Claudia Vasconcellos-Gaete
email: claudia.vasconcellos@univ-angers.fr

Vincent Barichard
email: vincent.barichard@univ-angers.fr

Frédéric Lardeux
email: frederic.lardeux@univ-angers.fr

On the Use of CSP Semantic Information in SAT Models

Keywords: CSP, SAT, Decision variables

Constraint Satisfaction Problems (CSP) and Propositional Satisfiability Problems (SAT) are two paradigms intended to deal with constraint-based problems. In CSP modeling, it results natural to differentiate between decision and auxiliary variables. In SAT, instances do not contain any information about the nature of variables; solvers use the Variable Selection heuristic to determine the next decision to make. This article studies the effect of transfer semantic information from a CSP model to its corresponding SAT instance, in order to guide the branching only to variables directly related to the CSP model. The results obtained suggest that this modification can speed up the resolution for some instances.

Introduction

Constraint Satisfaction Problems (CSP) and Propositional Satisfiability Problems (SAT) are two paradigms intended to deal with constraint-based problems.

A CSP problem (P) is defined as a triple P = X, D, C . This triple contains a set of variables X = {x 1 , x 2 . . . , x n }, a set of finite domains D = {d 1 , d 2 . . . , d n } and a set of constraints C = {C 1 , C 2 . . . , C m }. A constraint C j is a relation between the domains c ⊆ D 1 × . . . × D n .

Usually, a CSP model has decision and auxiliary variables. Decision variables represent any value that decision maker needs to determine and they are used by the solver as decision points. Auxiliary variables could be introduced to support the modeling; they are not decision points, but they are invoked during propagation.

A SAT problem (S) is defined as a tuple X, L, Φ . This triple contains a set of Boolean variables X = {x 1 , x 2 , . . . , x n }, a set of literals L = {l 1,1 , l 1,2 , . . . , l 2n } and a Boolean formula in Conjunctive Normal Form (CNF) Φ : {0, 1} n → {0, 1}. A literal represents a variable (x i) or its negation (¬x i). The problem is satisfiable only if there exists an assignment of truth values for X in which the formula Φ is true; otherwise, the problem is unsatisfiable.

Modeling a problem directly in SAT is a complex task, so there are almost no problems modeled originally as a SAT formula. Also, formats to describe SAT CNF instances (i.e.: DIMACS CNF) are limited describing models; for example, they do not differentiate between decision or auxiliary variables. Typically in a SAT (CNF) instance all variables are equally considered (in their semantics) to be picked as the next variable to branch.

In this article, we study if by adding CSP semantic information to a SAT instance the resolution can improve, basing the analysis in restricting the set of variables with the potential to be picked by the SAT variable selection heuristic. Also, we propose a graph-based tool able to receive a CSP model, produce its corresponding SAT model and trace (in a single graph) all the transformations occurred in the path from CSP to SAT. The results show that focusing branching only in variables directly related to the CSP model, it is possible to reduce the number of decisions made by solver.

This article is structured as follows: Section 2 introduces the framework proposed to address CSP and SAT modeling languages, Section 3 presents a discussion about the branching heuristics in CSP and SAT solvers and how information could be kept when going from CSP to SAT. Section 4 presents the Magic Square problem. Finally, the results obtained are given in Section 5 and the upcoming work is discussed at Section 6.

Transforming CSP models into SAT models

Based on the main elements from CSP (variables, domains and constraints) and SAT (Boolean variables, literals and clauses) we propose a graph able to support both specifications by generalizing them in terms of: variables, relations and transformations. Variables are any symbol representing a value in a finite domain specified by the problem. Relations represents any relationship between one or more variables in the same space (CSP constraint, SAT clause, etc.). Transformations are any function able to produce a set of variables and relations that conserves the original solution (like CSP to SAT encodings).

The Graph-based model

We propose an acyclic labeled graph G = (N , E) where the set N of nodes is composed of three non overlapped sets

N = V R T with V R = ∅, V T = ∅ and R T = ∅.
V is a subset of nodes labeled with variables names, R is a subset of nodes labeled with CSP constraints or SAT clauses names, and T is a subset of nodes labeled with transformation names. The set of edges E = {e 1 , . . . , e m }, e i : n x → n y | n x , n y ∈ N expresses link between two elements. For example, Figure 1 shows the graph representations for transformations alldiff to diff() and diff to cnf().

Using a single graph to maintain the CSP and SAT models allow us to profit from the classical graph operations. For example, a search operation can trace the path followed by a variable or constraint from CSP to SAT and viceversa, determine when a SAT variable was created, identify the relations working with some variables, among others. Finally, the CSP to SAT encoding chosen produce the SAT model in CNF, facilitating the generation of the corresponding DIMACS CNF output.

SAT Encoding for arithmetic constraints

We extended the idea described in [5] to encode linear arithmetic constraints with digital adders. To be compatible with the machine representation required by them, we use Log Encoding [7]. In this encoding, each integer variable v i is represented with n Boolean variables x k i , where x k i = 1 only if the k-th bit of the domain value assigned to v i is 1.

To encode a linear constraint a i x i = c we consider the schema of a full adder. As this schema only permits to sum two values at the same time, we decompose the linear constraint into a bunch of sums in the form x + y = z. Each logical gate correspond to one or more CNF clauses, and the intermediate results (between gates) were modeled with Boolean auxiliary variables.

Decision versus Auxiliary Variables

In CSP modeling, a decision variable represents values that a decision maker needs to determine. Also, some auxiliary variables could be introduced to support the modeling when constraints are difficult to express or, to help the model to propagate better. This difference between variables is used later by the variable ordering heuristic to extend nodes in the search tree until all decision variables have been valuated.

Unlike CSP, SAT does not differentiate between decision or auxiliary variables directly in the model. Instead, what some SAT solvers call decision variable is actually any Boolean variable chosen by the branching heuristic during the solving phase. Then, if the branched variables are related (or not) to the decision variables in the problem or if they are only to store intermediate results, it is not concerning to the SAT solver.

In the graph proposed, the semantic information is transferred from CSP to SAT during the encoding of the CSP model; then, the origins of SAT Boolean variables can be traced to the variable encoding (Log encoding in this case) or as part of the constraint encoding. Moreover, the variable encoding can apply over CSP decision or auxiliary variables (Figure 2). The Magic Square (MS) is a mathematical puzzle that consists in finding an assignment of different natural values for a N × N matrix so that the sum across the rows, columns and diagonals always results in the same number, called the magic number [4]. The number N in this puzzle is known as order.

In the classical version of the problem, variables are in the domain [1, N 2] and the magic number is calculated as M = N (N 2 + 1)/2 (the open version of MS uses non-consecutive values in the square, but it is not our interest to consider this case).

The CSP model for Magic Square is defined by the following constraints (Equations 1, 2, 3 and 4):

∀ i, j ∈ {1, N } alldifferent(x ij) (1)
∀ i ∈ {1, N } N j=1 x ij = M (2) ∀ j ∈ {1, N } N i=1 x ij = M (3) N i=1 x ii = N i=1 x i(N -i+1) = M (4) x ij ∈ {1, N 2 } (5)

Experimental Results

All experiments reported in this section use instances of the Magic Square of orders between 4 and 9. They were performed on a machine Intel Core i7-2620M CPU @ 2.70GHz (quad-core, 64 bits) with 8 GB RAM, running Ubuntu 16.04 LTS. Runtimes reported are in seconds, with an upper limit of 2 hours (beyond that time, we will report ∞ values). The solvers used are Gecode (version 5.0.0) [6], and Glucose (version 4.1), a CDCL SAT solver [START_REF] Audemard | Glucose[END_REF].

All instances have been produced with the graph proposed. Variables were encoded in Log encoding and linear constraints are based in the full adder described in subsection 2.2.

CSP Solving

First, we measure the effort required by a CSP solver to deal with the MS selected instances. For each instance we developed a full CSP model, using Global Constraints and symmetry breaking ("Standard CSP model") and a second model, with no Global constraints and no symmetry breaking ("Decomposed CSP").

The values reported are: runtime (in seconds), the number of propagations and the number of failures occurred during the solving. The results in Table 1 show how the difficulty increases when symmetry is allowed in the model (MS7 case), even when the instances have known magic numbers (M) and the domain sizes are limited to the range [1, N 2].

Structure of CNF instances obtained

We describe the structure of the SAT CNF instances produced (in terms of variables and clauses) and observe the changes that a typical SAT minimization step (preprocessing) can do over them.

Structure of clauses pre/post minimization Based on Glucose preprocessor (option -dimacs), we compare how the structure of the SAT CNF instance changes before/after the minimization (Raw versus Minimized CNF). Values reported are number of variables, number of clauses and distribution of clauses by arity. The "raw" instances are the CNF obtained using the proposed graph. Results in Table 2 show that minimized instances reduced -in average-a 60.2% of variables and a 41.5% of clauses. Regarding binary clauses, they do not represent more than a 4% in the minimized instances, which could affect directly in the searching step.

Another effect of minimization techniques, like Strengthening1 [START_REF] Balint | Boosting the performance of SLS and CDCL solvers by preprocessor tuning[END_REF], is the generation of clauses longer than the longest clause in the raw instance (i.e.: the raw MS4 instance has clauses of length 7, while the minimized instance has clauses of length 8 and 9).

Distribution of variables pre/post minimization. In Section 3, we explained that SAT variables obtained after encoding a CSP instance can be linked to three sources: to CSP decision variables, to CSP auxiliary variables and, as result of the encoding of constraints. For the Magic Square instances, the origins of variables are:

-Decision variables, from the CSP decision variables (CSP DV).

-Auxiliary variables, from the CSP auxiliary variables (CSP AU X).

-Auxiliary variables, from the encoding of the alldiff() constraints (DIFF).

-Auxiliary variables, from the encoding of full adders (ADDER). Table 3 reports the total number of variables and the distribution (in percentage) of the variables by their origins. The results obtained show that preprocessing does not affect the distribution of variables but, as long as the instances grow, the percentage of auxiliary variables coming from constraint encodings increases.

Analysis of the Branching Behavior of a SAT Solver

This analysis focuses in the decisions made by the SAT solver, based on the origin of variables previously stated. Out interest is to determine if a smaller set of variables used available for branching can improve the solving process in SAT.

Origin of SAT branched variables By combining the tracing capabilities of our graph-based tool and some modifications in the Glucose solver to visualize each new branch, we determine the origins for each variable in the MS instances, allowing us to quantify which type of variable was branched the most. Table 4 shows the distribution by origin for all variables and for the subset of branched variables. To support the comparison, we present the same results expressed as percentages in Figures 3(a From the results obtained, we observe that even if the proportion of decision variables (CSP DV) is low compared to auxiliary variables (CSP AU X + DIFF + ADDER), there is a big number of variables coming from CSP DV which are branched. In average, a 82.5% of variables related to CSP DV are considered during branching, making them the most branched category. For the other categories, results are 54.8% (CSP AU X), 17.7% (DIFF) and 21.2% (ADDER).

Results show that variables directly linked to CSP decision variables, as they are (usually) part of multiple constraints, appear in several clauses and provide more information. In contrast, variables generated due to constraint encodings tend to appear less, their number is determined by the modeling thus, their branching utilization depends only of the CSP model provided. The "Solution Branch" (the set of assignments that lead to the resolution of the instances), has the same behavior. The most frequently picked variables are the ones related to CSP DV , while all others are much less considered. Table 5 describes them in terms of depth (how long the branch is), and variable distribution per category. The parameter max branches indicates the maximum number of times that a CSP DV was indirectly branched (a CSP variable is encoded in multiple SAT variables so, technically, the same CSP variable can be branched several times).

Origins of variables

Figure 4 shows the projection of the Solution Branches in their corresponding MS grids. The colors represent how many times a CSPDV was indirectly branched; the darker the color, the higher the frequency.

These results reinforces the idea that CSP DV is the most branched category so, it worths to prioritize them. Particularly for the MS, branching tends to pick variables related to the sum involving the magic number M . For example, in the grid for MS4 (Figure 4(a)), the most branched variables are linked to the linear constraint for the first row; the same for MS5 (Figure 4(b)) where the linear constraint for the second row is the most branched. For MS6 and MS7 (Figures 4(c) and 4(d)), the most branched variables are linked to the last additions of some rows and columns. This is an interesting fact, as M is a constant and, consequently, the only which makes possible the Unit Propagation.

Sorted versus Shuffled instances Our graph encodes to SAT following the order initially given to CSP constraints, making that CSP DV variables will appear first in the CNF file. We analyze this, because studies like [START_REF] Audemard | Experimenting with small changes in conflict-driven clause learning algorithms[END_REF] suggests that SAT solvers are sensitive to the CNF file organization. We analyze 4 versions derived from the MS4 instance: the classical one (MS4), with clauses shuffled (MS4s), branching only on CSP DV variables (MS4dv) and, with clauses shuffled and branching only on CSP DV variables (MS4dvs). Table 6 and Figure 5 show the results for the MS4 Solution Branches. The results show again the predominance of SAT DV variables in the branch. The size of branches remains almost the same in the four cases, so nothing can be concluded from that.

But, observing the cases limited to branch over decision variables (MS4dv and MS4dvs), the grids projected looks more sparse than in the cases where all variables are candidate for branching. The cause for this could be the presence of the CDCL learning processes. The work by adding new clauses derived from the knowledge obtained after branch and propagation. It may seems, that by reducing the variables set, we are also reducing the learning speed of the solver.

SAT solving for different branching sets

Finally, we present the SAT solving results for different branching sets. We added two new instances (MS8 and MS9) to observe better the changes produced by the different sets.

The values reported are the runtime (in seconds), the number of propagations and the number of decision points; all of them are provided directly by the solver. The runtime has an upper limit of 2 hours (if any instance goes beyond that time, we will report ∞ values). In Figure 6, runtimes are log-scaled in order to handle the huge differences between instances.

Table 7 shows that number of decision is considerably less for the first three instances (MS 4,5,6) when branching uses all variables coming from CSP (Branching on SAT CSP) and, it is the only group where MS8 and MS9 instances were solved in the time frame given. The same is observed in Figure 6.

Regarding the second group of values (Branching on SAT DV), we observe a fast increment in the number of Decisions. This seems to agree with the discussion about branching and learning presented in Subsection 5.3. Moreover, if we consider that CSP AU X variables belong to the magic number, then, we conclude that avoid SAT variables linked to CSP auxiliary variables reduce the chances for the Unit Propagation.

A comparison between Tables 1 and7 show that SAT solver outperforms the resolution of the decomposed CSP model from MS7 instance onwards. In the "Standard" cases, both solvers perform similar on the small instances (MS4, MS5 and MS6), but for MS7, the CSP outperforms the SAT solver. This article analyzes the behavior of the branching heuristics of a SAT CDCL solver when CSP semantic information about their variables is added to SAT models. From the results we conclude that SAT solver intuitively branches on variables directly linked to CSP model, despite the fact that these variables are a minority in the universe of SAT variables for a single instance. To achieve this analysis, we also propose a graph-based tool able to keep tracking of the transformation between CSP and SAT models. With it, we traced successfully the CSP origin of each SAT variable in the problem instances, giving us a CSP point of view over the SAT resolution. Is clear that studying the transformations between CSP and SAT models opens a lot of possibilities to understand better their interactions and to improve the current techniques involved into modeling and solving. The upcoming work goes in the line of investigate if more, and which kind, of CSP semantic information could be added to a SAT model and, if it is possible to replicate a CSP-like propagation in SAT. We expect that our findings can contribute to expand the knowledge in this area.

Fig. 1 .

 1 Fig. 1. Graph representation of some CSP/SAT relations and transformations

Fig. 2 .

 2 Fig. 2. Origins of SAT Boolean variables

) and 3(b).

Fig. 3 .

 3 Fig. 3. Distribution (%) of variables in CNF instances by origin

Fig. 4 .

 4 Fig. 4. Projection of branched variables.

Fig. 5 .

 5 Fig. 5. Projection of branched variables for MS4

Fig. 6 .

 6 Fig. 6. SAT runtime (log scaled)

Table 1 .

 1 CSP Results for the Magic Square

		Instance	Solutions Runtime Propagations Failures Found
		MS4	1	0.014	27152	892
	Standard CSP	MS5 MS6	1 1	0.443 0.001	2292251 1382	72227 27
		MS7	1	2.698	9841603 481301
		MS4	1	0.001	2075	14
	Decomposed CSP	MS5 MS6	1 1	0.011 0.847	82083 7866816	498 47162
		MS7	1	∞	∞	∞

Table 2 .

 2 Structure of SAT CNF instances produced

		Instance vars clauses	10	9	8	CNF clause arity 7 6 5 4	3	2 1
		MS4	1773	6829 -	-	-	20 376 -120 5010 1260 43
	Raw CNF	MS5 MS6	3674 7484	14008 -29528 -	-28	24 28 1638 12 475 -192 11004 2232 69 --280 23842 3612 100
		MS7	12728	49825 16	48	16 1911	--384 42032 5280 138
		MS4	675	3688 -	-603	10 178 16 63 2520 278	-
	Minimized CNF	MS5 MS6	1378 3089	7984 -17794 -4744 -2200 13 277 36 -240 12235 249 29 158 25 -5154 398	--
		MS7	5390	31214 -9096	71 292 49 -60 21120 526	-

Table 3 .

 3 Distribution of variables pre/post minimization.

		Instance vars.	Decision(%) CSP DV	Auxiliary(%) CSP AU X DIFF ADDER
		MS4	1773	12.9	0.8	45.7	40.6
	Raw CNF	MS5 MS6	3674 7484	11.2 9.4	0.6 0.5	39.2 31.2	49.0 59.0
		MS7	12728	8.1	0.4	26.9	64.7
		MS4	675	11.1	0.7	45.7	40.6
	Minimized CNF	MS5 MS6	1372 3092	9.7 8.2	0.3 0.4	37.1 31.2	53.0 60.1
		MS7	5381	7.1	0.4	25.7	67.6

Table 4 .

 4 Origins of SAT variables

					Instance Total	Decision CSP DV CSP AU X DIFF ADDER Auxiliary
					MS4	1773	96	147 720	810
		All Variables		MS5 MS6	3674 7484	150 252	284 1800 484 4410	1440 2338
					MS7	12728	343	729 8232	3424
					MS4	202	72	28	32	70
		Branched Vars.	MS5 MS6	656 2028	125 217	148 361 845 80	303 605
					MS7	5349	294	538 3517	1000
					SATAUX-ADDER
					SATAUX-DIFF
					CSPAUX	
					CSPDV	
	MS4	MS5	MS6	MS7		

Table 5 .

 5 Description of Solution Branches

				Instance depth	Distribution CSP DV CSP AU X DIFF ADDER branches Max
				MS4	22	20	2	-	-	3
				MS5	49	36	4	-	9	5
				MS6	91	84	3	-	4	5
				MS7	154	128	7	2	17	6
		Magic Square 4x4				
	R1						
	R2						
	R3						
	R4						
	C1	C2	C3	C4			

Table 6 .

 6 Solution Branches for MS4 versions

	Instance depth	Distribution CSP DV CSP AU X DIFF ADDER
	MS4	22	20	2	-	-
	MS4dv	22	22	-	-	-
	MS4s	20	16	2	-	2
	MS4dvs	19	19	-	-	-

Table 7 .

 7 SAT Results for the Magic Square

		Instance Runtime Propagations Decisions
		MS4	0.03	92944	1927
		MS5	0.11	384221	8272
	Standard model	MS6	0.54	2034502	37941
		MS7	78.90	155917224	2551515
		MS8	156.83	537569994	7602086
		MS9	∞	∞	∞
		MS4	0.08	142316	2394
		MS5	0.12	277330	5110
	Branching on SAT DV	MS6	1.27	7745848	124110
		MS7	76.14	245845662	3904006
		MS8	∞	∞	∞
		MS9	∞	∞	∞
		MS4	0.04	29814	536
		MS5	0.12	218608	3638
	Branching on SAT CSP	MS6	1.22	6489299	111836
		MS7	74.99	224437398	3653155
		MS8	466.68	1176044383 16278155
		MS9	4828.31	8677420297 125249474
	6 Conclusions and Future Work		

If there exist two clauses C1 = {l, D} and C2 = {¬l, E, D}, then the clause C2 can be replaced by the resolvent C1 ⊗ C2 = {D, E}.