTODONS SABIOD.org and
EADM MADICS CNRS scaled bioacoustic research groups, and SEAMED
PACA project and CNRS plateform support for J. Schlüter’s Post doc grant.

There are no shared calls between clans. This odontocete can
produce 3 different types of signals: clicks, whistles and pulsed
calls [4]. This study focuses only on vocalizations (pulsed
calls).

Some biological studies describe the communication of
orcas [5]–[8], based on manual methods. Related work [9]
compared dialects of orca using artificial neural networks and
showed that acoustic similarities are significantly correlated
with the group association patterns.

In order to analyze animal communication in different
spacial and temporal contexts, automated analysis for captured
sound is crucial. For that purpose, the field of bioacoustics
has proposed numerous approaches using neural networks
and deep learning [10]. We therefore investigated the latter
methods to automatically detect orca calls emitted throughout
3 years of continuous recording from 2015 to 2017. The data
collection system was built over years of fruitful collaboration
between Orcalab and DYNI LIS CNRS Toulon University, that
we call ’OrcalabToulon’.

II. MATERIAL

For 20 years, the NGO Orcalab developed and has main-
tained a unique multi-hydrophone recording station around
Hanson Island (Northern Vancouver Island, Canada) to study
orcas. This acoustic station is composed of 5 hydrophones and
extends over 50 km2 of ocean (Fig. 1).

A previous database from Orcalab called Orchive [11] was
compiled from these recordings in 2013, congregating selected
and segmented orca calls extracted from their context. It was
the first open corpus allowing large scale analysis, but cannot
be used to compute spatial long term behaviors of the orcas,
or to link voicing with typical spatio-temporal events.

To help with solving this paradigm, in 2015 we have set up
a continuous recording of all the hydrophones of this station.
The aim is to allow observations and modelling bioacoustic ac-
tivities of various species, at large spacial and temporal scales,
including all details of their ecoacoustic niche, under various
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geophysical and anthropophonic conditions, more particularly
in order to build new knowledge about orcas.

The architecture of the global system is shown on Fig. 2.
The hydrophones record the soundscape continuously. The
recordings are transmitted to the OrcaLab station in real time
via very high frequency (VHF) radio. Each analog signal is
received by a radio receiver at Orcalab, then digitized on
a Presonus analog-to-digital converter (ADC) and sent to a
Linux OS portable DELL Latitude PC running continuously.
The recordings are then compacted in segments of 2 minutes
including all 5 channels, using lossless flac compression, with
a sampling rate of 22050 Hz and resolution of 16 bits. Each
segment is then sent to DYNI Toulon University big data NAS
(Network Attached Storage) of 300 TB via wifi to Alert Bay,
and then via the Internet. A buffer of 7 days on our local laptop
in Orcalab allows to dealing with interruptions of the local or
intercontinental Internet connection. The data transmission is
automatically continued as soon as the connection is stabilized.
The sampling rate of the ADC is chosen low enough so
the system has spare bandwidth to transfer the buffer after
a connection failure. In total, from July 2015 to 2017, around
50 TB of sound (about 14,500 h) was stored on our server.

III. DATA ANALYSIS

A. Automatic acoustic event extractor

We designed an automatic acoustic event extractor (inspired
from [12]). The main steps of the algorithm (shown in Fig-
ure 3) are: (i) calculating the spectrogram (time frequency
representation) of the recording using an STFT with a Tukey
window of 1024 samples and 20% overlap; (ii) computing a
binary image by comparing against the median over frequency
band and time slice: if the value of a pixel is greater than 3
times the median plus 3 times the standard deviation of its
row, and greater than 3 times the median plus 3 times the
standard deviation of its column, it is set to 1, otherwise to 0;
(iii) applying a “closing” and “dilation” filter for each pixel
to remove the noise; (iv) finding connected components and
removing small components and isolated pixels; (v) computing
bounding boxes for remaining components.

Merging nearby boxes (with a gap of at most 0.2 s), and
filtering out irregular ones (vertical boxes with a frequency
range in Hz larger than 5000 times the time range in seconds,
or boxes with a maximum spectral magnitude higher than
25 dB, too high to be orcas) helped us to get rid of a large
amount of non-orca acoustic events. The remaining 3.5k (out
of 14k) boxes were annotated as orca or noise manually.

B. Orca detector using deep learning

We built a dataset (resulting mainly from the above exper-
iment) composed of 872 orca vocalization samples and 6801
noise samples (boats, rain, void. . . ), which we split randomly
with 20% for the test set, 60% for the training set and 20% for
the validation set. 1 With that in hand, we trained a CNN [13]

1A random split may sample train and test segments from nearby locations,
giving an overly optimistic test error. We did not have enough annotated data
for a chronological split avoiding this.

Table I
TEST SET PERFORMANCE OF DEEP LEARNING MODEL FOR ORCA

DETECTION

Accuracy Area Under Curve
Training 0.97 0.88

Validation 0.96 0.89
Test 0.97 0.89

(originally designed for a bird detection task) to distinguish
orca vocalizations (not clicks) from boats and background
noise.

After training, when computing predictions, a threshold of
0.9 is applied to the output of the model. This reduces the risk
of false positives. Table I and Figure 4 show the performance
of the detector on our labeled test set, demonstrating that it
produces reasonable results.

IV. RESULTS

A. Large scale statistics

Once trained, the model was run on 3 years of recordings
(2015, 2016 and 2017) in 2 days of computation on an
Nvidia Titan X Pascal GPU. The results in Figure 5 show the
proportion of files with orca detections among all the record-
ings of each month, for each hydrophone. Orcas are present
(acoustically) mostly during summer (June, July, August and
September). This migration is confirmed by [14], orcas are
abundant in Johnstone Strait between July and October, when
salmon migrate into it.

Hydrophone 5 (Johnstone Strait) is the busiest location in
every year. The second (smaller) peak, encompassing October-
December, may additionally reflect the presence of vocal
Humpback Whales [15] and/or other cetaceans in the area,
that are often classified as orcas by our model.

B. Trajectography

In order to get an idea of animal trajectories, one can
estimate the acoustic activity of orcas in the range of each
hydrophone over time. This idea was applied for the 24th
of August 2017 with several techniques. First we used the
automatic acoustic event extractor (Section III-A), taking the
number of detected events as a proxy for estimating the
acoustic activity of orcas (Fig. 6). The trajectory from H5
to H1 can be deduced by the succeeding high detection rates
of the hydrophones, but the signal is very noisy since this
detector is not specific to orcas.

A second method was to use our deep learning model (Sec-
tion III-B) trained for orca call detection, thus giving a much
better estimate on orca activity over time and hydrophone (see
Figure 7). The results confirm the primary deduction from the
acoustic event detector (Fig. 6, trip from H5 to H1 at 5:30 am),
but with a much cleaner signal.

C. Voicing statistics

In order to better understand the orcas’ voicing activities,
we have located them in zones (Fig. 1) using the detection
of voicing by hydrophone(s) (note that in the statistics, we



Figure 1. Map of the area and the listening range of the 5 hydrophones. Map pins with H1 to H5 in bold print denote the hydrophone locations. Detection
zones indicate which hydrophones can capture orca calls in a particular area, according to experience of ten years of audio-visual observations of the orcas
by the OrcalabTeam. Map generated by QGIS software (version 2.14 Essen).

Figure 2. Representation of the data acquisition, from recording until storage
on SABIOD CNRS UTLN server.

remove any intersection zone from each individual area, so
that they are disjoint). The model described in III-B is used
to determine if a recording contained orca calls or not. We
use a simple heuristic to map each two-minute recording
period to a detection zone in Fig. 1: If a period has orcas
detected for a single hydrophone only, we assume they are
in the zone covered by this hydrophone exclusively. If there
are detections for multiple hydrophones that have overlapping
ranges (e.g., H4 and H5), we assume they are in their joint

Figure 3. Main steps for the acoustic events extraction: Binarization and
detection of connected components. The spectrogram shows frequencies from
0 to 6.5 kHz during 2.5 s.

detection zone. Simultaneous detections for hydrophones with
non-overlapping ranges (e.g., H1 and H5) are discarded – we
need a single zone to compute transitions, and this affected
less than 1% of recordings. Using those zones not only
gives us an idea of the common localization of the animals,
but also of their most common trajectories (studying zone
transition probabilities). We applied this study to the available
recordings of June, July and August of 2015, 2016 and 2017,
corresponding to 72109 5-channel recordings of 2 minutes
(approximately 100 continuous days).

Using the zone transition probabilities, we estimated the
most common travels done by the orcas. The numbers on the
arrows (Fig. 8) correspond to the probability to arrive to a zone
coming from another one (for instance, 52% of the times the
orcas left the H3H4H5 zone, it was for the H4H5 area).

Figure 9, describing the proportion of recordings with orca



Figure 4. Receiver Operating Characteristics of the trained deep learning
detector.

Figure 5. Proportion of two-minutes recordings with detected orca calls per
month and hydrophone, from 2015 to 2017.

calls per zone, supports the idea that zones’ activation times
are correlated with their sizes, except for H4. H4 is a small
zone (covered only by the H4 hydrophone) through which the
orcas pass in close proximity in order to travel to or from the
adjacent passageway thus increasing the chances of detection.

We then analyzed the voicing activities in more detail, in
space and within these time ranges:

• Day time is from 11 am to 5 pm (25% of the recordings).
• Night time is from 11 pm to 5 am (25% of the recordings).
• Full Moon time is from 4 days before to 4 days after a

full moon (31% of the recordings).
• New Moon time is from 4 days before to 4 days after a

new moon (24% of the recordings).
• Rising tide are times with a positive 40 cm differential of

sea level (11% of the recordings).
• Falling tide are times with a negative 40 cm differential

of sea level (11% of the recordings).

Those intervals were chosen to keep a significant difference
for each factor (luminosity, moon phase, and currents).

We show (Fig. 10) the global evolution of voicings of
orcas depending on these conditions. We see that the number
of vocalizations is higher during the day, full moon and
rising tide compared to night, new moon and falling tide
respectively. Four times more recordings were including orca

Figure 6. Evolution of the number of detected orca acoustic events from 5:30
to 8:30 am on August 24, 2017

Figure 7. Example of the evolution of the probability of call detection for
each hydrophone during one day (August 24, 2017). During the morning, a
group of orcas comes from the east (see Figure 1) on H5, and is moving on
H4, H3, H2 then on H1. Different round trips are made during the day.

calls during full moon (14%) compared to new moon (3%)
and 8 times more during rising tides (25%) compared to
falling tides (3%). In the second part of Figure 10, proportion
of state changes depending on time conditions are described.
It lets us get an idea of the periods of times when orcas are
more active in terms of travelling.

More precisely, we computed the probabilities to detect orca
calls in each zone during a given time interval, shown in
Figure 11. This result shows the global patterns of the orcas’
voicing activity in time and space, based on the continuous
3 years of recordings. It reveals variations in the voicing
activities of up to a factor of four between conditions and
zones. The biggest variation concerns the influence of tide
and moon in zone H5. In fact, this area is subject to strong
currents during tidal hours. The Johnstone Strait is relatively
deep (450 m), so the trophic chain can change according to the
moon phase [16] and influence the orca acoustic activities.

V. DISCUSSION

To the best of our knowledge, this is the first automatic large
scale ethoacoustic analysis on orcas. The results are consistent
with [17]–[19] that found that lunar phase is likely to be impor-
tant in driving behavior of two species of cetaceans, suggesting
that it is correlated with preys that migrate vertically [16]. It



Figure 8. Directed graph of the main transition probabilities (%) between
the detection zones of orca calls as defined in Fig 1. We set the transition
probability E(Hi,Hj) that an orca voices from the hydrophone zone Hi to zone
Hj, such that the sum of E(Hi,Hj) over all j different to i equals one. We only
show here E > 5%.

Figure 9. Proportion of recordings including orca calls per zone (%).

is assumed that during full moon, preys are more present in
higher layers of water, thus making it easier for the orcas to
reach them.

Tides also have an influence on presence (25% vs. 3%) and
movement (40% vs. 35%) of orcas.

This result follows the conclusion of [20], [21] about the
influence of the tide in a semi-enclosed environment.

Moreover, we demonstrate that acoustic activity as well
as the proportion of movements changed between day and
night (13% vs. 9% and 42% vs. 34%, respectively). The
phenomenon was previously revealed for other odontocetes
(variation of Guiana dolphin emissions according to day/night
period [22]).

Figure 10. Global statistics of the detector. (a) Percentage of recordings with
acoustic orca detections depending on time conditions. (b) Proportions of state
changes, estimating the amount of movements done by the orcas.
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VI. CONCLUSION AND PERSPECTIVES

This preliminary work lays the basis for later high-level and
large-scale analysis. The collected data, which is continuous
over large time scales, allows us to understand more of the
orcas’ behaviour in relation to several factors.

A. Towards a spatio-temporal orca call and anthropophonic
massive database

The previous Orchive [11] database, composed of selected
segmented orca calls, has an important value to scientists
working on understanding the orcas’ voicing. Likewise, col-
lecting and structuring continuous recordings could increase
the scientists’ materials to work on, and hopefully help elevate
our knowledge of this cetacean, by correlating the voicings
with other acoustic features. We show in this paper first results
computed from the OrcalabToulon dataset. Current work is
being done to measure potential correlations between orcas’
acoustic activities and decibel levels in selected frequency
bands, anthropophonic content, acoustic events or complexity
of the soundscape [23].

B. Trajectography improvements

Some limited localization of the orcas is now possible by
deducing from the hydrophones’ activation as described in
Section IV, but localization techniques presented here are
quite inaccurate. We will investigate using the time difference
of arrival (TDoA) between hydrophones to increase location
accuracy [24], [25], and draw precise trajectories following
specific pods. Large scale statistics on the orcas’ travels, speed,
and general presence will be computed from those improved
localization techniques, helping to better understand orcas
behaviour, or supporting existing hypotheses on larger scales.
Indeed, the evolution of behaviour and acoustic activity on
a large time scale could help us understand more about the
long-term impact of human activity on orcas. In the near
future, it will be possible to carry out an “ethoacoustic study”
[26] and use the 48 dimensions (6 zones in 8 conditions) that
can be reduced (e.g., using t-SNE [27]) in order to highlight
the clusters that would be associated with the zones or time
periods. A precise localization study could be set up for the
orcas tracking with an antenna of 40cm of size at 2km away
(to not interfere with animals) [28].

C. Call classification

We intend to extend our current detection model to a call
type classifier. We will either investigate supervised methods
using expert annotations (e.g., from Orcalab) and unsupervised
techniques. The latter can be used to outline call characteristics
of cetaceans in specific situations, for instance when changing
direction or with approaching boat. We also assume that the
orca voicing patterns change according to tides, moon phase,
and time of the day. Our research program ’OrcalabToulon’
also allows variations of orca voicing patterns during ap-
proaches and meetings of matrilines in various hydrophones
zones including acoustic classification of matrilines.

D. Behavioural response to vessel traffic

Numerous studies [29]–[31] have focused on orcas’ be-
havioural response to anthropogenic noise, using manually
collected data in relatively small scales. They have shown
that vessel traffic causes fleeing, decreased foraging time, or
higher swim speed [32], thus being noxious to the animals.
Moreover, “acoustic harassment devices” used by salmon
farms have been shown to induce Killer Whale displacement
[33]. Correlating the orcas’ activity (position, speed, density
of calls) with the anthropogenic noises in a larger scale could
strongly support the current knowledge and might support the
creation of local measures to mitigate the impact of human
activity on the animals.

REFERENCES

[1] TA. Jefferson, PJ. Stacey, and RW. Baird, “A review of killer whale
interactions with other marine mammals: Predation to co-existence,”
Mammal review, vol. 21, no. 4, pp. 151–180, 1991.

[2] MA. Bigg, PF. Olesiuk, GM. Ellis, JKB. Ford, and KC. Balcomb,
“Social organization and genealogy of resident killer whales (orcinus
orca) in the coastal waters of british columbia and washington state,”
Report of the International Whaling Commission, vol. 12, pp. 383–405,
1990.

[3] MJ. Ford, J. Hempelmann, MB. Hanson, KL. Ayres, RW. Baird, CK.
Emmons, JI. Lundin, GS. Schorr, SK. Wasser, and LK. Park, “Estimation
of a killer whale (orcinus orca) population’s diet using sequencing
analysis of dna from feces,” Plos one, vol. 11, no. 1, pp. e0144956,
2016.

[4] JKB. Ford, “Acoustic behaviour of resident killer whales (orcinus orca)
off vancouver island, british columbia,” Canadian Journal of Zoology,
vol. 67, no. 3, pp. 727–745, 1989.

[5] JKB Ford et al., A catalogue of underwater calls produced by killer
whales (Orcinus orca) in British Columbia, Department of Fisheries
and Oceans, Fisheries Research Branch, Pacific . . . , 1987.

[6] RB. Tyson, DP. Nowacek, and PJO. Miller, “Nonlinear phenomena in
the vocalizations of north atlantic right whales (eubalaena glacialis) and
killer whales (orcinus orca),” The Journal of the Acoustical Society of
America, vol. 122, no. 3, pp. 1365–1373, 2007.

[7] BM. Weiß, H. Symonds, P. Spong, and F. Ladich, “Intra-and intergroup
vocal behavior in resident killer whales, orcinus orca,” The Journal of
the Acoustical Society of America, vol. 122, no. 6, pp. 3710–3716, 2007.

[8] O. Filatova, VB. Deecke, John KB. Ford, CO. Matkin, LG. Barrett-
Lennard, MA. Guzeev, AM. Burdin, and E. Hoyt, “Call diversity in the
north pacific killer whale populations: implications for dialect evolution
and population history,” Animal Behaviour, vol. 83, no. 3, pp. 595–603,
2012.

[9] VB. Deecke, JKB. Ford, and P. Spong, “Quantifying complex patterns
of bioacoustic variation: Use of a neural network to compare killer
whale (orcinus orca) dialects,” The Journal of the Acoustical Society
of America, vol. 105, no. 4, pp. 2499–2507, 1999.

[10] H. Glotin, Y. LeCun, S. Artières T. Mallat, O. Tchernichovski, and
X. Halkias, “Proc. nips4b : Neural information processing scaled for
bioacoustics, from neurons to big data, joint to int. conference on neural
information processing systems (nips),” 2013, http://sabiod.org/nips4b.

[11] Steven Ness, The Orchive: A system for semi-automatic annotation and
analysis of a large collection of bioacoustic recordings, Ph.D. thesis,
University of Victoria, Canada, 2013.

[12] M. Poupard, M. Ferrari, J. Schluter, P. Astruch, B. Schohn, B. Rouanet,
A. Goujard, A. Lyonnet, P. Giraudet, V. Barchasz, V. Gies, P. Best,
D. Dominici, T. Lengagne, T. Soriano, and H. Glotin, “Passive acoustics
to monitor flagship species near boat traffic in the unesco world
heritage natural reserve of scandola,” in Input Academy :International
Conference on Innovation in Urban and regional planning, April 2019.

[13] T. Grill and J. Schlüter, “Two convolutional neural networks for bird
detection in audio signals,” in 2017 25th European Signal Processing
Conference (EUSIPCO). IEEE, 2017, pp. 1764–1768.



[14] LM. Nichol and DM. Shackleton, “Seasonal movements and foraging
behaviour of northern resident killer whales (orcinus orca) in relation
to the inshore distribution of salmon (oncorhynchus spp.) in british
columbia,” Canadian Journal of Zoology, vol. 74, no. 6, pp. 983–991,
1996.

[15] JD Darlings, J Calambokidis, KC Balcomb, P Bloedel, K Flynn,
A Mochizuki, K Mori, F Sato, H Suganuma, and M Yamaguchi,
“Movement of a humpback whale (megaptera novaeangliae) from japan
to british columbia and return,” Marine Mammal Science, vol. 12, no.
2, pp. 281–287, 1996.

[16] BB. Roper and DL. Scarnecchia, “Emigration of age-0 chinook salmon
(oncorhynchus tshawytscha) smolts from the upper south umpqua river
basin, oregon, usa,” Canadian Journal of Fisheries and Aquatic
Sciences, vol. 56, no. 6, pp. 939–946, 1999.

[17] KJ. Benoit-Bird, AD. Dahood, and B Würsig, “Using active acoustics to
compare lunar effects on predator–prey behavior in two marine mammal
species,” Marine Ecology Progress Series, vol. 395, pp. 119–135, 2009.

[18] H. Glotin, N. Enfon, R. Balestrio, A. Mishchenko, JM. Prévot, J. Razik,
S. Paris, and J. Patris, “Moon phase and low frequency noises effects
on physeter and other cetaceans monitored by neutrino observatory in
toulon (in french),” Int. Pelagos Cetacean Sanctuary Edition, French
Ministery of Environment, research program 13-040, sabiod.org, 2013.

[19] AE. Simonis, M. Roch, B. Bailey, J. Barlow, RES. Clemesha, S. Iaco-
bellis, JA. Hildebrand, and S. Baumann-Pickering, “Lunar cycles affect
common dolphin delphinus delphis foraging in the southern california
bight,” Marine Ecology Progress Series, vol. 577, pp. 221–235, 2017.

[20] TH. Lin, T. Akamatsu, and LS. Chou, “Tidal influences on the habitat
use of indo-pacific humpback dolphins in an estuary,” Marine biology,
vol. 160, no. 6, pp. 1353–1363, 2013.

[21] MN. de Boer, MP. Simmonds, P. Reijnders, and G. Aarts, “The influence
of topographic and dynamic cyclic variables on the distribution of small
cetaceans in a shallow coastal system,” PLoS One, vol. 9, no. 1, pp.
e86331, 2014.

[22] LS. Deconto and E. Monteiro-Filho, “Day and night sounds of the
guiana dolphin, sotalia guianensis (cetacea: Delphinidae) in southeastern
brazil,” acta ethologica, vol. 19, no. 1, pp. 61–68, 2016.

[23] Jérôme Sueur, Almo Farina, Amandine Gasc, Nadia Pieretti, and
Sandrine Pavoine, “Acoustic indices for biodiversity assessment and
landscape investigation,” Acta Acustica united with Acustica, vol. 100,
no. 4, pp. 772–781, 2014.

[24] Pascale Giraudet and Hervé Glotin, “Real-time 3d tracking of whales
by echo-robust precise tdoa estimates with a widely-spaced hydrophone
array,” Applied Acoustics, vol. 67, no. 11-12, pp. 1106–1117, 2006.

[25] Hervé Glotin, Frédéric Caudal, and Pascale Giraudet, “Whale cocktail
party: real-time multiple tracking and signal analyses,” Canadian
acoustics, vol. 36, no. 1, pp. 139–145, 2008.

[26] M. Poupard, B. De Montgolfier, and H. Glotin, “Ethoacoustic by
bayesian non parametric and stochastic neighbor embedding to forecast
anthropic pressure on dolphins,” in IEEE/OCEANS, June 2019.

[27] Laurens van der Maaten and Geoffrey Hinton, “Visualizing data using
t-SNE,” JMLR, vol. 9, pp. 2579–2605, 2008.

[28] M. Poupard, M. Ferrari, J. Schluter, R. Marxer, P Giraudet, , V. Giès,
V. Barchasz, G. Pavan, and H. Glotin, “Real-time passive acoustic 3d
tracking of deep diving cetacean by small non-uniform mobile surface
antenna,” in Accepted to ICASSP, 2019.

[29] R. Williams, AW. Trites, and DE. Bain, “Behavioural responses of
killer whales (orcinus orca) to whale-watching boats: opportunistic
observations and experimental approaches,” Journal of Zoology, vol.
256, no. 2, pp. 255–270, 2002.

[30] D. Lusseau, DE. Bain, R. Williams, and JC. Smith, “Vessel traffic
disrupts the foraging behavior of southern resident killer whales orcinus
orca,” Endangered Species Research, vol. 6, no. 3, pp. 211–221, 2009.

[31] D Briggs, Impact of human activities on killer whales at the rubbing
beaches in the Robson Bight Ecological Reserve and adjacent waters
during the summers of 1987 and 1989, Ministry of Parks, 1991.

[32] S. Kruse, “The interactions between killer whales and boats in johnstone
strait, bc,” Dolphin societies: Discoveries and puzzles, pp. 149–159,
1991.

[33] AB. Morton and H. Symonds, “Displacement of orcinus orca (l.) by
high amplitude sound in british columbia, canada,” ICES Journal of
Marine Science, vol. 59, no. 1, pp. 71–80, 2002.


