N

N
N

On the Use of CSP Semantic Information in SAT Models

HAL

open science

Claudia Vasconcellos-Gaete, Vincent Barichard, Frédéric Lardeux

» To cite this version:

Claudia Vasconcellos-Gaete, Vincent Barichard, Frédéric Lardeux.
Information in SAT Models. 18th Mexican International Conference on Artificial Intelligence (MICAI),

Oct 2019, Xalapa, Mexico. pp.127. hal-02445335

HAL Id: hal-02445335
https://hal.science/hal-02445335
Submitted on 20 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

On the Use of CSP Semantic

https://hal.science/hal-02445335
https://hal.archives-ouvertes.fr

On the Use of CSP Semantic Information in
SAT Models

Claudia Vasconcellos-Gaete, Vincent Barichard, and Frédéric Lardeux

Laboratoire d’étude et de recherche en informatique d’Angers (LERIA), Université
d’Angers, Universit Bretagne Loire, 49000 Angers, France
{claudia.vasconcellos, vincent.barichard,
frederic.lardeux}@univ-angers.fr

Abstract. Constraint Satisfaction Problems (CSP) and Propositional
Satisfiability Problems (SAT) are two paradigms intended to deal with
constraint-based problems. In CSP modeling, it results natural to differ-
entiate between decision and auziliary variables. In SAT, instances do
not contain any information about the nature of variables; solvers use
the Variable Selection heuristic to determine the next decision to make.
This article studies the effect of transfer semantic information from a
CSP model to its corresponding SAT instance, in order to guide the
branching only to variables directly related to the CSP model. The results
obtained suggest that this modification can speed up the resolution for
some instances.

Keywords: CSP - SAT - Decision variables.

1 Introduction

Constraint Satisfaction Problems (CSP) and Propositional Satisfiability Prob-
lems (SAT) are two paradigms intended to deal with constraint-based problems.

A CSP problem (P) is defined as a triple P = (X, D, C). This triple contains a
set of variables X = {x1,22...,2,}, a set of finite domains D = {dy,ds...,d,}
and a set of constraints C = {C1,Cs...,Cy}. A constraint C; is a relation
between the domains ¢ C Dy X ... x D,,.

Usually, a CSP model has decision and auxiliary variables. Decision variables
represent any value that decision maker needs to determine and they are used
by the solver as decision points. Auxiliary variables could be introduced to sup-
port the modeling; they are not decision points, but they are invoked during
propagation.

A SAT problem (S8) is defined as a tuple (X, L, ®). This triple contains a set
of Boolean variables X = {1, x2,...,2n}, aset of literals L = {l1 1,l1,2,...,l2,}
and a Boolean formula in Conjunctive Normal Form (CNF) ¢ : {0,1}" — {0,1}.
A literal represents a variable (z;) or its negation (—z;). The problem is satisfiable
only if there exists an assignment of truth values for X in which the formula @
is true; otherwise, the problem is unsatisfiable.

2 Vasconcellos-Gaete et al.

Modeling a problem directly in SAT is a complex task, so there are almost no
problems modeled originally as a SAT formula. Also, formats to describe SAT
CNF instances (i.e.: DIMACS CNF) are limited describing models; for example,
they do not differentiate between decision or auxiliary variables. Typically in a
SAT (CNF) instance all variables are equally considered (in their semantics) to
be picked as the next variable to branch.

In this article, we study if by adding CSP semantic information to a SAT
instance the resolution can improve, basing the analysis in restricting the set of
variables with the potential to be picked by the SAT variable selection heuristic.
Also, we propose a graph-based tool able to receive a CSP model, produce its
corresponding SAT model and trace (in a single graph) all the transformations
occurred in the path from CSP to SAT. The results show that focusing branching
only in variables directly related to the CSP model, it is possible to reduce the
number of decisions made by solver.

This article is structured as follows: Section 2 introduces the framework pro-
posed to address CSP and SAT modeling languages, Section 3 presents a discus-
sion about the branching heuristics in CSP and SAT solvers and how information
could be kept when going from CSP to SAT. Section 4 presents the Magic Square
problem. Finally, the results obtained are given in Section 5 and the upcoming
work is discussed at Section 6.

2 Transforming CSP models into SAT models

Based on the main elements from CSP (variables, domains and constraints)
and SAT (Boolean variables, literals and clauses) we propose a graph able to
support both specifications by generalizing them in terms of: variables, relations
and transformations. Variables are any symbol representing a value in a finite
domain specified by the problem. Relations represents any relationship between
one or more variables in the same space (CSP constraint, SAT clause, etc.).
Transformations are any function able to produce a set of variables and relations
that conserves the original solution (like CSP to SAT encodings).

2.1 The Graph-based model

We propose an acyclic labeled graph G = (N,E) where the set N of nodes
is composed of three non overlapped sets NV = VR T with VR = 0,
VAT =0and R(NT = 0.V is a subset of nodes labeled with variables names,
R is a subset of nodes labeled with CSP constraints or SAT clauses names,
and 7 is a subset of nodes labeled with transformation names. The set of edges
E =A{e,....em},€ 1 Ny = ny | ng,ny, € N expresses link between two ele-
ments. For example, Figure 1 shows the graph representations for transforma-
tions alldiff to_diff () and diff_to_cnf().

Using a single graph to maintain the CSP and SAT models allow us to profit
from the classical graph operations. For example, a search operation can trace
the path followed by a variable or constraint from CSP to SAT and viceversa,

CSP Semantic Information in SAT Models 3

(a) alldiff_to diff () (b) diff_to_cnf ()

Fig. 1. Graph representation of some CSP/SAT relations and transformations

determine when a SAT variable was created, identify the relations working with
some variables, among others.

Finally, the CSP to SAT encoding chosen produce the SAT model in CNF,
facilitating the generation of the corresponding DIMACS CNF output.

2.2 SAT Encoding for arithmetic constraints

We extended the idea described in [5] to encode linear arithmetic constraints
with digital adders. To be compatible with the machine representation required
by them, we use Log Encoding [7]. In this encoding, each integer variable v; is
represented with n Boolean variables ¥, where ¥ = 1 only if the k-th bit of
the domain value assigned to v; is 1.

To encode a linear constraint »_ a;xz; = ¢ we consider the schema of a full
adder. As this schema only permits to sum two values at the same time, we
decompose the linear constraint into a bunch of sums in the form z 4+ y = z.
Each logical gate correspond to one or more CNF clauses, and the intermediate
results (between gates) were modeled with Boolean auxiliary variables.

3 Decision versus Auxiliary Variables

In CSP modeling, a decision variable represents values that a decision maker
needs to determine. Also, some auziliary variables could be introduced to support
the modeling when constraints are difficult to express or, to help the model to
propagate better. This difference between variables is used later by the variable
ordering heuristic to extend nodes in the search tree until all decision variables
have been valuated.

Unlike CSP, SAT does not differentiate between decision or auxiliary vari-
ables directly in the model. Instead, what some SAT solvers call decision variable
is actually any Boolean variable chosen by the branching heuristic during the
solving phase. Then, if the branched variables are related (or not) to the decision
variables in the problem or if they are only to store intermediate results, it is
not concerning to the SAT solver.

In the graph proposed, the semantic information is transferred from CSP to
SAT during the encoding of the CSP model; then, the origins of SAT Boolean

4 Vasconcellos-Gaete et al.

variables can be traced to the variable encoding (Log encoding in this case) or
as part of the constraint encoding. Moreover, the variable encoding can apply
over CSP decision or auxiliary variables (Figure 2).

CSP model CSP/SAT encoding SAT Boolean variables

Decision vars. (DV) From CSP Decision vars

Auxiliary vars. (AUX)
Constraint encoding From CSP constraints

Fig. 2. Origins of SAT Boolean variables

Variable encoding

From CSP Auxiliary vars

As our interest is to investigate if by adding CSP semantic information to a
SAT instance the resolution can improve, we based the analysis in restricting the
set of variables with the potential to be picked by the SAT Variable Selection
heuristic. Technically, the graph tags all SAT Boolean variables in the instance
as decision or auziliary (based on the CSP model given) and then, the DIMACS
CNF output generator will sort the variables and add a new parameter to the
CNF to indicate the first ID corresponding to the auxiliary variables. The new
description in the DIMACS CNF file will be:

p cnf nvars nclauses first_auxiliary var

4 The Magic Square

The Magic Square (MS) is a mathematical puzzle that consists in finding an
assignment of different natural values for a N x N matrix so that the sum across
the rows, columns and diagonals always results in the same number, called the
magic number [4]. The number N in this puzzle is known as order.

In the classical version of the problem, variables are in the domain [1, N?]
and the magic number is calculated as M = N(N? + 1)/2 (the open version
of MS uses non-consecutive values in the square, but it is not our interest to
consider this case).

The CSP model for Magic Square is defined by the following constraints
(Equations 1, 2, 3 and 4):

Vi,j € {1,N} alldifferent(z;;) (1)
N

Vie {1,N} Y ;=M (2)
j=1
N

Vie{l,N} > mij=M (3)

i=1

CSP Semantic Information in SAT Models 5

N N
D @i =Y win-isy =M (4)
i=1 i=1

i € {1,N%} ()

5 Experimental Results

All experiments reported in this section use instances of the Magic Square of
orders between 4 and 9. They were performed on a machine Intel Core i7-2620M
CPU @ 2.70GHz (quad-core, 64 bits) with 8 GB RAM, running Ubuntu 16.04
LTS. Runtimes reported are in seconds, with an upper limit of 2 hours (beyond
that time, we will report co values). The solvers used are Gecode (version 5.0.0)
[6], and Glucose (version 4.1), a CDCL SAT solver [1].

All instances have been produced with the graph proposed. Variables were
encoded in Log encoding and linear constraints are based in the full adder de-
scribed in subsection 2.2.

5.1 CSP Solving

First, we measure the effort required by a CSP solver to deal with the MS selected
instances. For each instance we developed a full CSP model, using Global Con-
straints and symmetry breaking (“Standard CSP model”) and a second model,
with no Global constraints and no symmetry breaking (“Decomposed CSP”).

The values reported are: runtime (in seconds), the number of propagations
and the number of failures occurred during the solving.

Table 1. CSP Results for the Magic Square

Solutions

Instance Found Runtime Propagations Failures
MS4 1 0.014 27152 892
MS5 1 0.443 2292251 72227
Standard CSP /g4 1 0.001 1382 27
MS7 1 2.698 9841603 481301
MS4 1 0.001 2075 14
MS5 1 0.011 82083 498
Decomposed CSP g4 1 0.847 7866816 47162
MS7 1 0o o0 00

The results in Table 1 show how the difficulty increases when symmetry is
allowed in the model (MS7 case), even when the instances have known magic
numbers (M) and the domain sizes are limited to the range [1, N?].

6 Vasconcellos-Gaete et al.

5.2 Structure of CNF instances obtained

We describe the structure of the SAT CNF instances produced (in terms of
variables and clauses) and observe the changes that a typical SAT minimization
step (preprocessing) can do over them.

Structure of clauses pre/post minimization Based on Glucose preprocessor
(option -dimacs), we compare how the structure of the SAT CNF instance
changes before/after the minimization (Raw versus Minimized CNF). Values
reported are number of variables, number of clauses and distribution of clauses
by arity. The “raw” instances are the CNF obtained using the proposed graph.

Table 2. Structure of SAT CNF instances produced

CNF clause arity

Instance vars clauses 10 9 8 " 6 5 4 3 2 1

MS4 1773 6829 - - - 20376 - 120 5010 1260 43
Raw CNF MS5 3674 14008 - - 24 12475 -192 11004 2232 69
MS6 7484 29528 - 28 281638 - - 280 23842 3612 100
MS7 12728 49825 16 48 16 1911 - - 384 42032 5280 138
MS4 675 3688 - - 603 10178 16 63 2520 278 -
Minimized CNF MS5 1378 7984 - - 2200 29158 25 - 5154 398 -
MS6 3089 17794 - 4744 13 277 36 - 240 12235 249 -
MS7 5390 31214 -9096 71 292 49 - 6021120 526 -

Results in Table 2 show that minimized instances reduced -in average- a
60.2% of variables and a 41.5% of clauses. Regarding binary clauses, they do not
represent more than a 4% in the minimized instances, which could affect directly
in the searching step.

Another effect of minimization techniques, like Strengthening ! [3], is the
generation of clauses longer than the longest clause in the raw instance (i.e.:
the raw MS4 instance has clauses of length 7, while the minimized instance has
clauses of length 8 and 9).

Distribution of variables pre/post minimization. In Section 3, we ex-
plained that SAT variables obtained after encoding a CSP instance can be linked
to three sources: to CSP decision variables, to CSP auxiliary variables and, as
result of the encoding of constraints. For the Magic Square instances, the origins
of variables are:

— Decision variables, from the CSP decision variables (CSPpy).
— Auxiliary variables, from the CSP auxiliary variables (CSP 4y x).
— Auxiliary variables, from the encoding of the al1diff () constraints (DIFF).

L If there exist two clauses C1 = {I, D} and C2 = {~I, E, D}, then the clause Cs can
be replaced by the resolvent C1 @ C2 = {D, E}.

CSP Semantic Information in SAT Models 7

— Auxiliary variables, from the encoding of full adders (ADDER).

Table 3 reports the total number of variables and the distribution (in per-
centage) of the variables by their origins. The results obtained show that prepro-
cessing does not affect the distribution of variables but, as long as the instances
grow, the percentage of auxiliary variables coming from constraint encodings
increases.

Table 3. Distribution of variables pre/post minimization.

Instance vars Decision(%) Auxiliary (%)
* OSPpyv CSPayx DIFF ADDER

MS4 1773 12.9 0.8 457 406

MS5 3674 11.2 0.6 392 49.0

Raw CNF MS6 7484 9.4 05 312 59.0
MS7 12728 8.1 04 269 64.7

MS4 675 11.1 0.7 457 406

s MS5 1372 9.7 03 371 53.0
Minimized CNF ;o5 3099 8.2 04 312 60.1
MS7 5381 71 04 257 676

5.3 Analysis of the Branching Behavior of a SAT Solver

This analysis focuses in the decisions made by the SAT solver, based on the
origin of variables previously stated. Out interest is to determine if a smaller set
of variables used available for branching can improve the solving process in SAT.

Origin of SAT branched variables By combining the tracing capabilities of
our graph-based tool and some modifications in the Glucose solver to visualize
each new branch, we determine the origins for each variable in the MS instances,
allowing us to quantify which type of variable was branched the most.

Table 4 shows the distribution by origin for all variables and for the subset
of branched variables. To support the comparison, we present the same results
expressed as percentages in Figures 3(a) and 3(b).

From the results obtained, we observe that even if the proportion of decision
variables (CSPpy) is low compared to auxiliary variables (CSP 4y x+ DIFF +
ADDER), there is a big number of variables coming from CSPpy which are
branched. In average, a 82.5% of variables related to CSPpy are considered
during branching, making them the most branched category. For the other cat-
egories, results are 54.8% (CSPayx), 17.7% (DIFF) and 21.2% (ADDER).

Results show that variables directly linked to CSP decision variables, as they
are (usually) part of multiple constraints, appear in several clauses and provide
more information. In contrast, variables generated due to constraint encodings
tend to appear less, their number is determined by the modeling thus, their
branching utilization depends only of the CSP model provided.

8 Vasconcellos-Gaete et al.

Table 4. Origins of SAT variables

Instance Total Decision Auxiliary
CSPpyv CSPayx DIFF ADDER
MS4 1773 96 147 720 810
. MS5 3674 150 284 1800 1440
All Variables /¢ 7484 252 484 4410 2338
MS7 12728 343 729 8232 3424
MS4 202 72 28 32 70
MS5 656 125 148 80 303
Branched Vars. y/q¢ 2028 217 361 845 605
MS7 5349 294 538 3517 1000
Origins of variables Origins of branched variables
i O SATAUX-ADDER 1 O SATAUX-ADDER
= B SATAUX-DIFF (= B SATAUX-DIFF
& m CSPAUX & m CSPAUX
o | W CSPDV 2 W CSPDV
MS4 MS5 MS6 mSs7 Ms4 MS5 Ms6 MS7
Instances Instances
(a) Variables (b) Branched variables

Fig. 3. Distribution (%) of variables in CNF instances by origin

The “Solution Branch” (the set of assignments that lead to the resolution of
the instances), has the same behavior. The most frequently picked variables are
the ones related to CSPpy, while all others are much less considered. Table 5
describes them in terms of depth (how long the branch is), and variable distribu-
tion per category. The parameter max branches indicates the maximum number
of times that a CSPpy was indirectly branched (a CSP variable is encoded in
multiple SAT variables so, technically, the same CSP variable can be branched
several times).

Figure 4 shows the projection of the Solution Branches in their correspond-
ing MS grids. The colors represent how many times a CSPDV was indirectly
branched; the darker the color, the higher the frequency.

These results reinforces the idea that CSPpy is the most branched category
S0, it worths to prioritize them. Particularly for the MS, branching tends to pick
variables related to the sum involving the magic number M. For example, in the
grid for MS4 (Figure 4(a)), the most branched variables are linked to the linear
constraint for the first row; the same for MS5 (Figure 4(b)) where the linear

CSP Semantic Information in SAT Models 9

Table 5. Description of Solution Branches

Instan depth Distribution Max
stance depti cgpPpy CSPayx DIFF ADDER branches
MS4 22 20 5 B B 3
MS5 49 36 4 _ 9 5
MS6 91 84 3 _ 1 5
MS7 154 128 7 9 17 6
(a) MS4 (b) MS5 (c) MS6 (d) MS7

Fig. 4. Projection of branched variables.

constraint for the second row is the most branched. For MS6 and MS7 (Figures
4(c) and 4(d)), the most branched variables are linked to the last additions of
some rows and columns. This is an interesting fact, as M is a constant and,
consequently, the only which makes possible the Unit Propagation.

Sorted versus Shuffled instances Our graph encodes to SAT following the
order initially given to CSP constraints, making that CSP py variables will ap-
pear first in the CNF file. We analyze this, because studies like [2] suggests that
SAT solvers are sensitive to the CNF file organization.

We analyze 4 versions derived from the MS4 instance: the classical one (MS4),
with clauses shuffled (MS4s), branching only on CSPpy variables (MS4dv) and,
with clauses shuffled and branching only on CSPpy variables (MS4dvs). Table
6 and Figure 5 show the results for the MS4 Solution Branches.

Table 6. Solution Branches for MS4 versions

Instance depth Distribution

CSPpy CSPaux DIFF ADDER
MS4 22 20 2 - -
MS4dv 22 22 - - -
MS4s 20 16 2 - 2
MS4dvs 19 19 - - -

The results show again the predominance of SAT py variables in the branch.
The size of branches remains almost the same in the four cases, so nothing can
be concluded from that.

10 Vasconcellos-Gaete et al.

But, observing the cases limited to branch over decision variables (MS4dv
and MS4dvs), the grids projected looks more sparse than in the cases where all
variables are candidate for branching. The cause for this could be the presence
of the CDCL learning processes. The work by adding new clauses derived from
the knowledge obtained after branch and propagation. It may seems, that by
reducing the variables set, we are also reducing the learning speed of the solver.

Mg Squae 4 (st Docison Voriaios) W Squre v (s Shred Clouses) M Square (4 Decsion Varibies and Sl Cluses)

(a) MS4dv (b) MS4s (c) MS4dvs

Fig. 5. Projection of branched variables for MS4

5.4 SAT solving for different branching sets

Finally, we present the SAT solving results for different branching sets. We added
two new instances (MS8 and MS9) to observe better the changes produced by
the different sets.

The values reported are the runtime (in seconds), the number of propagations
and the number of decision points; all of them are provided directly by the solver.
The runtime has an upper limit of 2 hours (if any instance goes beyond that time,
we will report co values). In Figure 6, runtimes are log-scaled in order to handle
the huge differences between instances.

Table 7 shows that number of decision is considerably less for the first
three instances (MS 4,5,6) when branching uses all variables coming from CSP
(Branching on SAT¢gp) and, it is the only group where MS8 and MS9 instances
were solved in the time frame given. The same is observed in Figure 6.

Regarding the second group of values (Branching on SAT py), we observe a
fast increment in the number of Decisions. This seems to agree with the discus-
sion about branching and learning presented in Subsection 5.3. Moreover, if we
consider that CSP 4y x variables belong to the magic number, then, we conclude
that avoid SAT variables linked to CSP auxiliary variables reduce the chances
for the Unit Propagation.

A comparison between Tables 1 and 7 show that SAT solver outperforms
the resolution of the decomposed CSP model from MS7 instance onwards. In
the “Standard” cases, both solvers perform similar on the small instances (MS4,
MS5 and MS6), but for MS7, the CSP outperforms the SAT solver.

CSP Semantic Information in SAT Models 11

Table 7. SAT Results for the Magic Square

Instance Runtime Propagations Decisions

MS4 0.03 92944 1927
MS5 0.11 384221 8272
Standard model MS6 0.54 2034502 37941
MS7 78.90 155917224 2551515
MS8 156.83 537569994 7602086
MS9 [eS) [eS))
MS4 0.08 142316 2394
MS5 0.12 277330 5110
Branching on SATpy MS6 1.27 7745848 124110
MS7 76.14 245845662 3904006
MS8 [e%S) 9])
MS9 0o 0o S
MS4 0.04 29814 536
MS5 0.12 218608 3638
Branching on SATcsp MS6 1.22 6489299 111836
MS7 74.99 224437398 3653155
MS8 466.68 1176044383 16278155
MS9 4828.31 8677420297 125249474

6 Conclusions and Future Work

This article analyzes the behavior of the branching heuristics of a SAT CDCL
solver when CSP semantic information about their variables is added to SAT
models. From the results we conclude that SAT solver intuitively branches on
variables directly linked to CSP model, despite the fact that these variables are
a minority in the universe of SAT variables for a single instance. To achieve
this analysis, we also propose a graph-based tool able to keep tracking of the
transformation between CSP and SAT models. With it, we traced successfully
the CSP origin of each SAT variable in the problem instances, giving us a CSP
point of view over the SAT resolution.

Is clear that studying the transformations between CSP and SAT models
opens a lot of possibilities to understand better their interactions and to im-
prove the current techniques involved into modeling and solving. The upcoming
work goes in the line of investigate if more, and which kind, of CSP semantic
information could be added to a SAT model and, if it is possible to replicate
a CSP-like propagation in SAT. We expect that our findings can contribute to
expand the knowledge in this area.

References

1. Audemard, G., Simon, L.: Glucose, www.labri.fr/perso/lsimon/glucose/

2. Audemard, G., Simon, L.: Experimenting with small changes in conflict-driven
clause learning algorithms. In: Principles and Practice of Constraint Programming.
pp. 630-634 (2008)

3. Balint, A., Manthey, N.: Boosting the performance of SLS and CDCL solvers by
preprocessor tuning. In: POS@ SAT. pp. 1-14 (2013)

12

Vasconcellos-Gaete et al.

SAT runtimes

12
|

o _| |-=- Standard SAT
- —+— SAT + CSP decision variables
SAT + All CSP variables

Runtime (in seconds, log scaled)
4
I

-2

-4

Ms4 MS5 MS6 MS7 Ms8 MS9

Instances

Fig. 6. SAT runtime (log scaled)

. Derksen, H., Eggermont, C., Van Den Essen, A.: Multimagic squares. American

Mathematical Monthly 114(8), 703-713 (2007)

Eén, N., Sorensson, N.: Translating pseudo-boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation 2, 1-26 (2006)

Schulte, C., Lagerkvist, M., Tack, G.: Gecode, www.gecode.org

Walsh, T.: SAT vs CSP. In: Principles and Practice of Constraint Programming —
CP 2000: 6th International Conference. pp. 441-456 (2000)

