On the Use of CSP Semantic Information in SAT Models - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

On the Use of CSP Semantic Information in SAT Models

Résumé

Constraint Satisfaction Problems (CSP) and Propositional Satisfiability Problems (SAT) are two paradigms intended to deal with constraint-based problems. In CSP modeling, it results natural to differentiate between decision and auxiliary variables. In SAT, instances do not contain any information about the nature of variables; solvers use the Variable Selection heuristic to determine the next decision to make. This article studies the effect of transfer semantic information from a CSP model to its corresponding SAT instance, in order to guide the branching only to variables directly related to the CSP model. The results obtained suggest that this modification can speed up the resolution for some instances.
Fichier principal
Vignette du fichier
micai2019_cvasconcellos.pdf (430.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02445335 , version 1 (20-01-2020)

Identifiants

  • HAL Id : hal-02445335 , version 1

Citer

Claudia Vasconcellos-Gaete, Vincent Barichard, Frédéric Lardeux. On the Use of CSP Semantic Information in SAT Models. 18th Mexican International Conference on Artificial Intelligence (MICAI), Oct 2019, Xalapa, Mexico. pp.127. ⟨hal-02445335⟩

Collections

UNIV-ANGERS LERIA
61 Consultations
168 Téléchargements

Partager

More